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Abstract

We consider favorite (i.e., most visited) sites of the symmetric persistent random
walk on Z, a discrete-time process typified by the correlation of its directional history.
We show that the cardinality of the set of favorite sites is eventually at most three.
This is a generalization of a result by Tóth for a simple random walk, used to partially
prove a longstanding conjecture by Erdős and Révész. The original conjecture assert-
ing that for the simple random walk on integers the cardinality of the set of favorite
sites is eventually at most two was recently disproved by Ding and Shen.

Keywords: favorite sites, most visited sites, local time, correlated random walks, dis-
crete Ray-Knight theorems.
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1 Introduction

Let λ ∈
[

1
2
, 1
)
. Let {Xs}∞s=1 be a discrete-time Markov chain on the state space {−1, 1}.

X1 is either 1 or -1 with equal probability, and for each s > 1, the Markov chain has the
transition probabilities for values c ∈ {−1, 1}

P (Xs = c|Xs−1 = c) = λ,

P (Xs = −c|Xs−1 = c) = 1− λ.
(1)

Define the symmetric nearest-neighbor persistent random walk {St}∞t=0 by

St :=
t∑

s=1

Xs,
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with the convention S0 = 0 w.p.1. Intuitively, St is similar to a simple symmetric random
walk on Z, except the direction of the motion of St has a bias towards the same direction its
previous step. As a matter of fact, if λ = 1

2
is permitted, then the persistent random walk

can be seen as a generalization of the simple random walk.
The earliest works on the persistent random walk come from [13, 29], who each intro-

duced the model as a way of describing certain physical phenomena, and from [15, 18] in
mathematical literature (see also [7, 3, 16, 22, 24] and references therein). The persistent
random walk and other related processes have seen applications in other fields of physics,
economics and biology, such as random collision models [26], ballistic diffusion [33], quantum
random walks [20, 31], investment portfolio optimization [3], and the movement of animals
[6], among others. Overviews of applications can be found in [8, 33]. A random environment
version of the model has been discussed in [2, 26].

We begin this study on the persistent random walk with defining relevant notation. We
define the local time of a site x ∈ Z at time t > 0 as the number of visits x receives from the
walk up to time t:

L(x, t) := #{0 < s ≤ t : Ss = x}.

For every time t, we also define the set of favorite sites, that is, the sites of Z that have
been visited by the random walk the most by time t:

K(t) := {y ∈ Z : L(y, t) = max
z∈Z

L(z, t)}.

Since the range of St is finite at any given point in time, #K(t) < ∞ w.p.1 for any t.
Note that there are only two ways in which K(t) could change from K(t − 1): either the
local time of a site outside of K(t − 1) becomes a maximum local time at time t, in which
#K(t) = #K(t− 1) + 1, or one of the sites in K(t− 1) receives one more visit at time t, in
which #K(t) = 1.

Finally, we define the random variable f(r) to be the number of times #K(t) becomes
r ∈ N:

f(r) := #{t ≥ 1 : St ∈ K(t),#K(t) = r}. (2)

In the simple walk case (λ = 1
2
), it was shown that f(1) = f(2) = ∞ w.p.1 in [10]

and [5]. In [10], [11] and [12], Erdős and Révész conjectured that f(r) was finite w.p.1 for
r ≥ 3 (see [27] for a an overview). The conjecture was partially proven in [30], in which it
was shown that f(4) was finite w.p.1, hence f(r) for r ≥ 5 as well. Our main result in this
chapter reveals that the set of favorite sites for the persistent random walk behaves similarly,
regardless of the amount of local directional bias.

Theorem 1.1 (Main Theorem). For any choice of λ ∈ (1
2
, 1),

E(f(4)) <∞.

In particular, f(4) <∞ w.p.1.

This theorem extends the result found for the simple random walk in [30]. It’s somewhat
surprising of a result for the persistent case; for λ close to 1 the persistent walk will cover the
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same large intervals of integers with the same number of visits. One would presume that the
intervals of favorite sites will stay large, but the theorem shows that over time, the number
of favorite sites will eventually be bounded above by 3.

It was recently shown in [9] that for the simple random walk on integers, f(3) =∞ w.p.1.
Together with the result of Tóth [30] this establishes the phase transition in the behavior
of f(n) for the simple random walk. It is plausible that a similar phase transition happens
for a general class of random motions on Z. The present paper discusses an example of the
process that turns out to be amenable to an adaptation of the approach of Tóth [30]. We
believe that f(3) = ∞ w.p.1. for the persistent random walk as well, but leave this as a
direction for future work (see the discussion in Section 7).

Our method of proof will follow closely to that of [30], as the framework of sojourn
times provides naturally closed formulations in the extension into the directionally-dependent
persistent processes. As such, much of the notation and the key lemmas will appear similar
to as they did in [30], albeit under a new random process. However, the extension will not be
trivial, as the simple walk case in [30] provided simplifications in the essential formulations
that are absent in the persistent case. Our proof for the persistent random walk will utilize
some deep results into the studies of probability theory, mathematical statistics, asymptotic
analysis and the theory of hypergeometric functions. We hope that the work for this proof
will pave the way for the study in the number of favorite sites for other processes outside of
the realm of simple random walks.

2 Definitions

Before we begin to prove the theorem, we first need to establish the preliminary definitions
and observations. First, we define the upcrossings and downcrossings, respectively, of a site
x:

U(x, t) := #{0 < s ≤ t : Ss = x, Ss−1 = x− 1},
D(x, t) := #{0 < s ≤ t : Ss = x, Ss−1 = x+ 1}.

