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Abstract

We obtain non-Gaussian limit laws for one-dimensional random walk in a random
environment in the case that the environment is a function of a stationary Markov
process. This is an extension of the work of Kesten, M. Kozlov and Spitzer [13] for
random walks in i.i.d. environments. The basic assumption is that the underlying
Markov chain is irreducible and either with finite state space or with transition kernel
dominated above and below by a probability measure.
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1 Introduction and Statement of Results

Let Ω = (0, 1)Z and let F be the Borel σ−algebra on Ω. A random environment is an element
ω = {ωi}i∈Z of Ω distributed according to a stationary and ergodic probability measure P on
(Ω,F). The random walk in the environment ω is a time-homogeneous Markov chain X =
{Xn}n∈N on Z governed by the quenched law

Pω(X0 = 0) = 1 and Pω(Xn+1 = j|Xn = i) =

{
ωi if j = i+ 1,
1 − ωi if j = i− 1.

Let
(
Z

N,G
)

be the canonical space for the paths of {Xn}, i.e. G is the cylinder σ−algebra.
The random walk in random environment (RWRE) associated with P is the process (X,ω)
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on the measurable space
(
Ω × Z

N,F ⊗ G
)

having the annealed probability law P = P ⊗ Pω

defined by

P(F ×G) =

∫

F

Pω(G)P (dω), F ∈ F , G ∈ G.

Since the process learns about the environment as time passes according to the Bayes rule,
{Xn} is in general not a Markov chain under the annealed measure P. The model goes back to
[17, 23] and, in physics, to [8, 27]. In this introduction we briefly discuss some basic results
on the one-dimensional RWRE. We refer the reader to [25, 28] for recent comprehensive
surveys of the field.

Recurrence criteria and possible speed regimes for the one-dimensional RWRE were es-
tablished by Solomon [23] in the case where {ωn} is an i.i.d. sequence and carried over to
general ergodic environments by Alili [1]. Let

ρn =
1 − ωn

ωn
,

R(ω) = 1 +

+∞∑

n=0

ρ0ρ−1 · · · ρ−n, (1.1)

T0 = 0, and for n ∈ N,

Tn = min{k : Xk ≥ n} and τn = Tn − Tn−1. (1.2)

Xn is a.s. transient if EP (log ρ0) 6= 0 and is a.s. recurrent if EP (log ρ0) = 0. Moreover, if
EP (log ρ0) < 0 then (see [28, Sect 2.1]) limn→∞ P(Xn = +∞) = 1, Tn are a.s. finite, {τn} is
a stationary and ergodic sequence, and we have the following law of large numbers:

vP := lim
n→+∞

Xn

n
= lim

n→+∞

n

Tn

=
1

E(τ1)
=

1

2EP (R) − 1
, P − a.s. (1.3)

Thus, the transient walk Xn has a deterministic speed vP = limn→∞Xn/n which may be
zero.

Solomon’s law of large numbers for the transient walks in i.i.d. environment was com-
pleted by limit laws in the work of Kesten, M. Kozlov, and Spitzer [13]. The limit laws for
the RWRE Xn are deduced in [13] from stable limit laws for the hitting times Tn, and the
index κ of the stable distribution is determined by the condition

EP (ρκ
0) = 1.

In particular, under certain conditions the central limit theorem holds with the standard
normalization

√
n, and this case was extended to stationary and ergodic environments by

Alili [1], Molchanov [18] and Zeitouni [28, Sect 2.2], see also Bremont [7].
In this paper we obtain limit laws for Xn for environments which are pointwise transfor-

mations of a stationary ergodic Markov process which satisfies Assumption 1.5 below. These
laws are related to stable laws of index κ ∈ (0, 2], where, under the assumptions below, κ is
determined by

Λ(κ) = 0 , where Λ(β) := lim
n→∞

1

n
logEP

(
Π

n−1

i=0 ρ
β
i

)
. (1.4)
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More precisely:
Basic setup: On a state space S equipped with a countably generated σ−algebra T , let
{xn}n∈Z be a stationary Markov chain, such that ω−n = ω(xn) (and hence ρ−n = ρ(xn)) for
measurable functions ρ, ω : S → R. We denote by H(x, ·) the transition probability measure
of (xn), by π its stationary probability measure, and use the notation H(x, y) to denote
H(x, {y}) for a single state y ∈ S. With Px denoting the law of the Markov chain with
x0 = x, the reader should not confuse Px and Pω.

We shall say that the process log ρ−n is α-arithmetic (c.f. [22, 2]) if α > 0 is the largest
number for which there exists a measurable function γ : S → [0, α) such that

P (log ρ0 ∈ γ(x−1)−γ(x0)+αZ) = 1, P − a.s.

The process will be said to be non-arithmetic if no such α exists.

Assumption 1.5.

(A1) Either

S is a finite set and the Markov chain (xn) is irreducible, (1.6)

or, there exist a constant cr ≥ 1 and a probability measure ψ on (S, T ) such that for some
m ∈ N,

c−1
r ψ(A) < Hm(x,A) < crψ(A) ∀x ∈ S, A ∈ T , (1.7)

where the kernel Hn(x,A) is defined inductively by H0(x,A) = 1A(x) for all x ∈ S, A ∈ T
and Hn(x,A) =

∫
S H

n−1(x, dy)H(y, A), n ≥ 1.

(A2) P (ε < ω0 < 1 − ε) = 1 for some ε ∈ (0, 1/2).

(A3) lim supn→∞
1
n logEP

(∏n−1
i=0 ρ

β
i

)
< 0 and lim supn→∞

1
n logEP

(∏n−1
i=0 ρ

β′

i

)
≥ 0 for some

constants β > 0 and β ′ > 0.

(A4) log ρ0 is non-arithmetic in the sense defined above.

Note that condition (A1) refers to the underlying Markov chain (xn), whereas conditions
(A2)–(A4) refer to ω itself. Assumption (1.6) is not a particular case of assumption (1.7)
since under (1.6) the Markov chain (xn) may be periodic. Under (A1), the environment ω is
an ergodic sequence (see e.g. [10, p. 338] or [19, Theorem 6.15]). Condition (A3) guarantees,
by convexity, the existence of a unique κ in (1.4). Indeed it will be shown later that the
lim sup is in fact a lim . It also follows from (A3), by Jensen’s inequality, that EP (log ρ0) < 0,
so that Xn is transient to the right. For future reference we denote

cρ =
1 − ε

ε
, (1.8)

and note that by the ellipticity condition (A2), P (c−1
ρ < ρ0 < cρ) = 1.

For κ ∈ (0, 2] and b > 0 we denote by Lκ,b the stable law of index κ with the characteristic
function

log L̂κ,b(t) = −b|t|κ
(

1 + i
t

|t|fκ(t)

)
, (1.9)
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where fκ(t) = − tan π2κ if κ 6= 1, f1(t) = 2/π log t. With a slight abuse of notation we use
the same symbol for the distribution function of this law. If κ < 1, Lκ,b is supported on the
positive reals, and if κ ∈ (1, 2], it has zero mean [21, Chapter 1]. Our main result is:

Theorem 1.10. Let Assumption 1.5 hold. Then there is a unique κ > 0 such that (1.4) and
the following hold for some b > 0 :

(i) If κ ∈ (0, 1), then limn→∞ P (n−κXn ≤ z) = 1 − Lκ,b(z
−1/κ),

(ii) If κ = 1, then limn→∞ P
(
n−1(log n)2(Xn − δ(n)) ≤ z

)
= 1−L1,b(−z), for suitable A1 > 0

and δ(n) ∼ (A1 logn)−1n,

(iii) If κ ∈ (1, 2), then limn→∞ P
(
n−1/κ (Xn − nvP ) ≤ z

)
= 1 − Lκ,b(−z).

(iv) If κ = 2, then limn→∞ P
(
(n log n)−1/2(Xn − nvP ) ≤ z

)
= L2,b(z).

In the setup of Theorem 1.10 it is not hard to check, and follows e.g. from [28, Theorem
2.2.1], that the standard CLT holds if κ > 2.

As in [13], stable laws for Xn follow from stable laws for the hitting times Tn, and we
direct our efforts to obtaining limit laws for the latter. We have:

Proposition 1.11. Let Assumption 1.5 hold. Then there is a unique κ > 0 such that (1.4)
and the following hold for some b̃ > 0 :

(i) If κ ∈ (0, 1), then limn→∞ P
(
n−1/κTn ≤ t

)
= Lκ,b̃(t),

(ii) If κ = 1, then limn→∞ P
(
n−1(Tn − nD(n)) ≤ t

)
= L1,b̃(t), for suitable c0 > 0 and

D(n) ∼ c0 log n,

(iii) If κ ∈ (1, 2), then limn→∞ P
(
n−1/κ

(
Tn − nv−1

P

)
≤ t
)

= Lκ,b̃(t).

(iv) If κ = 2, then limn→∞ P
(
(n log n)−1/2(Tn − nv−1

P ) ≤ t
)

= L2,b̃(t).

