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Abstract

We consider a series of iterated Routh’s triangles. In a general deterministic case
we find the limit point of the sequence. We discuss a representation of the limit as
a fixed point of a 3-dimensional affine transformation and a curious interpretation of
the iterative process as a 3-person job allocation procedure. For a random sequence of
iterations, we show that the expected value of the limiting point is the centroid of the
original triangle.

1 Introduction

It is well known that the medians of a triangle are concurrent. In general, three interior
lines out of the vertices of a triangle form a smaller triangle in its interior, called a Routh’s
triangle. Only under special circumstances do these interior lines intersect at one point, and
Ceva’s theorem (see Theorem 1 below) provides a necessary and sufficient condition for the
concurrence. The aim of this paper is to study the convergence of a general sequence of
nested Routh’s triangles. Although a part of our results remains valid when some of the
lines are exterior, for simplicity we focus on interior lines.

Here and henceforth, a triangle is a closed convex polygon with three distinct vertices
in R2 and Z+ stands for the set of non-negative integers. Let 4A0B0C0 be a triangle and
(xn, yn, zn) ∈ (0,∞)3, n ∈ Z+, a given sequence of triplets of positive numbers. To comply
with the limitation imposed by Ceva’s theorem (see Theorem 1 below) we assume throughout
this paper:

xnynzn 6= 1, ∀ n ∈ Z+. (1)

A Routh’s triangle4An+1Bn+1Cn+1 is constructed within the interior of4AnBnCn as shown
in Figure 1 below using the following scheme:

−−−→
BnA

′
n = −xn

−−−→
CnA

′
n,

−−−→
CnB

′
n = −yn

−−−→
AnB

′
n,

−−−→
AnC

′
n = −zn

−−−→
BnC

′
n, (2)

An+1 is the intersection point of the straight segments BnB
′
n and CnC

′
n, Bn+1 the intersection

of CnC
′
n and AnA

′
n, and Cn+1 the intersection of AnA

′
n and BnB

′
n.
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Figure 1: The n-th iteration step in the
nested Routh’s triangles process. The
points A′n on the triangle side BnCn,
B′n on CnAn, and C ′n on AnBn are
chosen according to the rule specified
in (2). An+1 is the intersection point
of the straight segments BnB

′
n and

CnC
′
n, Bn+1 the intersection of CnC

′
n

and AnA
′
n, and Cn+1 the intersection

of AnA
′
n and BnB

′
n.

We denote the triangle (polygon together with its boundary) 4AnBnCn by Tn and its area
by ∆n. We refer to the line segments AnA

′
n, BnB

′
n and CnC

′
n as cevians and to the triple

(xn, yn, zn) as cevian ratios. Condition (1) ensures that the triangles Tn are non-degenerate.

Theorem 1 (Ceva’s theorem). Assume that Tn is a non-degenerate triangle. Then the
cevians AnA

′
n, BnB

′
n and CnC

′
n are concurrent if and only if xnynzn = 1.

Theorem 2 (Routh’s theorem). ∆n+1 = ∆n ·R(xn, yn, zn), where

R(x, y, z) :=
(xyz − 1)2

(1 + x+ xy)(1 + y + yz)(1 + z + xz)
. (3)

Ceva’s theorem is named after the Italian mathematician Giovanni Ceva, who published
this result in 1678. The theorem is closely related to the Menelaus theorem, and was known
at least as early as in the eleventh century by Al-Mutaman ibn Hüd, a ruling King of Zaragoza
[24]. For discussions on and generalizations of Ceva’s theorem see, for instance, [3, 20, 28,
29, 33, 38, 43]. Notably, in [23] Ceva’s theorem is applied to analyze a connection between
two psychometric models, the Bradley-Terry-Luce model of a pairwise data comparison and
the Rasch measurement model. Ceva’s concurrence condition is implied by Routh’s theorem.
For various proofs and extensions of Routh’s area formula, we refer the reader to [5, 11, 26,
27, 32, 36], see also references therein. In particular, [32] includes a comprehensive list of
references on the topic. We remark that Routh’s theorem is implicit in formula (8) below,
as outlined in Remark 7 following the display.

Various iterations of triangles are studied in many intriguing articles, in which the trans-
formation from a triangle in generation n to the “daughter triangle” in generation n + 1 is
seen as either a Möbius transformation or an affine mapping in a suitable “representation
space”. See, for instance, [2, 9, 12, 13, 15, 18, 22, 25, 31, 35, 39, 42] and references therein.
The most relevant to our setting are articles [10, 21, 34], where the sequence of nested Routh’s
triangles Tn is considered in the case xn = yn = zn = x for some x 6= 1 and all n ∈ Z+.
In that case Tn converges to the centroid of T0. The main focus in the latter three articles
is in the study of the dynamics of shapes of the triangles. In particular, in [21] necessary
and sufficient conditions on x are given for the sequence Tn to be either everywhere dense
or periodic in the space of shapes. Here we identify the shape of a triangle 4ABC with a
unique σ ∈ C such that the triangle in the complex half-plane Im(z) ≥ 0 with vertices at
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0, 1, and σ is similar to 4ABC. Thus two triangles are shape-equivalent if they are similar.
We remark that the case xn = yn = zn = x is a particular instance of affine regularization
for n-gons studied in [13, 39].