A couple of things to note here: U(x, t) and D(x, t) can be seen as a partition of the total
local time L(x, t), in that L(x, t) = U(x, t) + D(x, t). Also, U(x, t) and D(x, t) are related
to each other given the relative position of St in the following way:

U(x, t)−D(x− 1, t) = 1{0<x≤St} − 1{St<x≤0}, (3)

D(x, t)− U(x+ 1, t) = −1{0<x≤St} + 1{St<x≤0}. (4)

Using (3) and (4), we can rewrite the local time all in terms of either upcrossings or
downcrossings:

L(x, t) = D(x, t) +D(x− 1, t) + 1{0<x≤St} − 1{St<x≤0} (5)

= U(x, t) + U(x+ 1, t)− 1{0<x≤St} + 1{St<x≤0}. (6)

Next, we define the following stopping times for the upcrossings and downcrossings above:
for any x ∈ Z and k ≥ 0,

TUx,k := inf{t ≥ 1 : U(x, t) = k},
TDx,k := inf{t ≥ 1 : D(x, t) = k}.
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We can use these stopping times to help partition f(4) into infinite random variables
based on the location and visiting direction of the new favorite sites in the following way:

ux(4) :=
∞∑
t=1

1{∆t=1,x∈Kt,#K(t)=4}

=
∞∑
k=1

1{x∈K(TUx,k),#K(TUx,k)=4}.

dx(4) :=
∞∑
t=1

1{∆t=−1,x∈Kt,#K(t)=4},

=
∞∑
k=1

1{x∈K(TDx,k),#K(TDx,k)=4}.

From here, we can see that

f(4) =
∑
x∈Z

(ux(4) + dx(4))

Note that, due to the symmetry of our persistent random walk model (in the sense that
for any x ∈ Z and t ≥ 0, P (St = x|S0 = 0) = P (St = −x|S0 = 0)), ux(4) is equal in
distribution to d−x(4) for any x ∈ Z. Hence, for the expectation of f(4), we only need to
concern ourselves with the nonnegative sites:

E(f(4)) = 2
∞∑
x=1

E(ux(4)) + 2
∞∑
x=0

E(dx(4)). (7)

We can prove E(f(4)) is finite by showing the series on the right-hand side of (7) are
both finite. For the rest of this work, we will set out to prove the following:

∞∑
x=1

E(ux(4)) =
∞∑
x=1

∞∑
k=1

P
(
x ∈ K(TUx,k),#K(TUx,k) = 4

)
<∞. (8)

The proof that
∑∞

x=0E(dx(4)) <∞ is a similar exercise left to the reader.

3 Ray-Knight Representation

Now we introduce the offspring distribution for a sequence of critical branching processes
which will be vital in the theorem’s proof. For every t ≥ −1 and i ≥ 1, consider the random
variable ζt,i with distribution

P (ζt,i = j) =

{
1− λ if j = 0
λ2(1− λ)j−1 if j ≥ 1.

(9)
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A note about this distribution is that its expectation is 1 and its variance is 21−λ
λ

, as the
computation of a couple of geometric series reveals.

For any given positive site x ≥ 1, this random variable will represent the number of times
a persistent particle will move from x+ 1 to x until eventually returning to x− 1. When the
particle first moves rightward onto x, it has a 1−λ probability of going against its rightward
bias and moving leftward to x − 1. If the particle goes right instead, the particle will take
an excursion before returning to x again, which includes a downcrossing from x + 1. This
time, the particle has a 1− λ probability of moving right and starting another excursion, or
a λ probability of moving left and ending the “trials”.

Whenever a particle visits x from the left again after arriving at x − 1, the memory of
the Markov chain that dictate the particle’s transition probabilities does not include any of
its previous excursions to the right of x. Thus, every trial of (x + 1)-to-x downcrossings
for each x-to-(x− 1) downcrossing will be independent and identically distributed with each
other. So the number of downcrossings between two adjacent sites will be a Markov chain
dependent on the number of downcrossings between the next lower pair of sites.

For each t ≥ 0 and i ≥ 1, we will make i.i.d. copies of ζt,i, call them ζ∗t,i and ζ ′t,i. The
motivation for these new random variables are slightly different from that of ζt,i, but they
will be used for similar representations. Fix k ≥ 0 and x ≥ 1.

First, we will define a Galton-Watson process Yt with {ζt,i}∞t=−1,i=1 as the offspring it
produces each generation. Define the initial state Y−1 = k and, for each −1 ≤ t < ∞, let
Yt+1 :=

∑Yt
i=1 ζt+1,i. Yt is then a Markov chain with transition probabilities π(i, j), given by

π(i, j) := P (Yt+1 = j|Yt = i)

=

{
δ0,j, i = 0(

λ2

1−λ

)i
(1− λ)j

∑i−1
k=(i−j)+

(
i
k

)(
j−1
i−k−1

) (
1−λ
λ

)2k
, i ≥ 1

(10)

where (a)+ := max{a, 0}. Note that the right-hand side of (10) is the calculated i-fold
convolution of (9). As a note of interest, setting λ = 1

2
in (10) will reduce the right-hand side

to the equivalent transition probabilities seen in [23] and [19], due to the Chu-Vandermonde
identity (see [25]).