The proof that Theorem 1.10 follows from Proposition 1.11 is the same as in the i.i.d.
case, and is based on the observation that for any positive integers η, ζ, n

{Tζ ≥ n} ⊂ {Xn ≤ ζ} ⊂ {Tζ+η ≥ n}
⋃

{ inf
k≥Tζ+η

Xk − (ζ + η) ≤ −η}. (1.12)

Because the random variables infk≥Tζ+η
Xk − (ζ + η) and infk≥0Xk have the same annealed

distribution, the probability of the last event in (1.12) can be made arbitrary small uniformly
in n and ζ by fixing η large (since the RWRE Xn is transient to the right). For κ = 1, the
rest of the argument is detailed in [13, pp. 167–168], where no use of the i.i.d. assumption
for ω is made at that stage, and a similar argument works for all κ ∈ (0, 2]. All of our work
in the sequel is directed toward the proof of Proposition 1.11.

Following [13], the analysis of Tn is best understood in terms of certain regeneration
times νn, with excursion counts between regenerations forming a branching process Zn with
immigration in a random environment (see Section 2.2 for precise definitions). In the i.i.d.
setup, the total population of the branching process between regenerations, denoted Wn,
forms an i.i.d. sequence, and much of the work in [13] is to establish accurate enough tail
estimates on them to allow for the application of the i.i.d. stable limit law for partial sums
of Wn. The limit laws for Tn then easily follow from those for Wn.
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In our case, the sequence Wn a-priori is not even stationary. However, using the re-
generation property of the underlying Markov chain (xn) (see Section 2.1), we introduce
in Section 2.2 modified regeneration times ν̄n (a random subsequence of νn) such that the
total population of the branching process between times ν̄n and ν̄n+1, denoted by W n+1, is a
one-dependent stationary sequence. This sequence is i.i.d. if either (1.7) with m = 1 or (1.6)
hold. Again following the proof in [13], we obtain tails estimates for the random variables
W n+1 yielding the stable limit laws for Tn stated in Proposition 1.11. Similarly to the i.i.d.
case, the key to the proof is the derivation of tails estimates obtained in Section 2.3 for the
random variable R defined in (1.1).

We conclude the introduction with a characterization of the speed vP under Assumption
1.5, which will not be used in the sequel. Recall that ρn = ρ(xn) for a measurable function
ρ : S → R. If κ ≤ 1, then vP = 0, and if κ > 1, then v−1

P = EP

(
ρ(x0)ξ(x0)

)
, where the

function ξ : S → (0,∞) is the unique positive and bounded solution of the equation

ξ(x) =

∫

S
H(x, dy)ρ(y)ξ(y) + 1 + 1/ρ(x). (1.13)

This formula is essentially due to Takacs [26], who considered finite-state Markov environ-
ments. The proof in the general Markov case is included at the end of Section 2.1.

The rest of the paper is organized as follows. Section 2, divided into three subsections,
contains the proof of Theorem 1.10, except for the proofs of two propositions which are
deferred to the Appendix. In Subsection 2.1 some basic properties of Markov chains that
satisfy Assumption 1.5 are described. In particular, Condition B is introduced and shown to
hold under Assumption 1.5. In Subsection 2.2, Condition Cκ is introduced and Proposition
1.11 is derived from it and Condition B, making use of the above mentioned branching
process and a regeneration structure it possesses. Finally, Subsection 2.3 is devoted to the
proof that Condition Cκ holds under Assumption 1.5.

2 Proofs

2.1 Some properties of the underlying Markov chain and their

consequences

We summarize here, using the framework of the Athreya-Ney and Nummelin theory of pos-
itive recurrent kernels (cf. [5, 6, 19]), some properties of the Markov chain (xn) that follow
from Assumption 1.5. The main objectives here are to introduce the regeneration times Nk

and to obtain the Perron-Frobenius type Lemmas 2.6 and 2.8. One immediate consequence
of these lemmas is that Condition B introduced subsequently is satisfied under Assumption
1.5.

First, we define a sequence of regeneration times for the Markov chain (xn). If (1.6) holds,
let x∗ ∈ S be any (recurrent) state of the Markov chain (xn) and pick any r ∈ (0, 1). Let
(yn)n∈Z be a sequence of i.i.d. variables independent of (xn) (in an enlarged probability space
if needed) such that P (y0 = 1) = r and P (y0 = 0) = 1 − r, and let

N0 = 0, Nn+1 = min{k > Nn : xn = x∗, yn = 1}, n ≥ 0.
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Then, the blocks
(
x

Nn
, x

Nn+1
, . . . , x

Nn+1
−1

)
are independent, and x

Nn
are identically dis-

tributed for n ≥ 1. Note that between two successive regeneration times, the chain evolves
according to the sub-stochastic Markov kernel Θ defined by

H(x, y) = Θ(x, y) + r1{y=x∗}H(x, y), (2.1)

that is

Px(x1 = y,N1 > 1) = Θ(x, y). (2.2)

If (1.7) holds, then the random variables Nk can be defined by the following procedure (see
[5, 19] and [3]). Given an initial state x0, generate xm as follows: with probability r < c−1

r

distribute xm over S according to ψ and with probability 1−r according to 1/(1−r)·Θ(x0, ·),
where the kernel Θ(x, ·) is defined by

Hm(x,A) = Θ(x,A) + rψ(A), x ∈ S, A ∈ T . (2.3)

Then, (unless m = 1) sample the segment
(
x1, x2, . . . , xm−1

)
according to the chain’s con-

ditional distribution, given x0 and xm. Generate x2m and xm+1, xm+2, . . . , x2m−1 in a sim-
ilar way, and so on. Since the “r-coin” is tossed each time independently, the event “the
next move of the chain (xmn)n≥0 is according to ψ” occurs i.o. Let N0 = 0 and {Nk}k≥1

be the successful times of its occurrence multiplied by m. By construction, the blocks(
x

Nn
, x

Nn+1
, . . . , x

Nn+1
−1

)
are one-dependent (if m = 1 they are actually independent), and

for n ≥ 1 they are identically distributed (x
Nn

is distributed according to ψ).
Let us summarize the most important property of the regeneration times Nn as follows.

For n ≥ 0, let

Dn =
(
x

Nn
, x

Nn+1
, . . . , x

Nn+1
−1

)
. (2.4)

Then:

• The random blocks Dn are identically distributed for n ≥ 1.

• If (1.6) or (1.7) with m = 1 hold, Dn are independent for n ≥ 0.

• If (1.7) holds with m > 1, Dn are one-dependent for n ≥ 0.

In both cases under consideration (either of (1.6) or of (1.7)), there exist constants l, δ > 0,
such that (cf. [5])

inf
x∈S

Px(N1 ≤ l) > δ > 0. (2.5)

The regeneration times Nn will be used in Section 2.2 for the construction of an auxiliary
sequence W n of stationary and one-dependent random variables playing a central role in the
proof of Proposition 1.11.

We now turn to a Perron-Frobenius type theorem for positive finite kernels, having in

mind applications to the kernels of the form K(x,A) = Ex

(∏n
i=0 ρ

β
−i; xn ∈ A

)
. In the fol-

lowing two lemmas, we consider separately the cases of non-finite (assumption (1.7)) and

6



finite (assumption (1.6)) state space S. In particular, the properties of the positive kernels
described in these lemmas imply Condition B introduced below and are essential for the
proof of the crucial Proposition 2.38.

Let Bb be the Banach space of bounded measurable real-valued functions on (S, T ) with
the norm ‖f‖ = supx∈S |f(x)|. A positive and finite kernel K(x,A) (a measurable function
of x for all A ∈ T and a finite positive measure on T for all x ∈ S) defines a bounded linear
operator on Bb by setting Kf(x) =

∫
S K(x, dy)f(y). We denote by r

K
the spectral radius of

the operator corresponding to the kernel K, that is

r
K

= lim
n→∞

n
√

‖Kn1‖ = lim
n→∞

n

√
‖Kn‖Bb→Bb

,

where 1(x) ≡ 1.
Although the results stated in the following lemma are certainly well-known and appear

elsewhere, their proofs are provided for the sake of completeness.

Lemma 2.6. Let K(x,A) be a positive kernel on (S, T ) such that for some constant c ≥ 1
and probability measure ψ,

c−1ψ(A) ≤ K(x,A) ≤ cψ(A), ∀x ∈ S, A ∈ T . (2.7)

Then,

(a) There exists a function f ∈ Bb such that infx f(x) > 0 and Kf = r
K
f. There exists a

constant cK ≥ 1 such that c−1
K rn

K
≤ Kn1 ≤ cKr

n
K

for all n ∈ N.

(b) If K = Km
1 for a positive finite kernel K1(x,A) and some m ∈ N, then r

K1
= r1/m

K
and

there exists a function f1 ∈ Bb such that infx f1(x) > 0 and K1f1 = r1/m
K1

f1.

Proof.

(a) The existence of a function f : S → (0,∞) and a constant λ > 0 such that Kf = λf
follows from the Example in [19, p. 96]. It follows from (2.7) that f(x) is bounded away
from zero and infinity, i.e. c−1

K
≤ f(x) ≤ c

K
for some c

K
> 0. Hence, for any n > 0,

Kn1 < c
K
Knf = c

K
λnf < c2

K
λn. Similarly, Kn1 > c−2

K
λn. That is, λ = r

K
.

(b) Set f1 =
∑m−1

j=0 (1/r
K
)j/mKj

1f.

The finite-state counterpart of the previous lemma is stated as follows:

Lemma 2.8. Let S = {1, 2, . . . , n} and K(i, j) be an irreducible n× n matrix with nonneg-

ative entries. For some constants r ∈ (0, 1) and j∗ ∈ {1, . . . , n} define the matrix Θ̃(i, j)
by

K(i, j) = Θ̃(i, j) + r1{j=j∗}K(i, j), 1 ≤ i, j ≤ n. (2.9)

Then,

(a) Assertion (a) of Lemma 2.6 holds for the matrix K.