In this paper, we are mainly concerned with T∞ = limn→∞ Tn as defined in (4) below. In
barycentric coordinates the transformation Tn → Tn+1 is represented by a linear mapping
R3 → R3 associated with certain stochastic 3 × 3 matrix P, which is introduced in (9)
below. The main technical difference between the general case and the situation when
xn = yn = zn = x for all n ∈ Z+ is that in the latter case P is circulant and double-
stochastic. The geometry of the affine map P : R3 → R3 is considerably more complex, thus
harder to study in the general case. However, some insight into asymptotic properties of the
sequence (Tn)n∈Z+ still can be obtained using a general theory of stochastic matrices and
associated Markov chains. The present paper appears to be a first attempt in the literature
to explore in this direction.

The rest of the paper is structured as follows. In Section 2, we prove basic convergence
results for the triangle iterative process. In particular, we show that when xn = yn = zn for
all n ∈ Z+, the limit T∞ is a non-degenerate triangle if and only if

∑∞
n=0 x̃n < ∞, where

x̃n := min{xn, x−1n }. We also give an explicit example of nested Routh’s triangles converging
to a flat (collinear) triangle. In Section 3, we identify the limiting point T∞ when xn = x,
yn = y, and zn = z for all n ∈ Z+ and some (x, y, z) ∈ (0,∞)3. In Section 4, we study a
sequence of nested Routh’s triangles associated with a random sequence (xn, yn, zn). It turns
out that for any “regular” random sequence (Tn)n∈Z+ , the expected value of the random
limit T∞ coincides with the centroid of the initial triangle 4A0B0C0. Finally, in Section 5,
we discuss certain game-theoretic and Markov chain interpretations of a general iterative
Routh’s triangle sequence (Tn)n∈Z+ and its limit point T∞. In the process we describe a
simple 3-person strategic game with the set of deterministic Nash equilibria represented by
the triples (x, y, z) ∈ (0,∞)3 satisfying Ceva’s condition xyz = 1.

2 Basic convergence results

We are interested in the following set:

T∞ :=
∞⋂
n=0

Tn = lim
m→∞

m⋂
n=0

Tn (4)

The first identity is a formal definition of T∞, the second one is often used to introduce the
limit of a sequence of nested sets [16]. By Cantor’s intersection theorem, T∞ is a closed
non-empty set.

First, we formally verify the following intuitive result:

Lemma 3. T∞ is either a triangle or a straight segment or a single point.

Proof. By the Bolzano-Weierstrass theorem, the sequence (An)n∈Z+ has a converging subse-
quence, say (Ank

)k∈Z+ . The sequence (Bnk
)k∈Z+ has a converging subsequence, say (Bmk

)k∈Z+ .
Finally, the sequence (Cmk

)k∈Z+ also has a converging subsequence, say (Cjk)k∈Z+ . Let
A := limk→∞Ajk , B := limk→∞Bjk , and C := limk→∞Cjk . Then 4ABC = limk→∞ Tjk ,
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and hence, since the limit along a subsequence coincides with the limit of the sequence if the
latter exists, 4ABC = T∞. Thus the limit T∞ is a triangle, a straight segment, or a single
point according to the maximal number of linearly independent points (vectors) in the set
{A,B,C}.

If the sequences xn, yn, and zn are uniformly bounded away from zero and infinity, then
the diameter of Tn decreases exponentially fast to zero, and therefore T∞ is a single point.
To derive this result one can use, for instance, equation (13) below. A more general sufficient
condition for an inhomogeneous sequence of cevian ratios (xn, yn, zn)n∈Z+ to define nested
Routh’s triangles converging to a single point T∞, together with a rate of convergence, is
given in Theorem 9 below.

There are several interesting examples in the literature when an iterative sequence of
triangles converges to a straight segment (flat triangle), see for instance [2, 18, 31]. An
explicit class of iterative Routh’s triangle sequences which converge to a straight segment is
constructed in the following example.

Example 4. Because of the rotation incurred at every iteration step (see Figure 1), we use
here an alternate labeling of the vertices to better keep track of the limiting points. Namely,
we set:

En = An, Fn = Bn, Gn = Cn if n ≡ 0 (mod 3),
En = Cn, Fn = An, Gn = Bn if n ≡ 1 (mod 3),
En = Bn, Fn = Cn, Gn = An if n ≡ 2 (mod 3)

Heuristically, if the initial triangle 4A0B0C0 is configured as in Figure 1, the En’s are the
top vertices, the Fn’s the bottom right, and the Gn’s the bottom left vertices.