Next, define a Galton-Watson process Zt with {ζ∗t,i}∞t=−1,i=1 offspring and one intruder
particle entering each generation. Let Z0 = k be the initial state and, for each 0 ≤ t ≤ x−1,
let Zt+1 :=

∑Zt+1
i=1 ζ∗t+1,i. Then Zt is also a Markov chain with transition probabilities ρ(i, j)

given by

ρ(i, j) := P (Zt+1 = j|Zt = i)

=

(
λ2

1− λ

)i+1

(1− λ)j
i∑

k=(i+1−j)+

(
i+ 1

k

)(
j − 1

i− k

)(
1− λ
λ

)2k

.
(11)

Before defining the final process in this set, we first need to define a new random variable
η with distribution

P (η = j) =

{
1
2

if j = 0
1
2
λ(1− λ)j−1 if j ≥ 1
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This variable describes the number of downcrossings from 0 to -1 until a first visit to 1.
This will be used to define the third Galton-Watson process Y ′t , with initial state Y ′0 = Zx−1,

Y ′1 := η · δ{S1=−1} +
∑Y ′0

i=1 ζ
′
1,i, and Y ′t+1 :=

∑Y ′t
i=1 ζ

′
t+1,i for each 1 ≤ t < ∞. We exclude the

calculation of the transition probabilities of Y ′t , as they are not needed for this proof.
With these three processes defined, we are now ready to build our Ray-Knight type

representation of the local times of St. For each y ∈ Z, define ∆x,k(y) by

∆x,k(y) :=


Yy−x if x− 1 ≤ y <∞
Zx−y−1 if 0 ≤ y ≤ x− 1
Y ′−y if −∞ < y ≤ 0

.

By this construction, we arrive at the Ray-Knight type representation for the downcross-
ings of the persistent walk:

(∆x,k(y), y ∈ Z)
D
=
(
D(TUx,k+1, y), y ∈ Z

)
, (12)

in which
D
= means equal in distribution. Plainly speaking, ∆x,k(y) represents the random

number of downcrossings into site y before the (k + 1)th upcrossing to x for any y ∈ Z.
Now define the following random variable for each y ∈ Z:

Λx,k(y) := ∆x,k(y) + ∆x,k(y − 1) + 1{0<y≤x}. (13)

Λx,k(y) serves as the local time of y stopped at TUx,k+1, based on (5). Hence, using (5) and
(13), we get the following Ray-Knight representation:

(Λx,k(y), y ∈ Z)
D
=
(
L(TUx,k+1, y), y ∈ Z

)
The following is a list of random variables and events that we will use for the more

technical aspects of the main theorem’s proof:

Ỹt := Yt + Yt−1, Z̃t := Zt + Zt−1 + 1, Ỹ ′t := Y ′t + Y ′t−1.

σh := inf{t ≥ 0 : Yt ≥ h}
ω := inf{t ≥ 0 : Yt = 0}
σ′h := inf{t ≥ 0 : Y ′t ≥ h}
ω′ := inf{t ≥ 0 : Y ′t = 0}
τh := inf{t ≥ 0 : Zt ≥ h}

σ̃h,0 := 0, σ̃h,i+1 := inf{t > σ̃h,i : Ỹt ≥ h},
σ̃h := σ̃h,1

σ̃′h,0 := 0, σ̃′h,i+1 := inf{t > σ̃′h,i : Ỹ ′t ≥ h},
σ̃′h := σ̃′h,1

τ̃h,0 := 0, τ̃h,i+1 := inf{t > τ̃h,i : Z̃t ≥ h},
τ̃h := τ̃h,1
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Ah,p :=

{
max

1≤t<∞
Ỹt ≤ h,#{1 ≤ t <∞ : Ỹt = h} = p

}
:= {σ̃h,p <∞ = σ̃h,p+1, Ỹσ̃h,i = h for i = 1, · · · , p}

A′h,p :=

{
max

1≤t<∞
Ỹ ′t ≤ h,#{1 ≤ t <∞ : Ỹ ′t = h} = p

}
:= {σ̃′h,p <∞ = σ̃′h,p+1, Ỹ

′
σ̃′h,i

= h for i = 1, · · · , p}

Bx,h,p :=

{
max
1≤t<x

Z̃t ≤ h,#{1 ≤ t < x : Z̃t = h} = p

}
:= {τ̃h,p < x ≤ τ̃h,p+1, Z̃τ̃h,i = h for i = 1, · · · , p}

Plainly speaking, σ̃h,i, σ̃
′
h,i and τ̃h,i are the ith hitting times of the interval [h,∞) by their

respective processes, and ω and ω′ are the extinction times of their respective processes.
Furthermore, Ah,p, A

′
h,p and Bx,h,p are the events that the respective processes hit exactly p

times its maximum level h either before extinction or, in Bx,h,p’s case, before time x.
With these events defined and the Ray-Knight representation established, we arrive at

the following expression for E(ux(4)) for any x:

E(ux(4)) =
∑

p+q+r=3

∞∑
h=1

∞∑
k=0

∞∑
`=0

P (Ah,p|Y0 = h− k − 1)

× π(k, h− k − 1)

× P (Bx,h,q, Zx−1 = `|Z0 = k)

× P (A′h,r|Y ′0 = `),

which then leads to an upper bound for the left-hand side of (8):

∞∑
x=1

E(ux(4)) ≤
∑

p+q+r=3

∞∑
h=1

∞∑
k=0

P (Ah,p|Y0 = h− k − 1)

× π(k, h− k − 1)

×

(
∞∑
x=1

P (Bx,h,q|Z0 = k)

)

×
(

sup
`≥0

P (A′h,r|Y ′0 = `)

)
(14)

We now introduce bounds to the values in the right-hand side of (14). The first set of
bounds comes in the form of a proposition, which shall be proven in the next section:

Proposition 3.1. For any ε > 0 there exists a finite constant C < ∞ such that for any
h ≥ 1 and k ≥ 0:
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1. For any p ≥ 0,
∞∑
x=1

P (Bx,h,p|Z0 = k) ≤ Ch (15)

2. If either k ∈ [(h− h1/2+ε)/2, h+ h1/2+ε)/2] or p ≥ 1 holds, then

P (Ah,p|Y0 = k) ≤ (Ch−1/2+ε)p+1 (16)
∞∑
x=1

P (Bx,h,p|Z0 = k) ≤ (Ch−1/2+ε)p+1h (17)

Next is a lemma on the sum of some extreme values of π(i, j). The proof of this lemma
will be postponed until Section 6. For organizational purposes, we will begin an alphabetical
ordering of the lemmas which will be proven in Section 6, starting with the following lemma.