(b) There exists a function g ∈ Bb such that infx g(x) > 0 and Θ̃g = reΘg.
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(c) r
eΘ
∈ (0, r

K
).

Proof. Since Θ̃ and K have the same adjacency matrices (K(i, j) = 0 iff Θ̃(i, j) = 0), Θ̃ is
irreducible as well. Assertions of (a) and (b) follow then from the Perron-Frobenius theorem.

Clearly r
eΘ
≤ r

K
. Since r

K
f ≥ Θ̃f, the equality r

eΘ
= r

K
would imply [19, Theorem 5.1] that

f = g and Θ̃f = r
K
f = Kf, that is impossible since f > 0 everywhere. Hence r

eΘ
< r

K
.

Since for any β ≥ 0,

Ex

(
Π

n−1

k=0 (ρ−k)
β
)

= ρ(x)βHn−1
β 1(x), (2.10)

where Hβ(x, dy) = H(x, dy)ρ(y)β, it follows from Lemmas 2.6 and 2.8 that for some constant
cβ ≥ 1 which depends on β only,

c−1
β rn

β ≤ Ex

(
Π

n−1

k=0 (ρ−k)
β
)
≤ cβr

n
β , x ∈ S, n ∈ N, (2.11)

where rβ = r
Hβ
. Therefore, the following Condition B is satisfied under Assumption 1.5.

With future applications in mind, we make the formulation suitable for non-Markovian
ergodic environments. Let

F0 = σ(ωn : n > 0) (2.12)

be the σ−algebra generated by the “past” of the sequence {ω−n}.

Condition B. {ω−n} is a stationary and ergodic sequence such that

(B1) Ellipticity condition: P (ε < ω0 < 1 − ε) = 1 for some ε ∈ (0, 1/2).

(B2) For any β > 0,

lim
n→∞

1

n
logEP

(
Π

n−1

k=0 ρ
β
−k

∣∣F0

)
= Λ(β), a.s., (2.13)

with uniform (in ω) rate of convergence, with Λ(β) as in (1.4). Further, there exists a unique
κ > 0 such that Λ(κ) = 0, and Λ(β)(β − κ) ≥ 0 for all β > 0.

The last statement follows since Λ(β) is a convex function of β in [0,∞), taking both
negative and positive values by Assumption (A3), with Λ(0) = 0.

We conclude this subsection with the proof of (1.13). It follows from (1.3), (1.1) and (2.11)
that vP = 0 for κ ≤ 1. Assume that κ > 1 and consider the following decomposition for the
hitting time τ1 defined in (1.2)):

τ1 = 1{X1=1} + 1{X1=−1}(1 + τ ′′0 + τ ′1),

where 1+ τ ′′0 is the first hitting time of 0 after time 1, and 1+ τ ′′0 + τ ′1 is the first hitting time
of 1 after time 1 + τ ′′0 . Taking expectations in both sides of the equation (first for a fixed
environment and then integrating over the set of environments) gives

E(τ1|x0 = x) = 1 + ρ(x) (1 + E(τ ′′0 |x0 = x)) .

8



Since E(τ ′′0 |x0 = x) = E(τ1|x1 = x) =
∫
S E(τ1|x0 = y)H(x, dy), we obtain that the function

ξ(x) := E(τ1|x1 = x)/ρ(x) solves equation (1.13). Recalling the operator H1 : f(x) →∫
S H(x, dy)ρ(y)f(y) acting on Bb, it follows from identity (2.11) and Condition B, that

its spectral radius is strictly less than one, and a simple truncation argument (by (1.13),
ξM ≤ H1ξM + 1 + 1/ρ, where ξM(x) := E (min{τ1,M}|x1 = x) /ρ(x) for a constant M > 0)
shows that ξ(x) is a bounded function of x, yielding that E(τ1) = EP

(
ρ(x0)ξ(x0)

)
. This

implies (1.13) by (1.3) (Lemmas 2.1.11 and 2.1.17 in [28]).

2.2 The branching model and its regeneration structure

We consider here a branching process {Zn} in random environment with immigration closely
related to the RWRE (see e.g., [1, 13, 28]). The random variables Tn are associated by (2.14)
to the partial sums of the branching process Zn. This leads us naturally to the variables W n,
defined in (2.22), which are random partial sums of Zn. The aim in introducing the branching
process is to transform the limit problem of Tn into a limit problem for the partial sums of
the sequence W n, which turns out to be a stationary and one-dependent sequence in a stable
domain of attraction.

Let

Un
i = #{k < Tn : Xk = i, Xk+1 = i− 1}, i, n ∈ Z,

the number of moves to the left from site i up to time Tn. Then

Tn = n + 2
n∑

i=−∞
Un

i . (2.14)

When Un
n = 0, Un

n−1, . . . , U
n
n−i+1 and ωn, ωn−1 . . . , ωn−i are given, Un

n−i is the sum of Un
n−i+1+1

i.i.d. geometric random variables that take the value k with probability ωn−i(1 − ωn−i)
k,

k = 0, 1, . . . Assuming that the RWRE is transient to the right we have:
∑

i≤0

Un
i ≤ total time spent by {Xt} in (−∞; 0] <∞ a.s. (2.15)

Therefore, in order to prove the limit laws for Tn it is sufficient to prove the corresponding
result for the sums

∑n
i=1 U

n
i . These sums have the same distribution as

n−1∑

k=0

Zk, (2.16)

where Z0 = 0, Z1, Z2, . . . forms a branching process in random environment with one immi-
grant at each unit of time.

Without loss of generality, we shall extend the underlying sample space
(
Ω × Z

N
)

to
(Ω × Υ) , where Υ is large enough to fit not only the random walk but also the branching
process, and assume that Pω (and hence P) is suitably extended.

Thus, when ω and Z0, . . . , Zn are given, Zn+1 is the sum of Zn + 1 independent variables
Vn,0, Vn,1, . . . , Vn,Zn each having the geometric distribution

Pω{Vn,j = k} = ω−n(1 − ω−n)k, k = 0, 1, 2, . . . (2.17)
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Extending (2.12), let for n ∈ N,

Fn = σ (Z0, Z1, Z2, . . . , Zn−1, Zn) ∨ σ (ωj : j > −n) , (2.18)

that is, the σ-algebra generated by the branching process {Zi}n
i=0 and the environment

{ωi}∞i=−n+1 before time n.
As in [13], the random variables

ν0 = 0, νn = min{k > νn−1 : Zk = 0}

are the successive stopping times at which the population becomes extinct, and the variables

Wn =

νn−1∑

k=νn−1

Zk

measure the total number of individuals born between two such extinction times.
Recall the definition of the σ−algebra F0 given in (2.12). The proof of the following

proposition, which is a modification of Lemma 2 in [13] adapted to non-i.i.d. environments,
is included in Appendix A.

Proposition 2.19. Assume that Condition B holds. Then, there exist C1, C2 > 0 such that
P − a.s., P(ν1 > n|F0) ≤ C1e

−C2n, for any n > 0.

The following corollary is immediate since C1, C2 above are deterministic.

Corollary 2.20. Assume that Condition B holds. Then, with probability one, P(νj+1 −
νj > n|Fνj

) ≤ C1e
−C2n, for any j ≥ 0 and n > 0, where the constants C1, C2 > 0 are the

same as in Proposition 2.19.

Let {Nk}∞k=0 be the sequence of successive regeneration times for the chain (xn) defined
in Section 2.1, let ν̄0 = 0, and for n ≥ 0 define the stopping times:

ν̄n+1 = inf{k > ν̄n : k = νi = Nj for some i, j > 0}, (2.21)

and the random variables

W n+1 =

ν̄n+1−1∑

k=ν̄n

Zk. (2.22)

By construction of the random times Nn, the segments of the environment between ν̄n and
ν̄n+1−1 are one-dependent (see (2.4) and the subsequent summary), and hence the variables
{W n}n≥1 form a one-dependent sequence, which is even independent if either (1.6) or (1.7)
with m = 1 hold.

Lemma 2.23. Let Assumption 1.5 hold. Then,
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(a) The distribution of ν̄1, conditioned on the “past” has exponential tails: there exist K1,
K2 > 0 such that P − a.s.,

P(ν̄1 > n|F0) ≤ K1e
−K2n, ∀n > 0, (2.24)

and, more generally,

P(ν̄j+1 − ν̄j > n|Fν̄j
) ≤ K1e

−K2n (2.25)

for any j ≥ 0.

(b) The law of large numbers holds for ν̄n : P

(
limn→∞

ν̄n
n = µ

)
= 1, where µ = E(ν̄2−ν̄1) > 0.

(c) The central limit theorem holds for ν̄n : there exists a constant b > 0 such that the law of
(ν̄n − nµ)/

√
n converges to L2,b.

Proof.

(a) Clearly, it is sufficient to prove (2.24), since the constants K1 and K2 are deterministic.
Let F1 = {Z1 = 0}, and for 2 ≤ j ≤ l, where l is defined in (2.5),

Fj = {Z1 = Z2 = . . . = Zj−1 = 1, Zj = 0},

and

Sj = {x ∈ S : Px(N1 = j) > δ/l}.