Consider the triangle T0 with vertices E0 = (0, 1), F0 = (1, 0), G0 = (0, 0), and two
sequences of positive numbers (tn)n∈Z+ and (sn)n∈Z+ such that

0 < t1, (tn)n∈Z+ is strictly increasing, tn → 1/3 as n→∞
1 > s1, (sn)n∈Z+ is strictly decreasing, sn → 2/3 as n→∞

Given Tn = 4EnFnGn, we define En+1, Fn+1 and Gn+1 as follows:

• Take F ′ to be the midpoint of GnEn and draw the cevian FnF
′,

• The cevian out of Gn is the segment that intersects FnF
′ at a point with abscissa sn.

This intersection point is labeled Fn+1,

• The cevian out of En is the segment that intersects FnGn+1 at a point with abscissa tn.
This intersection point is labeled Gn+1.

• The intersection of FnF
′ and EnGn+1 is denoted by En+1.

Repeat the above procedure indefinitely to obtain Tn = 4EnFnGn for all n ∈ N. By construc-
tion, the area of Tn+1 is no more that half of the area of Tn. Thus T∞ has area zero and is
not a triangle. It cannot be a point because the abscissas of the Gn’s are less than 1/3 while
the ones for the Fn’s are greater than 2/3.

4



In the case xn = yn = zn, the next theorem gives a necessary and sufficient condition
for (Tn)n∈Z+ to converge to a non-degenerate triangle. The definition of x̃n in the statement
of the theorem is in alignment with the fact that the shape of Tn+1 is invariant under the
“mirror” transformation of cevians (xn, yn, zn) →

(
x−1n , y−1n , z−1n

)
, which maps vertices of

Tn+1 into their respective isogonal conjugates in Tn.

Theorem 5. Suppose that zn = yn = xn with xn > 0, xn 6= 1 for all n ≥ 0. Let

x̃n =

{
xn if xn < 1,
x−1n if xn > 1.

If the series
∑∞

n=0 x̃n converges, then T∞ is a non-degenerate triangle. If the series diverges,
T∞ is the centroid of T0.

Proof. We note that we can take the original triangle to be an equilateral triangle with-
out loss of generality. Indeed, if the starting triangle is scalene, we can find an invertible
affine mapping K : R2 → R2 of the Euclidean plane such that K transforms T0 it into
an equilateral triangle. Notice that because of the linearity of K, the centroid G of T0 is
mapped into the centroid of the equilateral triangle KT0. It is not hard to check that affine
transformations preserve cevian ratios, and hence leave the convergence mode (according to
the classification given in Lemma 3) unaffected. More specifically, the above defined map
K commutes with any transformation Hn : T0 → Tn, n ∈ Z+ ∪ {∞}, and in particular,
K−1H∞KT0 = H∞KT0 = T∞. This implies that the claim of the theorem is K-invariant,
and we can consider KT0 as the initial triangle.

When xn = yn = zn and the initial triangle T0 is equilateral, each iterated Routh’s triangle
Tn, n ∈ N, is also equilateral because it is symmetric with respect to rotations of 120 degrees
about the centroid G of T0. Therefore T∞ is either a point or a triangle. To identify the
limit, we look at its area ∆∞. By virtue of (3) and because R(xn, xn, xn) = R(x̃n, x̃n, x̃n),
we have

∆∞
∆0

=
∞∏
n=0

(x̃3n − 1)2

(x̃2n + x̃n + 1)3
=
∞∏
n=0

(x̃n − 1)2

x̃2n + x̃n + 1
=
∞∏
n=0

(
1− 3x̃n

x̃2n + x̃n + 1

)
.

By definition, x̃n < 1, which implies

1− 3x̃n < 1− 3x̃n
x̃2n + x̃n + 1

< 1− x̃n.

Because x ≤ − ln(1− x) for x ∈ (0, 1) we obtain

− ln
∆∞
∆0

> −
∞∑
n=0

ln
(

1− x̃n
)
≥

∞∑
n=0

x̃n.

When
∑∞

n=0 x̃n diverges, the area of the limiting set T∞ is zero and the sequence of Routh’s
triangles converges to a point. It remains to show that the limiting point is G, the centroid
of T0 in this case. Because of the rotational symmetry, G belongs to all the Tn’s. By the
uniqueness of limits, G = T∞.
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In the case where
∞∑
n=0

x̃n converges, we choose an integer N so that x̃n < 1/6 for n ≥ N .

Using the inequality − ln(1− x) ≤ 2x for x ∈ (0, 1/2), we obtain

− ln
∆∞
∆0

≤ −
N−1∑
n=0

ln
(x̃n − 1)2

x̃2n + x̃n + 1
−

∞∑
n=N

ln(1− 3x̃n)

≤ C + 6
∞∑
n=N

x̃n,

where C := −
∑N−1

n=0 ln (x̃n−1)2
x̃2n+x̃n+1

is finite. We conclude that ∆∞ 6= 0, which means that the
limit is a triangle. The proof of the theorem is complete.