Lemma A. For any ε > 0, there exist constants C, γ > 0 such that, for any h ≥ 1,∑
k:|h−2k|>h1/2+ε

π(k, h− 1− k) < C exp(−γh2ε).

Using Proposition 3.1 and Lemma A, we can bound the terms of the right-hand side of
(14) for each fixed h. To show this, first fix h, p, q, r and ε ∈ (0, 1

10
), then decompose the

right-hand side of (14) into two series, one for values of k such that |h − 2k| ≤ h1/2+ε and
the other for |h− 2k| > h1/2+ε. The bounds of each of these sums will be represented in the
following lines as a left term of a sum and a right term, respectively.

For the case in which r = 0, we have through Proposition 3.1 and Lemma A

∞∑
x=1

E(ux(4)) ≤
∞∑
h=1

(Ch−1/2+ε)p+q+2h+ (Ch)(C exp(−γh2ε))

≤
∞∑
h=1

C ′h−3/2+5ε <∞

for a large enough C ′ <∞. If r > 0, we have

∞∑
x=1

E(ux(4)) ≤
∞∑
h=1

(Ch−1/2+ε)p+q+r+3h+ (Ch)(C exp(−γh2ε))

≤
∞∑
h=1

C ′h−2+6ε <∞

for another large C ′ <∞. This shows (8), which then completes the proof of Theorem 1.1.

4 Proof of Proposition 3.1

To prove Proposition 3.1, we rely primarily on four main lemmas, whose proofs will be
reserved for Section 6 along with the proof of Lemma A. We shall continue the alphabetical
labeling of the lemmas. For all of the lemmas, fix ε > 0.

8



The first lemma shows that the jumps of the Markov chains Yt and Zt is unlikely to be
greater than h1/2+ε until the Markov chains reach h.

Lemma B. Define the maximal jumps of Yt and Zt:

Mh := sup{|Yt − Yt−1| : 1 ≤ t ≤ σh ∧ ω},
Nh := sup{|Zt − Zt−1| : 1 ≤ t ≤ τh}.

There exist two constants, C <∞ and γ > 0, such that for any h ≥ 1 and k ≥ 0, we have

P (Mh > h1/2+ε|Y0 = k) < C exp(−γh2ε),

P (Nh > h1/2+ε|Z0 = k) < C exp(−γh2ε).

The next lemma are bounds on the probabilities that Ỹt and Z̃t enter the interval [h,∞)
at exactly h.

Lemma C. There exists a constant C <∞ such that for any h ≥ 1 and k ≥ 0, we have

P (σ̃h <∞, Ỹσ̃h = h|Y0 = k) < Ch−1/2+ε

P (Z̃τ̃h = h|Z0 = k) < Ch−1/2+ε

Next is a bound on the probability that Ỹt does not enter [h,∞) before extinction, given
that Y0 is close to h/2.

Lemma D. There exists a constant C <∞ such that for any h ≥ 1 and k ∈
[
h−h1/2+ε

2
, h+h1/2+ε

2

]
,

P (σ̃h =∞|Y0 = k) < Ch−1/2+ε.

Finally, we give upper bounds to the expectation of the hitting times τ̃h.

Lemma E. There exists a constant C <∞ such that for any h ≥ 1 the following holds:

1. For any k,
E(τ̃h|Z0 = k) < Ch.

2. For k ∈
[
h−h1/2+ε

2
, h+h1/2+ε

2

]
,

E(τ̃h|Z0 = k) < Ch1/2+ε.

Proof of Proposition 3.1. Using the strong Markov property of Yt and Zt, we arrive at the
following recurrence relations for p ≥ 1:

P (Ah,p|Y0 = k) =
∞∑
`=0

P (σ̃h <∞, Yσ̃h−1 = h− `, Yσ̃h = `|Y0 = k)× P (Ah,p−1|Y0 = `),

∞∑
x=1

P (Bx,h,p|Z0 = k) =
∞∑
`=0

P (Zτ̃h−1 = h− `, Zτ̃h = `|Z0 = k)×

(
∞∑
x=1

P (Bx,h,p−1|Z0 = `)

)
.

(18)
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Note that
∞∑
x=1

P (Bx,h,0|Z0 = k) =
∞∑
x=1

P (τ̃h ≥ x|Z0 = k) = E(τ̃h|Z0 = k),

so we have the first part of the proposition when p = 0 by Lemma E.
Now consider the case p = 1. We divide the right-hand sides of (18) into two disjoint

sums: one such that ` ∈
[
h−h1/2+ε

2
, h+h1/2+ε

2

]
and for all other values of `. From Lemmas C

and D, we have for the first sum of the first series
∞∑

`:|h−2`|≤h1/2+ε
P (σ̃h <∞, Yσ̃h−1 = h−`, Yσ̃h = `|Y0 = k)×P (Ah,0|Y0 = `) ≤

(
Ch−1/2+ε

) (
Ch−1/2+ε

)
.