Then
⋃l

j=1 Sj = S, and we have for x ∈ Sj :

P
(
ν1 = N1 ≤ l|x0 = x) ≥ P

(
Fj ∩ {N1 = j}|x0 = x

)
=

= Px(N1 = j)P
(
Fj|x0 = x,N1 = j

)
≥ δ

l
P
(
Fj|x0 = x,N1 = j

)
.

Using the ellipticity condition (A2), we obtain that P − a.s., Pω(F1) = ω0 ≥ ε, and for
2 ≤ j ≤ l,

Pω(Fj) = ω0(1 − ω0)

j−2∏

k=1

(
2ω2

−k(1 − ω−k)
)
ω2
−j+1 ≥ 2j−2ε2j−1(1 − ε)j−1 ≥ ε2l(1 − ε)l−1,

implying that P
(
ν1 = N1 ≤ l|x0 = x) ≥ δ/l · ε2l(1 − ε)l−1 > 0 for P−almost every x ∈ S.

Thus, in view of Corollary 2.20, ν̄1 is stochastically dominated by a sum of a geometric
random number of i.i.d. variables with exponential tails, yielding (2.24). We note in passing
that, in view of the uniform bounds in the proof above, the same argument yields uniform
exponential tails for the distribution of ν̄i+1 − ν̄i conditioned on σ{ωj, j > −ν̄i}.

(b) Follows from (2.24) and the ergodic theorem, since ν̄n+1 − ν̄n, n ≥ 1, are one-dependent
identically distributed variables.

(c) Follows e.g. from the CLT for stationary and uniformly mixing sequences [10, p. 427].
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Recall the function R(ω) defined in (1.1). We shall prove in Subsection 2.3 that under
Assumption 1.5 the following condition holds for some κ > 0.

Condition Cκ. There exists a strictly positive random variable function K(ω) such that for
some positive constants K3, K4, tc the following hold P − a.s. :

tκP (R > t|F0) > K3 ∀t > tc and tκP (R > t|F0) < K4 ∀t > 0, (2.26)

lim
t→∞

tκP (R > t|F0) = K(ω). (2.27)

It follows from (2.26) and (1.3) that the case κ ≤ 1 corresponds to zero speed, and the case
κ > 1 to a positive speed. Note that if Condition Cκ̄ and Condition B hold simultaneously,
then κ̄ = κ.

For n ≥ 1 let

W̃n =
n∑

j=1

W j,

where the random variables W j are defined in (2.22). The next proposition is an analogue
of [13, Lemma 6] for non-i.i.d environments and is applicable for non-Markov environments
too.

Proposition 2.28. Assume Conditions B and Cκ. Then, for any n ≥ 1 there exist constants
tn, Ln, Jn > 0 and a strictly positive random variable K̃n(ω) such that the following hold
P − a.s. :

Jn < tκP

(
W̃n > t|F0

)
, ∀t > tn and tκP

(
W̃n > t|F0

)
< Ln, ∀t > 0, (2.29)

and

lim
t→∞

tκP

(
W̃n > t|F0

)
= K̃n(ω). (2.30)

Remark 2.31.

(i) The proof in [13] of the i.i.d. analogue of Proposition 2.28 works nearly verbatim with
Conditions B and Cκ compensating for the lack of independence of ω. Nevertheless, since the
proof is rather long and technical, its detailed modification is included in Appendix B.

(ii) The proposition remains valid with the random variables W̃n replaced by the variables

Ŵn =
∑n

j=1Wn. The proof is essentially the same, the only (obvious) difference being that
Proposition 2.19 can be applied directly instead of (2.24).

(iii) Just as with Corollary 2.20 and Lemma 2.23 (a), Proposition 2.28 implies the corre-

sponding uniform estimates for the tails P

(
W̃m+n − W̃m > t|Fν̄m

)
as well, for every m ≥ 1.
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By the bounded convergence theorem, (2.29) and (2.30) yield

lim
t→∞

tκP
(
W̃n > t

)
= EP

(
K̃n

)
∈ (0,∞). (2.32)

Note that if either (1.6) or (1.7) holds with m = 1, the random variables W n are independent,
and the limit laws for their partial sums follow from the standard i.i.d. limit laws [11, 21].
More generally, we have:

Proposition 2.33. Let Assumption 1.5 hold.

(a) Assume that κ 6= 1. Let Bn = n1/κ if κ ∈ (0, 2), Bn = (n log n)1/2 if κ = 2, and An = 0 if

κ ∈ (0, 1), An = nE(W 2) if κ ∈ (1, 2]. Then,
(
W̃n − An

)
/Bn converges in distribution to a

stable law of the form (1.9).

(b) Assume that κ = 1. Then, there exist a sequence D̃(n) ∼ log n and a positive constant c̃0

such that the law of 1
n

(
W̃n − c̃0nD̃(n)

)
converges to a stable law of the form (1.9).

Proof. The random variables W n are identically distributed and one-dependent for n ≥ 2
(see the summary after (2.4), and note that we start from n = 2 because the slightly different
law of W 1). Clearly, it is sufficient to show that the appropriately normalized and centered
sums Sn =

∑n
j=2W j converge to a stable law of the form (1.9). For κ < 2, apply [16,

Corollary 5.7], noting that the uniform estimates of Proposition 2.28 imply that

∀ ε > 0, ∀ j ≥ 3, nP
(
W 2 ≥ εn1/κ,W j ≥ εn1/κ

)
→n→∞ 0,

which is the tail condition needed to apply Corollary 5.7 of Kobus [16].
In the case κ = 2, we note first that W 2 and W 2 +W 3 both belong by Proposition 2.28

to the domain of attraction of a normal distribution. We seek to apply the limit theorem in
[24, p. 328], for which we need to check that S2 = W 2 and S3 = W 2 + W 3 have different
parameters bi = limn→∞ tκP (Si > t) , i = 2, 3. But,

b3 = lim
t→∞

tκP
(
W 2 +W 3 > t

)
≥ lim

t→∞
tκP

(
W 2 < t,W 3 > t

)
+ lim

t→∞
tκP

(
W 3 < t,W 2 > t

)

= lim
t→∞

tκP
(
W 3 > t|W 2 < t

)
P
(
W 2 < t

)
+ lim

t→∞
tκP

(
W 2 > t

)
P
(
W 3 < t|W 2 > t

)

≥ J1 + b2 > b2, (2.34)

where J1 is the constant appearing in (2.29), and we used the uniform exponential estimates
of Proposition 2.28 and the fact that P

(
W 3 < t|W 2 > t

)
→t→∞ 1 which is also implied by

these estimates, as can be seen by conditioning on the environment to the right of −ν̄2.
Here and in the remainder of the proof, any reference to Proposition 2.28 actually includes
Remark 2.31 (iii). We have

lim
t→∞

P
(
W 3 < t|W 2 > t

)
= lim

t→∞
E
(
P
(
W 3 < t|Fν̄2

)
|W 2 > t

)
. (2.35)

By Proposition 2.28,

P
(
W 3 < t|Fν̄2

)
≥ 1 − L1t

−κ, P − a.s.,
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implying that the limit in (2.35) exists and is equal to 1. Therefore, by (2.34) and since we
know a-priori from (2.30) that b3 = limt→∞ tκP(W 2 +W 3 > t) is well-defined, the following
limit exists and can be bounded below by using (2.29):

lim
n→∞

tκP
(
W 3 > t|W 2 < t

)
= lim

t→∞
tκE

(
P
(
W 3 > t|Fν̄2

)
|W 2 < t

)
≥ J1.

This completes the proof of the proposition.

Completion of the proof of Proposition 1.11. The limit laws for Tn announced in
Proposition 1.11 are obtained from stable laws for partial sums of W n in the same way as
in [13], by a standard argument using Lemma 2.23. To illustrate the argument we consider
here the case κ = 2, omitting the proof for κ ∈ (0, 2). Let ζ(n) = max{i : ν̄i < n} and
ς(n) = [n/µ− C

√
n] for a constant C > 0. Using part (c) of Lemma 2.23, we obtain, with

µ = E(ν̄2 − ν̄1),

lim inf
n→∞

P
(
ζ(n) ≥ n/µ− C

√
n
)

≥ lim
n→∞

P
(
ν̄ς(n) ≤ n

)

= lim
n→∞

P

(
ν̄ς(n) − ς(n)µ

σ
√
ς(n)

≤ n− ς(n)µ

σ
√
ς(n)

)
= L2, σ√

2

(
Cµ3/2

)
.

Hence, for all ε > 0 and some C = C(ε) > 0 and all n > N2(ε), P (ζ(n) ≤ n/µ− C
√
n) ≤ ε.

It follows, letting a = E(W 2), that for any n large enough,

P

(∑n
i=1 Zi − na/µ√

n logn
≤ x

)
≤ P




ζ(n)∑

i=1

W i ≤ x
√
n log n+ na/µ




≤ P




[n/µ−C
√

n)]∑

i=1

W i ≤ x
√
n log n+ na/µ


+ ε→ L2,b̃ (x

√
µ) + ε,

where L2,b̃ is the limiting law for sums of W n. Similarly,

P

(∑n
i=1 Zi − na/µ√

n logn
≤ x

)
≥ P




ζ(n)+1∑

k=1

W k ≤ x
√
n log n+ na/µ




≥ P


 ∑

k<n/µ+C
√

n

W k ≤ x
√
n log n+ an/µ


− ε→ L2,b̃ (x

√
µ) − ε.