Figure 2: An illustration of iter-
ated Routh’s triangles constructed
with xn = yn = zn = (n + 1)! for
n ranging from 1 to 99. The se-
quence (Tn)n∈Z+ converges fast to
a triangle. Although only a few
triangles are easily visible, there
are in fact 99 iterated triangles in
this picture.

Remark 6. The fact that the centroids of Tn and Tn+1 coincide when xn = yn = zn is well
known. See, for instance, Theorem 3.6 in [21]. The reduction to the equilateral triangles,
which we used in the course of the proof of Theorem 5, provides a short self-contained proof
of this (affine invariant) result.

3 Dynamical system representation

We will next describe a dynamical system representation of the nested Routh’s triangles
Tn. To obtain this representation, we use mass point geometry and barycentric coordinates.
In these coordinates, each point O within the interior of T0 is described using a (unique)
triple of non-negative numbers (α, β, γ) such that, considering points on the plane as vectors,
O = αA0 + βB0 + γC0 and α+ β + γ = 1. Notice that O is the center of mass of 4A0B0C0

if for some k > 0 the mass kα is put at the vertex A, the mass kβ at B, and the mass kγ at
C0.

If we put weights (yn, ynzn, 1) at the vertexes (An, Bn, Cn) of the triangle Tn, then the
intersection An+1 of the lines BnB

′
n and CnC

′
n will be the center of mass of the triangle

Tn. Identifying Ak, Bk and Ck with vectors starting at the origin and ending at the points
denoted by the corresponding capital letters, we therefore obtain

An+1 =
1

1 + yn + ynzn

(
yn · An + ynzn ·Bn + Cn

)
. (5)
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Similarly,

Bn+1 =
1

1 + zn + xnzn

(
An + zn ·Bn + xnzn · Cn

)
, (6)

Cn+1 =
1

1 + xn + xnyn

(
xnyn · An +Bn + xn · Cn

)
. (7)

For formal 3-vectors, whose components are points in the plane within T0, this can be put
in a formal vector-matrix equation form as follows:(

An+1, Bn+1, Cn+1

)T
= Mn

(
An, Bn, Cn

)T
, (8)

where the superscript T indicates that the triple is transposed, i. e. converted from a row to
a column, and

Mn :=


yn

1+yn+ynzn

ynzn
1+yn+ynzn

1
1+yn+ynzn

1
1+zn+xnzn

zn
1+zn+xnzn

xnzn
1+zn+xnzn

xnyn
1+xn+xnyn

1
1+xn+xnyn

xn
1+xn+xnyn

 . (9)

Remark 7. Notice that, in accordance with Routh’s theorem (see, for instance, [11] or [7]),
detMn = R(xn, yn, zn). In fact, it follows from (5) and the analogous formulas for Bn+1 and
Cn+1 that (cf. [10, 20, 27, 36])

Mn =
1

∆n


Area(4An+1BnCn) Area(4An+1CnAn) Area(4An+1AnBn)

Area(4Bn+1BnCn) Area(4Bn+1CnAn) Area(4Bn+1AnBn)

Area(4Cn+1BnCn) Area(4Cn+1CnAn) Area(4Cn+1AnBn)

 .

In particular, trMn = 1−R(xn, yn, zn). We remark that the characteristic equation associated
with Mn is λ3 − λ2

(
1−R(xn, yn, zn)

)
−R(xn, yn, zn) = 0. Hence, the eigenvalues of Mn are

the Perron-Frobenius value one and, in addition, two complex roots of the quadratic equation
λ2 + λR(xn, yn, zn) + R(xn, yn, zn) = 0. These observations indicate that when cevian ratios
(xn, yn, zn) are chosen at random and form a stationary ergodic sequence, the distribution
of the real-valued random variable R(xn, yn, zn) can serve to measure a “random capacity”
of the iterative triangle process. The distribution is in principle directly available from the
input data, the joint distribution of the cevian ratios (xn, yn, zn).

It follows by induction that for a general n ∈ N,(
An, Bn, Cn

)T
= Mn−1Mn−2 · · ·M0

(
A0, B0, C0

)T
(10)

We remark that equations (5)-(8) and (10) can be alternatively interpreted as identities for
the complex numbers An, Bn, Cn instead of the corresponding real vectors.

For n ∈ Z+, let

an =
−−−→
BnCn, bn =

−−−→
CnAn, cn =

−−−→
AnBn, (11)
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and

un =
1− xnynzn

(1 + zn + xnzn)(1 + xn + xnyn)
,

vn =
1− xnynzn

(1 + yn + ynzn)(1 + xn + xnyn)
, (12)

wn =
1− xnynzn

(1 + yn + ynzn)(1 + zn + xnzn)
.