Also, from Lemma B, we have for the second sum
∞∑

`:|h−2`|>h1/2+ε
P (σ̃h <∞, Yσ̃h−1 = h− `, Yσ̃h = `|Y0 = k)× P (Ah,0|Y0 = `)

≤ P (Mh > h1/2+ε|Y0 = k) < C exp(−γh2ε)

As for the other relation, we obtain similar results using Lemmas B, C and E:

∞∑
`:|h−2`|≤h1/2+ε

P (Zτ̃h−1 = h−`, Zτ̃h = `|Z0 = k)×

(
∞∑
x=1

P (Bx,h,0|Z0 = `)

)
≤
(
Ch−1/2+ε

) (
Ch−1/2+ε

)
,

∞∑
`:|h−2`|>h1/2+ε

P (Zτ̃h−1 = h− `, Zτ̃h = `|Z0 = k)×

(
∞∑
x=1

P (Bx,h,0|Z0 = `)

)

≤ P (Nh > h1/2+ε|Z0 = k)

(
sup
`≥0

∞∑
x=1

P (Bx,h,0|Z0 = `)

)
< (C exp(−γh2ε))(Ch).

These inequalities yield the second part of the proposition for p = 1. The cases of p = 2, 3
follow directly from the p = 1 case and from the recurrence relations in (18).

5 Preliminary Results on π(i, j) and ρ(i, j)

Before we prove the lemmas introduced in Sections 3 and 4, we first need to establish some
preliminary facts about the transition kernels π(i, j) and ρ(i, j) introduced in (10) and (11)
respectively. For the simple random walk (λ = 1

2
), [19] and [23] showed that the variables

Yt and Zt followed a negative binomial distribution, which was used to great effect in [30].
While the distributions of Yt and Zt in the persistent case are related to negative binomial
distributions, there are enough differences to warrant a more meticulous kind of analysis.

The majority of the effort shown in this section will focus more on π(i, j), as a proof
of a result for π(i, j) will closely resemble that for ρ(i, j) with minor differences. However,
analogous results of both kernels will be seen.
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5.1 Expectation and variance

Observation 5.1. For each i ≥ 0 and t ≥ 1,

E(Yt|Yt−1 = i) = i, Var(Yt|Yt−1 = i) = 2
1− λ
λ

i (19)

E(Zt|Zt−1 = i) = i+ 1, Var(Zt|Zt−1 = i) = 2
1− λ
λ

(i+ 1) (20)

This is a trivial result, since both random variables are sums of i i.i.d. copies of the same
variable ζt,i with distribution given in (9). Still, we will make use of these calculations in the
next section.

5.2 Log-concavity

Here we explain the concept of logarithmic-concavity for sequences, which will be used to
justify the unimodality of the distributions π(i, ·) and ρ(i, ·).

Definition 5.2. A nonnegative sequence {ak}∞k=0 is log-concave if, for every k ≥ 1,

a2
k ≥ ak−1ak+1.

If {ak}∞k=0 is a positive sequence, then this is equivalent to the sequence of ratios {ak+1

ak
}∞k=0

being nonincreasing.

For more information on the concept of log-concave sequences, we refer to [4], [28] and
[32]. For now, we present this fact:

Theorem 5.3 (Corollary 3.3 in [32]). The convolution of two log-concave sequences is also
log-concave.

Given the distribution in (9), it is a straightforward exercise to show that {π(1, j)}∞j=0

and {ρ(1, j)}∞j=0 are both log-concave sequences. Thus, since {π(i, j)} is a convolution of
{π(i − 1, j)} and {π(1, j)} for each i > 1, {π(i, j)} is log-concave for any i ≥ 1 by math-
ematical induction. Similarly, {ρ(i, j)} is log-concave as well. The log-concavity feature of
these transition kernels ensures unimodality in the distribution, which is the next topic of
discussion.

5.3 Mode of π(i, j)

Since {π(i, j)} is unimodal, there exists k ≥ 0 such that for all j ≥ 0,

π(i, j) ≤ π(i, k). (21)

It is in our interests to find exactly which values this k could take for each fixed i and
λ. While the exact values could depend on λ, we have found that they do not stray very far
from the expectation of the random variable found in (19).

11



Theorem 5.4. Fix λ ∈
(

1
2
, 1
)

and i ≥ 1. Suppose there is an integer k such that (21) holds.
Then k ∈ {i− 1, i}.

Note that, by the log-concavity of {π(i, j)} and the resulting monotonicity of
{
π(i,j+1)
π(i,j)

}
,

we have the following corollary:

Corollary 5.5.

π(i, j − 1) ≤ π(i, j) if j ≤ i− 1,

π(i, j + 1) ≤ π(i, j) if j ≥ i.

Our proof of Theorem 5.4 will require a reinterpretation of π(i, j). First, allow us to
define the Gauss hypergeometric function as in [1]:

Definition 5.6. For each a, b and c, the Gauss hypergeometric function 2F1(a, b; c; z) is
the function mapping {z : |z| < 1} to C of the form

2F1(a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (m)n =
∏n−1

k=0(m+ k) is the Pochhammer symbol.

Define z :=
(

1−λ
λ

)2
, and observe that z ∈ (0, 1). Then the following representation can

be formulated for i ≥ 1 and j ≥ 0:

π(i, j) =

{ √
z
j−i

(1−
√
z)j+i

(
j−1
i−1

)
2F1(j + 1, j; 1 + j − i; z), i ≤ j

√
z
i−j

(1+
√
z)i+j

(
i
i−j

)
2F1(1− j,−j; 1 + i− j; z), i > j.

(22)

There are multiple ways of representing π(i, j) with hypergeometric functions, particu-
larly using the Euler transformation

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z).