Since ε was arbitrary, Proposition 1.11 now follows from the limit laws for partial sums of
Zn by (2.14)–(2.16). Since the law defined by (1.9) has expectation zero, vP = a/µ = E(τ1),
where τ1 is defined by (1.2).
As shown in the Introduction this completes the proof of Theorem 1.10.
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2.3 Tails of distribution of the random variable R

The aim of this subsection is to prove that Condition Cκ holds for some κ > 0. Proposition
2.38 below extends the following theorem, valid in the i.i.d. setup, to some Markov-dependent
variables.

Theorem 2.36 (Kesten). [14, Theorem 5] Let (Qn,Mn), n ∈ N, be independent copies of
a R

2-valued random vector (Q,M), satisfying the following conditions:

(i) P (M > 0) = 1 and P (Q > 0) = 1.

(ii) For some κ > 0, E (Mκ) = 1, E
(
Mκ log+M

)
<∞, and E(Qκ) <∞.

(iii) The law of logM is non-lattice (its support is not contained in any proper sublattice
of R) and P (Q = (1 −M)c) < 1, ∀c ∈ R.

Then there exists a constant K̂ > 0 such that

lim
t→∞

tκP (R̂ ≥ t) = K̂, (2.37)

where R̂ := Q1 +M1(Q2 +M2(Q3 . . .)).

We have:

Proposition 2.38. Let Assumption 1.5 hold. Then Condition Cκ is satisfied for the κ > 0
defined by (1.4).

Proof. If either (1.6) or (1.7) with m = 1 hold, this proposition can be deduced rather
directly from Kesten’s theorem. It will be convenient to give a separate proof for the case
where the state space S is finite, i.e. under assumption (1.6).

Assume first that (1.6) holds. Then, it is sufficient to show that

Kx := lim
t→∞

tκPx(R > t) ∈ (0,∞)

exists for all x ∈ S. For n ≥ 0, let

Qn = 1 + 1{Nn+1≥Nn+2}

Nn+1−2∑

i=Nn

i∏

j=Nn

ρ−j and Mn =

Nn+1−1∏

i=Nn

ρ−i. (2.39)

Then, (Mn, Qn)n≥1 is an i.i.d. sequence, and R = Q0 + M0(Q1 + M1(Q2 + . . .)). First, we
will show that Kesten’s theorem is applicable to this sequence, that is the following limit

K̂ := lim
t→∞

tκPx(R̂ > t) ∈ (0,∞) (2.40)

exists, where

R̂ = Q1 +M1(Q2 +M2(Q3 . . .)) , R = Q0 +M0R̂. (2.41)
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Let fκ be a strictly positive Perron-Frobenius eigenvector of the matrix Hκ(x, y) :=
H(x, y)ρ(y)κ. By virtue of (2.10) and Condition B, it corresponds to the eigenvalue 1. Recall
now the definitions of the state x∗ and the matrix Θ from (2.1). By Lemma 2.8, the Perron-
Frobenius eigenvalue (the spectral radius) of the matrix Θκ(x, y) = Θ(x, y)ρ(y)κ is strictly
less than one. So, the vector fκ normalized by the condition fκ(x

∗)ρκ(x∗) = 1 is the unique
positive vector in R

|S| solving the equation (I − Θκ)f = s, where s(x) := H(x, x∗). Hence
(this is a very particular case of the results of [6] and [19, Theorem 5.1] )

fκ(x) = ρ(x)−κEx

(
N1−1∏

i=0

ρκ
−i

)
=

∞∑

n=0

Θn
κs(x) , (2.42)

and

Ex∗

(
N1−1∏

i=0

ρκ
−i

)
= EP (Mκ

1 ) = 1. (2.43)

The second equality in (2.42) follows since the chain (xi) evolves according to the kernel Θ
until N1 (see (2.2)), while (2.43) follows from the normalization condition fκ(x

∗)ρκ(x∗) = 1.
It is not hard to check that assuming (1.6), condition (A4) is equivalent to the fact

that logM1 is non-lattice, and that P (Q1 = (1 −M1)c) < 1 for any c ∈ R (since clearly
P (M1 > 1) > 0), as required to apply Theorem 2.36. In order to prove (2.40), it remains
to show that EP (Qκ

1) < ∞ and EP

(
Mκ

1 log+M1

)
< ∞. Thus, it is sufficient to prove that

there exists β > κ such that

Ex

(
Qβ

0

)
is a bounded function of x. (2.44)

Since for any n ∈ N and positive numbers {ai}n
i=1 we have

(a1 + a2 + . . . an)β ≤ nβ(aβ
1 + aβ

2 + . . . aβ
n),

we obtain for any β > 0 and x ∈ S :

Ex

(
(Q0 − 1)β

)
= Ex

( ∞∑

n=2

n−1∑

i=1

i−1∏

j=0

ρ−j1{N1=n}

)β

=

∞∑

n=2

Ex

(
n−1∑

i=1

i−1∏

j=0

ρ−j1{N1=n}

)β

≤
∞∑

n=2

(n− 1)β

n−1∑

i=1

Ex

(
i−1∏

j=0

ρβ
−j1{N1≥n}

)
. (2.45)

But Ex

(∏i−1
j=0 ρ

β
−j1{N1≥n}

)
= ρ(x)βΘn−iΘi−1

β 1, where Θβ(x, y) := Θ(x, y)ρ(y)β. Since the

spectral radius of the matrices Θκ and Θ are strictly less than one, it follows from (2.45)
that (2.44) holds for some β > κ. This yields (2.40).

By (2.40) and the bounded convergence theorem, and since the random variables M0 and

R̂ are independent under the measure Px, the following limit exists:

Kx := lim
t→∞

tκPx(M0R̂ > t) = K̂Ex(M
κ
0 ) ∈ (0,∞).
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Fix any α ∈
(

κ
β
, 1
)
. It follows from (2.40) and (2.44) that for all t > 1,

tκPx(R > t) ≤ tκPx

(
Q0 +M0R̂ > t, Q0 < tα

)
+ tκPx(Q0 ≥ tα)

≤ tκPx

(
M0R̂ > t− tα

)
+

tκ

tαβ
Ex(Q

β
0 ),

and

tκPx(R > t) = tκPx

(
Q0 +M0R̂ > t

)
≥ tκPx

(
M0R̂ > t

)
.

We conclude, by taking the limit in the above inequalities as t→ ∞, that

lim
t→∞

tκPx(R > t) = lim
t→∞

tκPx(M0R̂ > t) = Kx,

completing the proof of the proposition in the case (1.6).

Assume now that (1.7) holds. First, we will prove that (2.27) holds for some function

K(ω) and constant K̂. We follow Goldie’s proof [12] of Kesten’s Theorem 2.36. Let

η(x) := log ρ(x),

Π0 = 1, Πn =
n−1∏

k=0

ρ−k, n ≥ 1,

ηn = log ρ−n, Vn = log Πn n ≥ 0,

R = R0 =
∞∑

n=0

Πn, R0 = 0, Rn =
n−1∑

k=0

Πk, Rn = (R −Rn)/Πn, n ≥ 1. (2.46)

Following Goldie [12], we write for any numbers n ∈ N, t ∈ R, and any point z ∈ S,

Pz(R > et) =

n∑

k=1

[Pz(e
Vk−1Rk−1 > et) − Pz(e

VkRk > et)] + Pz(e
VnRn > et).

We have, by using the identity Rk−1 = 1 + ρ−k+1R
k,

Pz(e
Vk−1Rk−1 > et) − Pz(e

VkRk > et) =∫

R

∫

S
[P (Rk−1 > et−u|xk−1 = x) − P (ρ−k+1

Rk > et−u|xk−1 = x)]Pz(Vk−1 ∈ du, xk−1 ∈ dx)

=

∫

R

∫

S
[Px(R > et−u) − Px(R − 1 > et−u)]Pz(Vk−1 ∈ du, xk−1 ∈ dx).

Thus, letting δn(z, t) = eκtPz(e
VnRn > et) and f(x, t) = eκt[Px(R > et) − Px(R− 1 > et)],

rz(t) := eκtPz(R > et) =

n−1∑

k=0

∫

R

∫

S
f(x, t− u)eκuPz(Vk ∈ du, xk ∈ dx) + δn(z, t). (2.47)
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By Lemma 2.6 and (2.10), there exists a positive measurable function h(x) : S → R bounded
away from zero and infinity such that:

h(x) =

∫

S
H(x, dy)ρκ(y)h(y).

This implies, by [19, Theorem 5.2], that there is a probability measure πκ invariant for the
kernel Hκ(x, dy) = H(x, dy)ρκ(y), namely (since r

Hκ
= 1 by (1.4) and (2.10))

∫

S
Hκ(x,A)πκ(dx) = πκ(A), ∀ A ∈ T . (2.48)

The measure πh(dx) = h(x)πκ(dx) is a finite invariant measure for the kernel

H̃(x, dy) :=
1

h(x)
Hκ(x, dy)h(y).

The measure πκ and hence πh are equivalent to the original stationary distribution π. Indeed,
by (2.48),

∫

S
Hm

κ (x,A)πκ(dx) = πκ(A), ∀ A ∈ T .

Hence, by (1.7) and the ellipticity condition (A2), c−1
r c−m

ρ πκ(A) ≤ π(A) ≤ crc
m
ρ πκ(A), where

the constant cρ is defined in (1.8).