It follows from (5)-(7) that an+1

bn+1

cn+1

 =

 0 −xnun un
vn 0 −ynvn
−znwn wn 0

 an
bn
cn

 . (13)

The matrix in (13) is the cofactor matrix of Mn, and hence

(an+1, bn+1, cn+1) = R(xn, yn, zn)−1 · (an, bn, cn)M−1
n .

Using the law of cosines, we deduce from (13) that(
|an+1|2, |bn+1|2, |cn+1|2

)T
= Qn

(
|an|2, |bn|2, |cn|2

)T
, (14)

where

Qn :=
1

2

 xnu
2
n (2x2n − xn)u2n (2− xn)u2n

(2− yn)v2n ynv
2
n (2y2n − yn)v2n

(2z2n − zn)w2
n (2− zn)w2

n znw
2
n

 .

We will exploit (14) in Section 4 below.
The following is the main result of this section.

Theorem 8. Suppose that xn = x, yn = y, zn = z for some x, y, z > 0 such that xyz 6= 1
and all n ∈ Z+. Then

T∞ =
θ1

θ1 + θ2 + θ3
A0 +

θ2
θ1 + θ2 + θ3

B0 +
θ3

θ1 + θ2 + θ3
C0, (15)

where

θ1 = (xy(1 + xz) + 1)(1 + y + yz),
θ2 = (yz(1 + yx) + 1)(1 + z + xz),
θ3 = (zx(1 + zy) + 1)(1 + x+ xy).

(16)

Proof. Let M denote the common value of the matrices Mn introduced in (9). Then (10) be-

comes
(
An, Bn, Cn

)T
= Mn

(
A0, B0, C0

)T
. It is easy to verify that the vector

−→
θ := (θ1, θ2, θ3)

T

is a left eigenvector of the matrix M, namely

−→
θ =

−→
θ M. (17)
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For i = 1, 2, 3, let

πi = θi(θ1 + θ2 + θ3)
−1. (18)

By virtue of (17), the probability vector −→π := (π1, π2, π3) represents the stationary distribu-
tion of a Markov chain which evolves according to the transition kernel M. It follows from
(17) that Mn converges as n → ∞ to a matrix whose columns coincide and all three are
equal to (π1, π2, π3)

T . In the language of the Markov chains theory, the latter statement is
the claim that stationary distribution is also the limiting distribution of the Markov chain.
The claim is true because M is a strictly positive matrix, and hence the associated Markov
chain is ergodic (see, for instance, [6, 37] for details). Thus

lim
n→∞

Mn
(
A0, B0, C0

)T
=

 π1 π2 π3
π1 π2 π3
π1 π2 π3

 A0

B0

C0


=

 π1A0 + π2B0 + π3C0

π1A0 + π2B0 + π3C0

π1A0 + π2B0 + π3C0

 . (19)

The proof is complete.

Our next result gives a necessary condition for an inhomogeneous sequence of cevian ratios
(xn, yn, zn)n∈Z to define nested Routh’s triangles converging to a single point T∞ together
with a rate of convergence.

Theorem 9. Let ξn := maxi minjMn(i, j). If
∑∞

n=0 ξn = ∞, then T∞ is a single point and
for any n ∈ N,

max{|
−−−→
AnT∞|, |

−−−→
BnT∞|, |

−−−→
CnT∞|}

≤
n−1∏
k=0

(1− ξk) ·max{|A0|, |B0|, |C0|}. (20)

The result stated in the theorem is merely a rephrasing in our context of a well-known
result for a product of stochastic matrices which has been stated in various forms in many
papers and monographs. See, for instance, Section 2.A.2 in [37], [41], [1], or [6, Lemma 9]
where different, suitable for general non-negative matrices, bounds ξi are used. In a similar
form, with the same ξi, the above result is explicitly stated in [40, Lemma 3.3]. For the
reader’s convenience, we will next outline a short proof of Theorem 9.

Let i∗ ∈ {1, 2, 3} be a state such that ξn = minjMn(i∗, j). By the assumptions of The-
orem 9, matrix Mn satisfies Deoblin’s condition, namely Mn(i, j) ≥ ξnδ

∗(j), where δ∗ is
a probability vector in dimension 3 such that δ∗(j) = 1 if j = i∗ and δ∗(j) = 0 other-
wise. Thus the convergence of the backward products Mn−1 · · ·M0 to a column stochastic
matrix M∞ follows, for example, from [30, Theorem A]. Each row of M∞ form the same
probability vector, say π = (π1, π2, π3). A contraction property of Doeblin’s stochastic ker-
nels (in particular, strictly positive stochastic matrices), see [14, p. 197], implies then that
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‖νMn − πMn‖ ≤ (1− ξn)‖ν − π‖, where ν is any probability vector in dimension 3 and ‖ · ‖
is the total variation norm. Thus (cf. [37, 41])

max
j

3∑
i=1

∣∣Mn−1 · · ·M0(i, j)−M∞(i, j)
∣∣ ≤ n−1∏

k=0

(1− ξk),

which implies (20) with T∞ = π1A+ π2B + π3C by triangle inequality.