For the purposes of this proof, we shall use the representation in (22). In particular, we
wish to observe the following instances of π(i, j):

π(i, i+ 1) = i(1−
√
z)2i(
√
z − z) 2F1 (i+ 2, i+ 1; 2; z) (23)

π(i, i) = (1−
√
z)2i

2F1 (i+ 1, i; 1; z) (24)

π(i, i− 1) = i

√
z

(1 +
√
z)2i−1 2F1 (2− i, 1− i; 2; z) (25)

π(i, i− 2) =
i(i− 1)

2

z(1 +
√
z)

(1 +
√
z)2i−1 2F1 (3− i, 2− i; 3; z) (26)

We recognize other transformations of the hypergeometric functions, in particular the fol-
lowing (incomplete) list of Gauss’ contiguous relations. A note on notation: F = 2F1(a, b; c; z),
F (a±) = 2F1(a± 1, b; c; z), and all other parameter changes use similar notation.

12



z
ab

c
F (a+, b+, c+) = a(F (a+)− F )

= b(F (b+)− F )

=
(c− b)F (b−) + (b− c+ az)F

1− z
=

z

c(1− z)
((c− a)(c− b)F (c+) + c(a+ b− c)F )

Using these contiguous relations, one can find the following equalities for every i ≥ 1:

2F1(i+ 2, i+ 1; 2; z) =
1− z

z(2i+ 1)
2F1(i+ 2, i+ 1, 1, z)− 1

z(2i+ 1)
2F1(i+ 1, i, 1, z) (27)

2F1(3− i, 2− i; 3; z) =
2

i(1 + z)− 2
2F1(2− i, 1− i; 2; z)

− (i− 1)(1− z) + (2i− 3)z2

(i− 1)(i(1 + z)− 2)
2F1(3− i, 2− i; 2; z)

(28)

Before moving on to the proof of Theorem 5.4, we need the following lemma:

Lemma 5.7.

1. For all i, c > 0,
2F1 (i+ 2, i+ 1; c; z)

2F1 (i+ 1, i; c; z)
≤ 1

(1−
√
z)2

, (29)

2. For all i ≥ 3 and c > 0,

2F1 (3− i, 2− i; c; z)

2F1 (2− i, 1− i; c; z)
≥ 1

(1 +
√
z)2

. (30)

Moreover, the left-hand side of each inequality converges to the right-hand side as i→∞.

Proof. The convergence to the right-hand side is a direct result of Theorem 2 of [14] on
the asymptotic estimates of the large-parameter Gauss hypergeometric functions seen as
solutions to given second-order recurrence relations, in particular on the (+ + 0) case. One
can check that the inequalities hold for i = 1, and the inequalities for i > 1 comes from the
monotonicity of the pointwise convergence.

With (23)-(30), we can now prove Theorem 5.4.

Proof of Theorem 5.4. Since the log-concavity of π(i, j) gives us that
{
π(i,j+1)
π(i,j)

}
is nonin-

creasing, it is enough to show that π(i,i−1)
π(i,i−2)

> 1 and π(i,i+1)
π(i,i)

< 1. Using (23), (24), (27) and

(29), we have the following:

13



π(i, i+ 1)

π(i, i)
= i(

√
z − z)

2F1 (i+ 2, i+ 1; 2; z)

2F1 (i+ 1, i; 1; z)

=
i

2i+ 1

(1− z)(
√
z − z)

z
2F1 (i+ 2, i+ 1; 1; z)

2F1 (i+ 1, i; 1; z)
− i

2i+ 1

√
z − z
z

≤ i

2i+ 1

(1− z)(
√
z − z)

z

1

(1−
√
z)2
− i

2i+ 1

√
z − z
z

=
i

2i+ 1

(
(1− z)(

√
z − z)− (

√
z − z)(1−

√
z)2

z(1−
√
z)2

)
=

i

2i+ 1

2(
√
z − z)2

z(1−
√
z)2

=
2i

2i+ 1
< 1.

Also with (25), (26), (28) and (30), we get

π(i, i− 2)

π(i, i− 1)
=

i− 1

2
(
√
z + z)

2F1 (3− i, 2− i; 3; z)

2F1 (2− i, 1− i; 2; z)

=
i− 1

i(1 + z)− 2
(
√
z + z)− (i− 1)(1− z) + (2i− 3)z2

2(i(1 + z)− 2)
(
√
z + z)

2F1 (3− i, 2− i; 2; z)

2F1 (2− i, 1− i; 2; z)

≤ i− 1

i(1 + z)− 2
(
√
z + z)− (i− 1)(1− z) + (2i− 3)z2

2(i(1 + z)− 2)
(
√
z + z)

1

(1 +
√
z)2

=
2(i− 1)(

√
z + z)(1 +

√
z)− ((i− 1)(1− z) + (2i− 3)z2)

√
z

2(i(1 + z)− 2)(1 +
√
z)

= 1− (2i− 4)(1− z) + (i− 3)
√
z(1− z) + (2i− 3)z5/2

2(i(1 + z)− 2)(1 +
√
z)

< 1.

We get a similar result as Theorem 5.4 for ρ(i, j), although we must account for the
generational intruder particle of the Galton-Watson process Zt.

Theorem 5.8. Fix λ ∈
(

1
2
, 1
)

and i ≥ 1. Suppose there is an integer k such that ρ(i, j) ≤
ρ(i, k) for all j ≥ 0. Then k ∈ {i, i+ 1}.