Let P̃ be the probability measure under which the Markov chain (xk)k≥0 is stationary and

governed by the transition probability measure H̃(x,A). As usual we denote the conditional

probabilities P̃ (·|x0 = x) by P̃x(·). Then,

rz(t) =

n−1∑

k=0

∫

R

∫

S
f(x, t− u)

ρκ(z)h(z)

ρκ(x)h(x)
P̃z(Vk ∈ du, xk ∈ dx) + δn(z, t).

Since P − a.s., ΠnR
n → 0 as n goes to infinity, P

(
limn→∞ δn(z, t) = 0

)
= 1, for any fixed

t > 0 and z ∈ S. Therefore, P − a.s.,

rz(t) := eκtPz(R > et) =
∞∑

k=0

∫

R

∫

S
f(x, t− u)

ρκ(z)h(z)

ρκ(x)h(x)
P̃z(Vk ∈ du, xk ∈ dx).

We will use the following Tauberian lemma :

Lemma 2.49. [12, Lemma 9.3] Let R be a random variable defined on a probability space
(Ω,F , P ). Assume that for some constants κ,K ∈ (0,∞),

∫ t

0
uκP (R > u)du ∼ Kt as t→ ∞.

Then tκP (R > t) ∼ K.

It follows from Lemma 2.49 that in order to prove (2.27), it is sufficient to show that
P − a.s. there exists

lim
t→∞

řz(t) ∈ (0,∞),
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where the smoothing transform q̌ is defined, for a measurable function q : R → R bounded
on (−∞, t] for all t, by

q̌(t) :=

∫ t

−∞
e−(t−u)q(u)du.

Let

g(x, t) :=
1

eκη(x)h(x)

∫ t

−∞
e−(t−u)f(x, u)du

=
1

eκη(x)h(x)

∫ t

−∞
e−(t−u)eκu[Px(R > eu) − Px(R− 1 > eu)]du

=
e−t

eκη(x)h(x)

∫ et

0

vκ[Px(R > v) − Px(R − 1 > v)]dv. (2.50)

Then, since řz(t) = h(z)ρκ(z)
∑∞

k=0 Ẽz(g(xk, t − Vk)), it is sufficient to show that for any
z ∈ S,

lim
t→∞

∞∑

k=0

Ẽz(g(xk, t− Vk)) (2.51)

exists and belongs to (0,∞). So, our goal now is to prove (2.51).

Toward this end, note first that the kernel H̃ satisfies condition (1.7) and hence the chain

(xn) is ergodic under the measure P̃ . Further, the random walk Vn =
∑n−1

j=0 ηj has a positive

drift under the measure P̃x. Indeed, similarly to [12] and [14], we obtain for some c > 0 and
any γ > 0,

P̃x

(
eVn ≤ e−γn1/4

)
=

e−κη(x)

h(x)
Ex

(
eκVnh(xn−1); e

Vn ≤ e−γn1/4
)
≤ cEx

(
eκVn; eVn ≤ e−γn1/4

)

≤ ce−κγn1/4

.

Thus, limn→∞ P̃x

(
Vn ≤ −γn1/4

)
= 0, implying Ẽπh

(η0) > 0 by the central limit theorem for
bounded additive functionals of Doeblin recurrent Markov chains (see e.g. [19, p. 134]).

The limit in (2.51) follows from the version of the Markov renewal theorem as given in
[2, Theorem 1] (see also [4, 15]) when applied to the Markov chain (xn+1, ρ−n), provided that
we are able to show that the following holds:

g(x, ·) is a continuous function for πh − almost all x ∈ S, (2.52)

and
∫

S

∑

n∈Z

sup
nδ≤t<(n+1)δ

{|g(x, t)|}πh(dx) <∞ for some δ > 0. (2.53)
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The assertion (2.52) follows from the continuity of
∫ et

0
vκ[Px(R > v) − Px(R− 1 > v)]dv

in t for every x ∈ S. For some M > 0 and any ε ∈ (0, 1), we get from (2.50):

g(x, t) ≤Me−t

∫ et

0

vκ[Px(R > v) − Px(R− 1 > v)]dv

≤ Me−εt

∫ et

0

vκ−1+ε[Px(R > v) − Px(R− 1 > v)]dv ≤ M

κ
e−εtEx[(R)κ+ε − (R− 1)κ+ε],

where the last inequality follows from [12, Lemma 9.4]. Since for any γ > 0 and R > 1,
(R)γ − (R− 1)γ ≤ max{1, γ}(R)max{1,γ}−1, we obtain by Condition B that

Ex[(R)κ+ε − (R− 1)κ+ε] ≤ L,

for some constant L > 0 independent of x, yielding (2.53) and consequently (2.27). In fact
we have shown that the following limit exists π − a.s. :

lim
t→∞

tκPx(R > t) = K1(x) ∈ (0,∞). (2.54)

We now turn to the proof of (2.26). Fix any point x∗ ∈ S for which (2.54) holds. Using
(1.8) and (1.7), we obtain for any x ∈ S and t > 0 :

Px(R > t) ≥ Px(c
−m
ρ Rm > t) =

∫

S
Hm(x, dz)Pz(c

−m
ρ R > t) ≥ c−2

r Px∗(c−m
ρ R > t),

and

Px(R > t) ≤ Px(mc
m
ρ + cmρ R

m > t) =

∫

S
Hm(x, dz)Pz(mc

m
ρ + cmρ R > t)

≤ c2rPx∗(mcmρ + cmρ R > t).

Thus, (2.26) follows from (2.54).

Remark 2.55. It should be mentioned that essentially the same proof leads to similar tail
estimates for random variables of the form R =

∑∞
n=0Qn

∏n−1
j=0 Mj with a more general type

of Markov-dependent coefficients (Qn,Mn) (e.g. Qn need not be deterministic and Mn need
not be a.s. positive). This general result (under somewhat milder assumptions than those
assumed in this paper, namely allowing for periodic Markov chains while relaxing the uniform
bound (1.7) on the kernels H(x, ·)) can be found in [20]. While preparing the final version of
the article for publication, we were kindly informed by J. Bremont of the reference [9] where,
by using different methods, a result similar to Proposition 2.38 is obtained for Markov chains
in a finite state space.

3 Summary and Final Remarks

We have dealt with the random walk (Xn)n≥0 in a random environment ω∈ [0, 1]Z, associating
with it an auxiliary Galton–Watson process (Zk)k≥0 with one immigrant at each instant and
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random branching mechanism Geom(ω−k).

Without stating it explicitly the following theorem has in fact been proved. Let (Gn)n∈N be
an augmentation of (σ(ωj : j > −n))n∈N which generates the original quenched law, namely
P(·|Gn) = Pω(·), a.s. Accordingly, let (Fn = σ(Z0, Z1, . . . , Zn) ∨ Gn)n∈N be (Fn)’s induced
augmentation.

Theorem 3.1. Assume the environment ω satisfies Conditions B and Cκ (for the κ > 0
involved in Condition B) introduced in Section 2. Furthermore, assume the existence of an
increasing sequence of stopping times ηm, with η0 = 0, with respect to the filtration (Fn)n≥0

for which

i) the LLN and CLT hold: there exist µ > 0 and σ∈R such that

ηm

m
−→ µ a.s. and

ηm −mµ√
m

D−→ N(0, σ2)

ii) for some b > 0, 1
Bm

(∑ηm

i=1
Zi − Am

)
D−→ Lκ,b (defined in (1.9))

where Am





= 0 κ ∈ (0, 1)
∼ c1m logm κ = 1
= c2m κ ∈ (1, 2]

and Bm =

{
m

1

κ κ ∈ (0, 2)

(m logm)
1

2 κ = 2

for suitable positive constants c1, c2.

Then the random walk Xn satisfies a stable limit law in the sense that the conclusions (i)–(iv)
of Theorem 1.10 hold.

In the Markov setup of this paper, and under Assumption 1.5, we have shown (see
Lemma 2.23 and Proposition 2.33) that the environment ω indeed satisfies the conditions of
Theorem 3.1 (with respect to the stopping times ηn = ν̄n), thus obtaining the stable limit
laws in this case.

It is easy to see that Theorem 1.10 can be extended for instance to the following setup
of hidden Markov models. Let (xn)n∈Z be a Markov chain defined on a measurable space
(S, T ) that satisfies (A1) and (A2) in Assumption 1.5. Assume that in the product space
(S × Ω,B × F),

P
(
(xn, ω−n) ∈ A× B|xn−1 = x, σ((xi, ω−i) : i ≤ n− 1)

)
= H(x,A×B) (3.2)

for all n ∈ Z, A ∈ T , B ∈ F , x ∈ S, where H is a stochastic kernel on (S, T × B). Note that
the Markov chain (xn, ω−n) might not satisfy Assumption 1.5, so that Theorem 1.10 cannot
be applied directly.

Let Q(x, y, B) = P (ω−n ∈ B|xn−1 = x, xn = y). Then, similarly to (2.10),

Ex

(
n−1∏

i=0

ρβ
−i

)
= ρβ

0H
n−1
β 1(x), β ≥ 0,
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where the kernel Hβ(x, ·) is now defined on (S, T ) by

Hβ(x, dy) = H(x, dy)

∫

Ω

Q(x, y, dz)ρβ(z). (3.3)

From the ellipticity condition (A2) it follows that ρ0 ∈ (c−1
ρ , cρ) for some constant cρ > 0,

and we obtain that C−1
β H(x, dy) ≤ Hβ(x, dy) ≤ CβH(x, dy), for a suitable constant Cβ > 0.