4 Random iterations

In this section we consider the iteration of Routh’s triangles associated with random cevian
ratios (xn, yn, zn)n∈Z+ .

Proposition 10. Suppose cevian ratios (xn, yn, zn)n∈Z+ are sampled independently and iden-
tically from a joint distribution defined on (0,∞)3. Then T∞ is a single point with probability
one.

Proof. The conclusion follows readily if P (xnynzn = 1) > 0. Thus we will assume that
xnynzn 6= 1 with probability one. Let dn = diam(Tn), and recall that the diameter of a
triangle is the length of its longest side. Thus we need to show that dn → 0, as n → ∞,
under the conditions of the theorem. Let γn =

dn
dn−1

. By the law of large numbers, with

probability one,

lim
n→∞

1

n
ln
( n∏
k=1

γn

)
= lim

n→∞

1

n

n∑
k=1

ln γn = E(ln γ1),

where E denotes the expected value. Since the inclusion Tn ⊂ Tn−1 is strict, we know that
P (ln γ1 < 0) = 1. Therefore, E(ln γ1) = −a for some a > 0. With probability one, for all n
sufficiently large (how large depends on the random realization of the sequence dn), we have

1

n
ln
dn
d0

=
1

n
ln
( n∏
k=1

γn

)
< −a

2
, and hence dn < d0 exp

(
−na

2

)
.

Thus we have shown that dn → 0 as n→∞. The proof is complete.

Remark 11. The assumption of independence in the conditions of Proposition 10 can be
replaced by a weaker condition that the cevian triples form a stationary and ergodic sequence.
The above proof goes through verbatim with Birkhoff’s ergodic theorem [16] taking the place
of the classical law of large numbers. Note that, in view of the Poincaré’s recurrence theorem
[16], if P (xnynzn = 1 > 0) then the number of iterations before reaching a degenerate triangle
(a point) is finite with probability one. We remark that an alternative proof of Proposition 10
(or its extension to a stationary and ergodic sequence of cevian triples) can be given by
applying the result in Theorem 9 to a stationary and ergodic sequence ξn which is introduced
in the statement of the theorem.

10



Recall that the distribution of a random vector (xn, yn, zn) ∈ R3 is called exchangeable if
for any permutation of (xn, yn, zn) the joint probability distribution of the permuted triple is
the same as the joint probability distribution of the original one [16]. The following theorem
is the main result of this section. It can be considered as a probabilistic counterpart of
Theorem 5.

Theorem 12. Under the conditions of Proposition 10, if the common distribution of the
vectors (xn, yn, zn), n ∈ Z+, is exchangeable then the expected value E(T∞) is the centroid of
T0.

Proof. Taking the expectation in (10) and using the linearity property of the expectation
one can show by induction that for any n ∈ N,(

E(An), E(Bn), E(Cn)
)T

= Kn
(
A0, B0, C0

)T
,

where K := E(Mn) is a matrix whose entries are the expected values of the corresponding
entries of Mn. Since the distribution of (xn, yn, zn) is exchangeable, K is a double-stochastic
matrix, that is the sum of the entries in each row and column is one. The claim follows from
the fact that the probability vector 1

3
(1, 1, 1)T is the left Perron-Frobenius eigenvector of K,

and hence (compare to (19) and see the discussion above it)

lim
n→∞

Kn =

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 .

The proof of the theorem is complete.

Recall an, bn, cn from (11). We conclude this section with the following theorem collecting
several results on the rate of convergence of a random sequence Tn to a random limit point
T∞. For n ∈ Z+, let

χn = E(∆n) and ηn = max{|an|2, |bn|2, |cn|2}

Theorem 13.

(i) Assume that (xn, yn, zn)n∈Z+ is a stationary and ergodic random sequence. Then, with
probability one,

lim
n→∞

1

n
log ∆n = E

(
logR(x0, y0, z0)

)
, (21)

lim
n→∞

1

n
log ηn = λ, (22)

for some λ < 0.

(ii) If (xn, yn, zn)n∈Z+ is an i. i. d. sequence, then

χn =
{
E
(
R(x0, y0, z0)

)}n
∆0, n ∈ N, (23)

lim
n→∞

1

n
logE(|an|2) = lim

n→∞

1

n
logE(|bn|2) = lim

n→∞

1

n
logE(|cn|2) = δ (24)

for some δ < 0.