5.4 Upper bound for π(i,j−1)
π(i,j) for i < j

While Theorem 5.4 provides a lower bound for π(i,j−1)
π(i,j)

when i < j, we now seek an upper
bound for the ratio. To achieve this, we continue our analysis of hypergeometric functions,
but now in the context of an existing result in the statistical study of contingency tables.
We define the noncentral hypergeometric distribution Hyper(M1,M2, N1, N2, θ) with the fol-
lowing formula for max(0,M1 −N2) ≤ x ≤ min(N1,M1):
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P (X = x) =

(
N1

x

)(
N2

M1−x

)
θx∑min(N1,M1)

u=max(0,M1−N2)

(
N1

u

)(
N2

M1−u

)
θu
,

where X ∼ Hyper(M1,M2, N1, N2, θ). While the noncentral hypergeometric distribution has
no direct application in our model, we utilize an upper bound for its expectation given in
line (5.2) in [21]:

E(X) ≤
−c+

√
c2 + 4θ(1− θ)i(i− 1)

2(1− θ)
, (31)

where c := N1 + N2 − (N1 + M1)(1 − θ). Using this inequality, we have the following
lemma:

Lemma 5.9. Let i < j. Let X ∼ Hyper(M1 = i− 1,M2 = j,N1 = i, N2 = j− 1, θ =
(

1−λ
λ

)
).

Then E(X) < (1− λ)(j − 1).

Proof. By (31), E(X) ≤ −c+
√
c2+4θ(1−θ)i(i−1)

2(1−θ) , where c = i+ j− 1− (2i− 1)(1− θ). Note that

c > (2i− 1)θ, i− 1 < 2(1− λ)(i− 1/2) + (2λ− 1)(j − 1) and i ≤ j − 1 So

θi(i− 1) < θ(j − 1)((1− λ)(2i− 1) + (2λ− 1)(j − 1))

= (1− λ)(j − 1)(2i− 1)θ + (1− λ)2 2λ− 1

λ2
(j − 1)2

< (1− λ)(j − 1)c+ (1− θ)(1− λ)2(j − 1)2

Thus, c2 + 4θ(1− θ)i(i− 1) < c2 + 4(1− θ)(1− λ)(j − 1)c+ 4(1− θ)2(1− λ)2(j − 1)2 =

(c+ 2(1− θ)(1− λ)(j − 1))2. Therefore, E(X) ≤ −c+
√
c2+4θ(1−θ)i(i−1)

2(1−θ) < (1− λ)(j − 1).

We use this lemma to get an upper bound for π(i,j−1)
π(i,j)

when i < j.

Lemma 5.10. π(i,j−1)
π(i,j)

< 1
1−λ

j−i
j−1

+ 1 for all i < j.

Proof.

π(i, j − 1)

π(i, j)
=

∑i−1
k=0

(
i
k

)
(1− λ)k

(
j−2
i−k−1

)
λ2(i−k)(1− λ)j−1−(i−k)∑i−1

k=0

(
i
k

)
(1− λ)k

(
j−1
i−k−1

)
λ2(i−k)(1− λ)j−(i−k)

=
1

1− λ

∑(
i
h

)(
j−1
i−k−1

) (
j−i+k
j−1

) (
1−λ
λ

)2k∑(
i
h

)(
j−1
i−k−1

) (
1−λ
λ

)2k

=
1

1− λ
j − i
j − 1

+
1

1− λ
1

j − 1

∑
k
(
i
k

)(
j−1
i−k−1

) (
1−λ
λ

)2k∑(
i
k

)(
j−1
i−k−1

) (
1−λ
λ

)2k

=
1

1− λ
j − i
j − 1

+
1

1− λ
1

j − 1
E(X)

<
1

1− λ
j − i
j − 1

+ 1,

where X ∼ Hyper(M1 = i − 1,M2 = j,N1 = i, N2 = j − 1, θ =
(

1−λ
λ

)
). The last inequality

above comes from Lemma 14.
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6 Proof of Lemmas

We now go on to prove Lemmas A-E, which will complete the proof of Theorem 1.1 through
Proposition 3.1.

6.1 Lemma A

Proof of Lemma A. Assume that h ≥ 2 and k ≥ 1, and let n = h − 2 and ` = k − 1. Note
that π(k, h− 1− k) can be interpreted as the probability that the walk leaves an arbitrary
site k times to the left before visiting it a total of h times, given that the site’s hth visit
from the walk came from the left side. For each m ∈ N, define Km to be the number of
downcrossings from the site given m visits to the site. We can write Km =

∑m
t=1 Jt such

that for each t, Jt = 1 if the tth visit to the site is immediately followed by a downcrossing
and Jt = 0 otherwise. For the persistent walk, it is clear that {Jt}∞t=1 is a Markov chain
on the state space {0, 1} with P (Jt = 0|Jt−1 = 0) = P (Jt = 1|Jt−1 = 1) = 1 − λ and
P (Jt = 0|Jt−1 = 1) = P (Jt = 1|Jt−1 = 0) = λ. It can also be shown easily that the {Jt}∞t=1

is stationary with uniform stationary distribution µ ≡ 1
2
.

Using this new notation, we have the following:

π(k, h− 1− k) = P (Kn+1 = k|Jn+1 = 1) = P (Kn = `) .

Thus, ∑
k:|h−2k|>h1/2+ε

π(k, h− 1− k) = P
(
|n− 2Kn| > (n+ 2)1/2+ε

)
. (32)

We now seek for an upper bound for the right-hand side of (32). To accomplish this, we
use a functional central limit theorem for Markov chains from [17]. Let f : {0, 1} → R be
defined as f(x) = x. Then Eµf :=

∫
{0,1} f(x)µ(dx) = 1

2
and Eµf

2 = 1
2
< ∞. Also, since

{Jt}∞t=1 is a finite Markov chain, it is uniformly ergodic. Thus, by Theorem 9 in [17], we get
the following weak convergence as m→∞:

√
m

(
1

m

m∑
t=1

Jt − Eµf

)
=
Km − m

2√
m

⇒ N(0, σ2
f ),

where N(0, σ2
f ) is a normal distribution with mean 0 and variance σ2

f > 0. Using this central

limit theorem, we can show that, for any γ < 1/2, E
(
exp{γ (2Km −m)2 /m}

)
converges as

m→∞. Hence,
sup
m
E
(
exp{γ (2Km −m)2 /m}

)
<∞.