Thus, Lemma 2.6 is in force for the kernel Hβ defined by (3.3).
The non-arithmetic condition needed to apply a Markov renewal theorem ([2, Theorem

1]) now takes the form:

Definition 3.4. [22, 2] The process log ρ−n is called α-arithmetic if α ≥ 0 is the maximal
number for which there exists a measurable function γ : S → [0, α) such that

P (log ρ0 ∈ γ(x) − γ(y) + α · Z|x−1 = x, x0 = y) = 1, P − a.s.

The process is called non-arithmetic if no such α exists.

We have:

Theorem 3.5. Assume that the underlying model ωn = ω(xn) in Theorem 1.10 is replaced by
(3.2) an that Assumption 1.5 holds. Then the conclusions (i)–(iv) of Theorem 1.10 remain
valid.

The proof is the same as that of Theorem 1.10 by using the regeneration times ν̄n defined
in (2.21). The only exception is that in the definition of f(x, t) (a line before (2.47)) we would
condition on x−1 rather than on x0. Correspondingly, in the definition of rλ (cf. (2.47)), the
integration would be with respect to the measure Pλ(Vk ∈ dv, xk−1 ∈ dx).

Appendix

Recall F0 = σ(ωk : k > 0). For brevity, we denote the conditional probabilities P (·|F0) and
P(·|F0) by P+ and P+ = P+ ⊗ Pω respectively. We usually do not indicate the argument
ω of these functions meaning that the inequalities below hold P − a.s. We denote by θ the
shift on Ω, given by (θω)i = ωi+1. For an event A, the notation I(A) is used to denote the
indicator function of A.

A Proof of Proposition 2.19

The key to the proof is

Lemma A.1. [13, (2.12)] Suppose that the environment ω is stationary and ergodic, and
aP := EP (log ρ0) < 0. Choose any γ ∈ (aP , 0) and define

Un =
n−1∑

i=0

{log ρ−i − γ} (U0 = 0),

ζ0 = 0, ζk+1 = inf{n > ζk : Un ≤ Uζk
}.
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Then there exist constants K5, K6 > 0 such that P − a.s.,

Pω(ν1 > ζk) ≤ K5e
−K6k, k > 0.

Remark A.2. This lemma is proved in [13] for the special case γ = aP/2, but an inspection
of the proof reveals that aP/2 can be replaced by any constant between aP and zero in the
definition of the random walk Un.

By virtue of Lemma A.1, it is sufficient to find γ <∈ (aP , 0) such that for some constants
b > 0 and K7, K8 > 0

P+(ζk > bk) < K7e
−K8k, k ≥ 0.

Let η(n) = max{j : ζj ≤ n} and recall cρ = (1 − ε)/ε. Since for any n > 0,

Un ≥
η(n)∑

j=1

(Uζj
− Uζj−1

) ≥ −η(n)(γ + log cρ),

for any k > 0, the event {ζk+1 > n} = {η(n) ≤ k} is included in {Un ≥ −k log cρ − kγ}.
Therefore, for any γ ∈ (aP , 0) and b ∈ N we have

P+(ζk+1 > bk) ≤ P+

(
bk−1∑

i=0

log ρ−i ≥ −k log cρ + k(b− 1)γ

)
.

Let γ = 1
2 · lim

β→+0

Λ(β)
β

, where Λ(β) is as in (1.4), noting that since Λ(β) is convex, γ is

negative by Condition B and is greater than aP by Jensen’s inequality. Hence, by Chebyshev’s
inequality and Condition B, we obtain for any fixed b > 0 and β > 0 small enough,

lim sup
k

1

k
log [P+(ζk+1 > kb)] ≤ β log cρ − (b− 1)γβ +

3bγβ

2
= β

(
log cρ + γ +

bγ

2

)
.

Taking b > −4 log cρ/γ in the last inequality gives

lim sup
k

1

k
logP+

(
ζk+1 > kb

)
< β(− log cρ + γ) < 0.

This completes the proof of Proposition 2.19.

B Proof of Proposition 2.28

As mentioned in Remark 2.31 (i), this proof will follow the one of [13, Lemma 6] very closely,
at times word by word, with the necessary changes made in annealed arguments to take the
dependence of the environment into account. Quenched arguments, where no changes are
needed, will be skipped.

Throughout we fix a number ñ ∈ N and denote W̃ := W̃ñ =
∑ñ

j=1W j, ν̃ := ν̄ñ. Recall the
filtration (Fn)n≥0 introduced in (2.12) and (2.18), and for all A > 0 define its stopping time
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ςA = inf{n : Zn > A}. The random variable W̃ can be represented on the event {ςA < ν̃} in
the following form:

W̃ =

ςA−1∑

n=0

Zn + SςA +
∑

ςA≤n<ν̃

Yn, (B.1)

where

Zn,k = number of progeny alive at time k of the immigrant who entered at time n < k,

Yn =
∑

k>n

Zn,k = #{progeny of the immigrant at time n, not including the immigrant}

Sn = Zn + total progeny of the Zn particles present at n.

It will turn out that for large A, the main contribution to W̃ in (B.1) comes from the second

term and P+

(
W̃ ≥ t

)
≈ P+

(
SςA ≥ t, ςA < ν̃

)
. If an environment ω is fixed, then SςA − ZςA

counts the progeny of ZςA independent particles, and thus with a large probability SςA is
not very different from ZςA

(
1 + Eω(YςA)

)
= ZςAR

(
θ−ςAω

)
, where the random variable R is

defined by (1.1). We will obtain

lim
t→∞

tκP+

(
W̃ ≥ t

)
= lim

A→∞
lim
t→∞

tκP+

(
SςA ≥ t, ςA < ν̃

)
= lim

A→∞
E+

(
Zκ

ςA
K(θ−ςAω); ςA < ν̃

)
,

where the random variable K(ω) is defined by (2.27).
We shall then end the proof by showing that for all t and A large enough, E+

(
Zκ

ςA
; ςA < ν̃

)

and therefore tκP+

(
W̃ ≥ t

)
≈ E+

(
Zκ

ςA
K(θ−ςAω); ςA < ν̃

)
is uniformly bounded away from

zero and infinity by constants independent of ω.
To carry out this outline, the three terms in the right-hand side of (B.1) are evaluated in

the following series of lemmas, which are versions of the corresponding statements (Lemmas
2–5) in [13], and their proofs are deferred to the end of this Appendix.

We start with the following corollary to Proposition 2.19.

Lemma B.2. Assume that Condition B is satisfied. Then,

(a) There exist C3, C4 > 0 such that P − a.s., P(ν̃ > n|F0) ≤ C3e
−C4n, for any n > 0.

(b) There exists a deterministic function ηt > 0, t ≥ 0 such that limt→∞ ηt = 0 and
P+

(
ςA < ν̃

)
≤ ηA.

Fix now any δ > 0. It follows from part (a) of Lemma B.2 that for any A > 0,

P+




min{ςA,ν̃}−1∑

n=0

Zn ≥ δt


 ≤ P+(Aν̃ ≥ δt) ≤ C3e

−C4δt/A = o(t−κ), t→ ∞,

and thus

P+(W̃ ≥ δt, ςA ≥ ν̃) ≤ P+(Aν̃ ≥ δt) ≤ C3e
−C4δt/A = o(t−κ), t→ ∞, (B.3)

P+

(
ςA−1∑

n=0

Zn ≥ δt, ςA < ν̃

)
≤ P+(Aν̃ ≥ δt) ≤ C3e

−C4δt/A = o(t−κ), t→ ∞. (B.4)
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Lemma B.5.

(i) There exists a constant K9 > 0 such that P+ (Y0 ≥ t) ≤ K9t
−κ for all t > 0.

(ii) For all δ > 0 there exists an A0 = A0(δ) <∞ such that

P+

( ∑

ςA≤n<ν̃

Yn ≥ δt

)
≤ δt−κ for all A ≥ A0. (B.6)

It follows from (B.1), taking estimates (B.3), (B.4) and (B.6) into account, that for any
A > A0(δ) (where A0 is given by (B.6)) there exists tA > 0 such that

P+(ςA < ν̃, SςA ≥ t) ≤ P+(W̃ ≥ t) ≤ P+(ςA < ν̃, SςA ≥ t(1 − 2δ)) + 3δt−κ, (B.7)

for all t > tA. Thus, W̃ can be approximated by SςA.
Recall the random variable R defined by (1.1). Note that R(ω) = Eω(Y0), and, denote

(as in (2.46)) RςA = R(θ−ςAω). We have the following law of large numbers with random
normalizing constant ZςA.

Lemma B.8.

(i) There exist functions K10 = K10(A) > 0 and K11 = K11(A) > 0 independent of ω such
that

K10(A) < E+

(
Zκ

ςA
; ςA < ν̃

)
≤ K11(A). (B.9)

(ii) For all δ > 0 there exists an A1 = A1(δ) such that

P+

(∣∣SςA − ZςAR
ςA
∣∣ ≥ δt, ςA < ν̃

)
≤ δt−κ

E+

(
Zκ

ςA
; ςA < ν̃

)
(B.10)

for A ≥ A1.