11



(iii) Under the conditions of Proposition 10, δ in (24) is given by

δ = logE
(
u20(x

2
0 − x0 + 1)

)
, (25)

where u0 is introduced in (12). In fact, in this case,

lim
n→∞

e−nδE(|an|2) = lim
n→∞

e−nδE(|bn|2) = lim
n→∞

e−nδE(|cn|2)

=
1

3
E
(
|an|2 + |bn|2 + |cn|2

)
(26)

Furthermore, if in addition there exists ε > 0 such that P
(
M0(i, j) ∈ (ε, 1 − ε)

)
= 1 for all

i, j ∈ {1, 2, 3} (for instance, with probability one, x0, y0, and z0 are uniformly bounded away
from zero and from infinity), then (22) can be strengthened to

lim
n→∞

1

n
log |an| = lim

n→∞

1

n
log |bn| = lim

n→∞

1

n
log |cn| =

λ

2
(27)

Proof.

(i) The result in (21) follows immediately from the Birkhoff ergodic theorem and Routh’s
theorem. The result in (22) for some λ < 0 is a direct implication of (14) along with the
Furstenberg-Kesten theorem for products of random matrices [17]. The same argument as
we used to establish Proposition 10 (see also Remark 11) shows that λ < 0.

(ii) The identity in (23) is evident from Routh’s theorem. The limit result in (24) for some
δ < 0 follows from (14) by taking the expectation on both the sides of the equation. Moreover,
δ = log λQ where λQ > 0 is the Perron-Frobenius eigenvalue of the 3× 3 matrix H := E(Q0)
whose entries are expectations of the corresponding entries of Q0. Indeed, for some positive
reals f1, f2, f3 and f := (f1, f2, f3) ∈ R3 we have Hf = λQf. Then by virtue of (14) for any
real constant c > 0 such that

c−1f1 < E(|an|2) < cf1, c
−1f2 < E(|bn|2) < cf2, c

−1f3 < E(|cn|2) < cf3,

we have (the vector inequalities below is a notation to denote that the corresponding in-
equalities hold component-wise)

c−1λnQf <
(
E(|an|2), E(|an|2), E(|an|2)

)T
= Hn

(
|a0|2, |b0|2, |c0|2

)T
<

< cλnQf,

from which the claim in (24) readily follows with δ = log λQ.

(iii) Recall that δ = log λQ. It is not hard to verify that under the conditions of Proposition 10,
we have λQ = E

(
u2n(x2n−xn+1)

)
, which is the sum of the elements in a row of H := E(Qn).

It follows that λ−1Q H is a double-stochastic matrix, and hence

lim
n→∞

e−nδ
(
E(|an|2), E(|bn|2), E(|cn|2)

)T
= lim

n→∞
(λ−1Q H)n

(
E(|a0|2), E(|b0|2), E(|c0|2)

)T
=

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

(E(|a0|2), E(|b0|2), E(|c0|2)
)T
.

Finally, (27) follows from the Corollary on p. 462 of [17].

12



Heuristically, Theorem 13 states that the rate of convergence of the sequence Tn to the
limit T0 is exponential. We conclude this section with the observation that in addition to the
results listed in the theorem, (20) implies that when (xn, yn, zn)n∈Z+ and hence also (ξn)n∈Z+

are stationary and ergodic sequences,

lim sup
n→∞

1

n
log
[
max{|

−−−→
AnT∞|, |

−−−→
BnT∞|, |

−−−→
CnT∞|}

]
≤ E(log ξ0) < 0

5 A job allocation interpretation

The goal of this section is to describe two job allocation procedures connected to the Routh’s
triangle iteration process. The second one provides a curious interpretation of the limit T∞
in Theorem 8.

First, we observe that cevian ratios (x, y, z) satisfying the condition xyz = 1 can be
identified with deterministic Nash equilibria in the following 3-person game. The underlying
idea is expressed by the identities in (28) below, and it utilizes a geometric lemma which is
referred to in [20] as an “area principle”.

Suppose that players Alice (A), Bob (B), and Colette (C) have a job assignment to
complete, and they want to divide the workload fairly. Assume that the total amount of
work to be done is one unit and denote the portion of the work allocated to a player X
by WX , where X ∈ {A,B,C}. The respective strategies of the players A,B,C are positive
reals x, y, z. The strategies are interpreted as a suggestion of the player with regard to how
the portion of the work which is allocated to the two other players should be divided. More
specifically, if the triple (x, y, z) satisfies Ceva’s condition xyz = 1 and the associated cevians
intersect at a point O within T0, the work is divided between the players in such a way that

WA = Area(4B0C0O), WB = Area(4C0A0O), WC = Area(4A0B0O),

and hence [20]

WB

WC

= x,
WC

WA

= y,
WA

WB

= z. (28)

If Ceva’s condition is not satisfied, we look at the iterative triangle process associated with
the cevian ratios (xn, yn, zn) = (x, y, z) for all n ∈ Z+ and set

WA =
∞∑
n=0

Area(4BnCnAn+1) =
y

1 + y + yz

∞∑
n=0

R(x, y, z)n

=
y

1 + y + yz
· 1

1−R(x, y, z)
,

and, similarly,

WB =
∞∑
n=0

Area(4CnAnBn+1) =
z

1 + z + xz
· 1

1−R(x, y, z)
,

WC =
∞∑
n=0

Area(4AnBnCn+1) =
x

1 + x+ xy
· 1

1−R(x, y, z)
.