It follows from (B.7) and (B.10) that for A and t sufficiently large,

P+

(
ςA < ν̃, ZςAR

ςA ≥ (1 + δ)t
)
− δt−κ

E+

(
Zκ

ςA
; ςA < ν̃

)
≤ P+

(
W̃ ≥ t

)

≤ P+

(
ςA < ν̃, ZςAR

ςA ≥ (1 − 3δ)t
)

+ δt−κ
(
3 + E+

(
Zκ

ςA
; ςA < ν̃

))
. (B.11)

For a fixed A > 0, we obtain from Condition Cκ and the dominated convergence theorem
that

lim
t→∞

tκP+

(
ςA < ν̃, ZςAR

ςA ≥ t
)

= lim
t→∞

tκE+

(
I(ςA < ν̃) · P+

(
ZςAR

ςA ≥ t
∣∣FςA

))

= E+

(
I(ςA < ν̃) · Zκ

ςA
·K
(
θ−ςAω

))
= E+

(
Zκ

ςA
·K
(
θ−ςAω

)
; ςA < ν̃

)
, (B.12)

and, with constants K3 and K4 defined in (2.26),

K3E+

(
Zκ

ςA
; ςA < ν̃

)
≤ tκP+

(
ςA < ν̃, ZςAR

ςA ≥ t
)
≤ K4E+

(
Zκ

ςA
; ςA < ν̃

)

for all t sufficiently large.
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It follows from (B.11) and (B.12) that

lim
t→∞

tκP+

(
W̃ ≥ t

)
= lim

A→∞
E+

(
Zκ

ςA
·K
(
θ−ςAω

)
; ςA < ν̃

)
,

where the last limit is finite by (2.26) and (B.9). The limit in the right-hand side exists since
the limit in the left-hand side does not depend of A.

Furthermore, it follows from (B.11) and (2.26) that for some δ0 > 0, A2 > 0,

0 <

(
K3

(1 + δ0)
κ − δ0

)
· E+

(
Zκ

ςA
; ςA < ν̃

)
≤ tκP+

(
W̃ ≥ t

)

≤
(

K4

(1 − 3δ0)
κ + δ0

)
· E+

(
Zκ

ςA
; ςA < ν̃

)
+ 3δ0,

for all t > t0. Therefore, by (B.9),

0 < K10(A2)

(
K3

(1 + δ0)
κ − δ0

)
≤ tκP+

(
W̃ ≥ t

)
≤ K11(A2)

(
K4

(1 − 3δ0)
κ + δ0

)
+ 3δ0,

completing the proof of Proposition 2.28.

Proof of Lemma B.2

(a) Follows from part (a) of Lemma 2.23 (which itself is a corollary to Proposition 2.19).

(b) It is enough to consider A ∈ N. For any n > 0 we have

P+(ςA < ν̃) = P+(ςA < ν̃, ν̃ > n) + P+(ςA < ν̃, ν̃ ≤ n) ≤ P+(ν̃ > n) + P+(ςA < n)

≤ C3e
−C4n + P+(ςA < n). (B.13)

For any n ∈ N let bn = (1 − 1/n)1/n and define a sequence of natural numbers {ai,n}n
i=0 by

the following rule: a0,n = 0 and

ai+1,n = min

{
j ∈ N : j > max

{
an−1,n−1;

(ai,n + 1)(1 − ε)

(1 − bn)ε

}}
.

Then,

P+

(
Zi > ai,n|Zj ≤ aj,n, j = 0, 1, . . . , i− 1

)
≤ 1

ai,n
E+

(
Zi|Zi−1 = ai−1,n

)

=
(ai−1,n + 1)(1 − ω−i+1)

ai,n · ω−i+1

≤ (ai−1,n + 1)(1 − ε)

ai,n · ε ≤ 1 − bn.

We conclude that

P+

(
Zi ≤ ai,n|Zj ≤ aj,n, j = 0, 1, . . . , i− 1

)
≥ bn,

and hence P+

(
ςA(an,n) > n

)
≥ P+

(
Zi ≤ ai,n, i = 1, 2, . . . , n

)
≥ 1 − 1/n. By construction,

an,n is a strictly increasing sequence and it follows from (B.13) that for any A > an,n,

P+

(
ςA(A) < ν̃

)
≤ P+

(
ςA(an,n) < ν̃

)
≤ C3e

−C4n + 1/n,

completing the proof.
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Proof of Lemma B.5

(i) Recall Rn = 1 +
∞∑
i=1

n+i−1∏
j=n

ρ−j and let An = Z0,n − Z0,n−1ρ−(n−1). Then, Y0 =
∞∑

n=1

AnR
n,

and using the identity
∑∞

n=1 n
−2 = π2/6 < 2, we obtain from Condition Cκ that

P+(Y0 ≥ t) = P+

( ∞∑

n=1

AnR
n ≥ 6π−2t

∞∑

n=1

n−2

)
≤

∞∑

n=1

P+

(
|An|Rn ≥ t

2n2

)

≤ 2κt−κK4

∞∑

n=1

n2κ
E+

(
|An|κ

)
.

Since (cf. [13, pp. 158–159]) E+

(
|An|κ

)
≤ K12EP

(∏n−2
i=0 ρ

κ/2
−i

∣∣F0

)
for some constant

K12 > 0, it follows from Condition B that P+(Y0 ≥ t) ≤ K9t
−κ, for some K9 > 0.

(ii) Recall the σ-algebra Fn defined in (2.18). Using the first part of the proposition, we
obtain:

P+

( ∑

ςA≤n<ν̃

Yn ≥ δt

)
= P+

( ∞∑

n=1

YnI(ςA ≤ n < ν̃) ≥ 6δtπ−2

∞∑

n=1

n−2

)

≤
∞∑

n=1

E+

(
I(ςA ≤ n < ν̃) · P

(
Yn ≥ 1/2 · δtn−2

∣∣Fn

))

≤ K92
κt−κδ−κ

E+

(
ν̃2κ+1; ςA < ν̃

)
≤ K92

κt−κδ−κ
√

E+ (ν̃4κ+2) ·
√

P+(ςA < ν̃).

The claim follows now from Lemma B.2, the first square root being bounded and the second
one going to zero as A→ ∞, both uniformly in ω.

Proof of Lemma B.8

(i) For the lower bound:

E+

(
Zκ

ςA
; ςA < ν̃

)
≥ Aκ

P+

(
ςA < ν̃

)
≥ Aκ

P+

(
Z1 = A+ 1

)
= Aκω0(1 − ω0)

1+A

≥ AκεA+2 := K5(A) > 0.

We now turn to the upper bound. For a fixed environment ω we obtain, by using the
Markov property of Zn in the second equality and the ellipticity condition (B1) in the last
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two inequalities,

Eω

(
Zκ

ςA

)
=

∑

n≥1

A∑

a=0

Eω (Zκ
n | ςA = n, Zn > A,Zn−1 = a)Pω (ςA = n, Zn−1 = a) =

=
∑

n≥1

A∑

a=0

Eω (Zκ
n | Zn > A,Zn−1 = a)Pω (ςA = n, Zn−1 = a)

≤ sup
ω,n∈N,a≤A

Eω (Zκ
n | Zn > A,Zn−1 = a) ≤ sup

ω,n∈N,a≤A

Eω (Zκ
n | Zn−1 = a)

Pω (Zn > A | Zn−1 = a)

≤ sup
ω

Eω (Zκ
1 | Z0 = A)

Pω (Z1 > A | Z0 = 0)
≤ (A+ 1)κ+1ε−A−2 sup

ω
Eω [(V0,0)

κ] <∞,

where the random variables Vn,j are defined in (2.17). This completes the proof of part (i)
of the Lemma.

(ii) The proof is similar to that of Lemma B.5. If ςA < ν̃, let

SςA,j = number of progeny alive at time j of the ZςA particles present at time ςA,

and Bj = SςA,j − SςA,j−1 · ρ−(j−1). We have
∑∞

j=ςA
SςA,j − ZςAR

ςA =
∑∞

j=ςA
BjR

j, and obtain
from Condition Cκ that on the set {ςA < ν̃},

P+

(∣∣∣
∞∑

j=ςA

SςA,j − ZςAR
ςA

∣∣∣ ≥ δt
∣∣∣FςA

)
≤

∞∑

j=ςA

E+

(
P+

(
|Bj|Rj ≥ δt

2(j − ςA + 1)2

∣∣Bj,FςA

))

≤ K4

(
2

δt

)κ ∞∑

n=0

(n+ 1)2 · E+

(∣∣BςA+n

∣∣κ ∣∣FςA

)
.

Since (cf. [13, p. 164]) E+

(∣∣BςA+n

∣∣κ ∣∣FςA

)
≤ K13Z

κ
ςA
EP

(∏j−2
i=ςA

ρ
κ/2
−i

)
, it follows from

Condition Cκ that for some K14 > 0,

P+

(∣∣∣
∞∑

j=ςA

SςA,j − ZςAS̃ςA

∣∣∣ ≥ δt; ςA < ν̃

)
≤
(
K14

tδ

)κ

E+

(
Zκ/2

ςA
; ςA < ν̃

)

≤
(
K14

tδ
√
A

)κ

E+

(
Zκ

ςA
; ςA < ν̃

)
≤ δt−κ

E+

(
Zκ

ςA
; ςA < ν̃

)
,

for A ≥ A2(δ).
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