13



Assume that each player X ∈ {A,B,C} minimizes their workload WX . Recall that a vector
of strategies (x, y, z) is called a Nash equilibrium of the above game if no player benefits
from a unilateral change when the remaining two players maintain their strategies fixed [19].
Clearly, a triple (x, y, z) ∈ (0,∞)3 is a Nash equilibrium if and only if R(x, y, z) = 0, that is
xyz = 1.

Consider now the following modification of the above game-theoretic framework. Assume
that a certain job, say cleaning a rented apartment, must be done on a daily basis and takes
one person to accomplish. Three roommates, Alice, Bob, and Colette want to devise a
long-term schedule. For n ∈ Z+, let Xn be the person assigned to the job at day n. For
X ∈ {A,B,C} let

πX = lim
n→∞

1

n

n∑
k=0

1(Xk = X), (29)

provided that the above limit exists. As before, the strategies x, y, z serve as “recommen-
dations” from the players on how the job should be divided. Specifically, the roommates
assign the cleaning job at random so that Xn is a Markov chain with a 3×3 transition kernel
P (Xn+1 = j|Xn = i) = M(i, j), where M is Mn defined in (9) with xn = x, yn = y, zn = z,
and we identify A with state 1, B with state 2, and C with state 3 of the Markov chain. By
the ergodic theorem, the limits in (29) exist and, moreover,

πA(x, y, z) = π1, πB(x, y, z) = π2, πC(x, y, z) = π3, (30)

where πi, i = 1, 2, 3, are defined in (18). In particular, if the triple (x, y, z) satisfies Ceva’s
condition, we have πB/πC = x, πC/πA = y, and πA/πB = z. It turns out that if the goal
of each player is to minimize the asymptotic average workload, the only deterministic Nash
equilibrium in the game is (x, y, z) = (1, 1, 1).

Theorem 14. Consider a 3-person game where the strategy of a player X ∈ {A,B,C}
is a positive real number and the (negative) payoff associated with a vector of strategies
(x, y, z) ∈ (0,∞)3 is −πX(x, y, z), with πX given by (30). Then the only deterministic Nash
equilibrium in the game is the “fair division” x = y = z = 1.

Proof. Suppose that (x, y, z) is a Nash equilibrium. Assume in addition that xyz 6= 1. Since
player A prefers x over y−1z−1, we have πA ≤ y

1+y+yz
. Similarly, it must be the case that

πB ≤ z
1+z+xz

and πC ≤ x
1+y+xy

. But then

1 = πA + πB + πC ≤
y

1 + y + yz
+

z

1 + z + xz
+

x

1 + y + xy

= 1−R(x, y, z),

which is only possible if R(x, y, z) = 0. The latter assertion however contradicts the assump-
tion xyz 6= 1.

Thus we can assume without loss of generality that xyz = 1. Since player A prefers
x = y−1z−1 over any other value of x > 0, it must be the case that for all u > 0,

y

1 + y + yz
≤ (31)

≤
(uy(1 + uz) + 1)(1 + y + yz)

uy(1 + uz) + 1)(1 + y + yz) + (yz(1 + yu) + 1)(1 + z + uz) + (zu(1 + zy) + 1)(1 + u + uy)

14



Since u = y−1z−1 is a minimizer of the right-hand side, the derivative of the expression in
the right hand side with respect to u is equal to zero at u = y−1z−1. A little algebra shows
that the latter condition is equivalent to x = y−1z−1 = 1. Using similar arguments for πB
and πC , one can deduce that y = z = 1.

So far we have shown that if there is a Nash equilibrium, it must be (1, 1, 1). To complete
the proof it remains to verify that (x, y, z) = (1, 1, 1) is indeed a Nash equilibrium. Instead
of checking second order derivatives, we will directly verify (31) with (y, z) = (1, 1). To this
end it suffices to show that

1

3
≤ 3(1 + u+ u2)

3(1 + u+ u2) + (2 + u)2 + (2u+ 1)2

It is easy to see that the last inequality is equivalent to the trivial (u−1)2 ≥ 0, and therefore
holds true. The proof of the theorem is complete.
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[5] Á. Bényi and Ć. Branko, A generalization of Routh’s triangle theorem, Amer. Math.
Monthly 120 (2013), 841–846.

[6] E. Bolthausen and I. Goldsheid, Recurrence and transience of random walks in random
environments on a strip, Comm. Math. Phys. 214 (2000), 429–447.

[7] O. Bottema, The area of a triangle as a function of the barycentric coordinates of its
vertices. In Topics in Elementary Geometry, 2nd edition, Springer, 2008, pp. 29–32.

[8] P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schrödinger
Operators, Progress in Probability and Statistics, vol. 8, Birkhäuser, 1985.
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