Using (32) and Markov’s inequality, we finally arrive at our result.

6.2 Overshooting Lemma

Before proving the remaining four lemmas, we first want to establish a rather important
result in the study of favorite sites of the simple walk for the case of the persistent walk.
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It was shown in [30] that the probabilities of the Markov chains Yt and Zt going past a
threshold point by a given amount, conditioned on the processes reaching the threshold for
the first time at this instant, is comparable to the probability that the Markov chain achieves
the same amount of overshoot conditioned on the threshold being reached on the very first
step. This allows one to find simple asymptotic bounds for the conditional moments of Yt
and Zt, essential for the application of optional stopping theorems in the proofs ahead.

Here, we obtain the analogous result for the persistent case.

Lemma 6.1 (Overshooting Lemma). For any 0 ≤ k < h ≤ u the following overshoot bounds
hold:

P (Yσh ≥ u|Y0 = k, σh <∞) ≤ P (Y1 ≥ u|Y0 = h, Y1 ≥ h) =

∑∞
v=u π(h, v)∑∞
w=h π(h,w)

P (Zτh ≥ u|Z0 = k) ≤ P (Z1 ≥ u|Z0 = h, Z1 ≥ h) =

∑∞
v=u ρ(h, v)∑∞
w=h ρ(h,w)

Proof. For 1 ≤ h ≤ u,

P (Yσh ≥ u|Y0 = k, σh <∞) =
h−1∑
l=0

P (Yσh−1 = l|Y0 = k, σh <∞)

∑∞
v=u π(l, v)∑∞
w=h π(l, w)

,

P (Zτh ≥ u|Z0 = k) =
h−1∑
l=0

P (Zτh−1 = l|Z0 = k)

∑∞
v=u ρ(l, v)∑∞
w=h ρ(l, w)

.

Note that if the ratios of the right-hand side are bounded above by the case in which l = h,
we’d get our desired inequalities, since the probabilities of the right-hand side partition their
respective conditioned event. It is then enough to show that the ratios on the right-hand
side are increasing in l.

Observe the following relations for π(l, v):

π(l, v)π(l + 1, v + 1)− π(l + 1, v)π(l, v + 1) = π(l, v) · (π(1, ·) ∗ π(l, ·))(v + 1)

− π(l, v + 1) · (π(1, ·) ∗ π(l, ·))(v)

= (1− λ)π(l, v)π(l, v + 1) +
v+1∑
j=1

λ2(1− λ)j−1π(l, v + 1− j)π(l, v)

− (1− λ)π(l, v)π(l, v + 1)−
v∑
j=1

λ2(1− λ)j−1π(l, v − j)π(l, v + 1)

= λ2(1− λ)vπ(l, 0)π(l, v)

+
v∑
j=1

λ2(1− λ)j−1(π(l, v + 1− j)π(l, v)− π(l, v − j)π(l, v + 1))

The terms in the sum of the last line are nonnegative, by the log-concavity of π(l, ·).
Thus, π(l+1,v)

π(l,v)
≤ π(l+1,v+1)

π(l,v+1)
. Similarly, ρ(l+1,v)

ρ(l,v)
≤ ρ(l+1,v+1)

ρ(l,v+1)
.

So, for all v < w,
π(l, v)π(l + 1, w) ≥ π(l + 1, v)π(l, w)
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ρ(l, v)ρ(l + 1, w) ≥ ρ(l + 1, v)ρ(l, w)

Hence, for all 0 ≤ l < h ≤ u,

∞∑
v=h

π(l, v)
∞∑
w=u

π(l + 1, w) ≥
∞∑
v=h

π(l + 1, v)
∞∑
w=u

π(l, w),

∞∑
v=h

ρ(l, v)
∞∑
w=u

ρ(l + 1, w) ≥
∞∑
v=h

ρ(l + 1, v)
∞∑
w=u

ρ(l, w).

Thus,

{∑∞
w=u π(l, w)∑∞
v=h π(l, v)

}h
l=0

is an increasing sequence, and so is

{∑∞
w=u ρ(l, w)∑∞
v=h ρ(l, v)

}h
l=0

. This

completes the proof.

Using the Overshooting Lemma, we obtain the following set of inequalities:

Corollary 6.2. There exist constants C1, C2, C3 and C4 such that for any 0 ≤ k < h,

E (Yσh|Y0 = k, σh <∞) ≤
∑∞

v=h π(h, v)v∑∞
w=h π(h,w)

≤ h+ C1h
1/2 (33)

E
(
Y 2
σh
|Y0 = k, σh <∞

)
≤

∑∞
v=h π(h, v)v2∑∞
w=h π(h,w)

≤ h2 + C2h
3/2 (34)

E (Zτh|Z0 = k) ≤
∑∞

v=h ρ(h, v)v∑∞
w=h ρ(h,w)

≤ h+ C3h
1/2 (35)

E
(
Z2
τh
|Z0 = k

)
≤

∑∞
v=h ρ(h, v)v2∑∞
w=h ρ(h,w)

≤ h2 + C4h
3/2 (36)

6.3 Lemma B

To begin the proof of Lemma B, we start with an application of Corollary 6.2.

Sublemma 6.3. There exists a constant C <∞ such that for any h ≥ 1 and k ≥ 0,

E(σh ∧ ω|Y0 = k) < Ch2.

Proof. Let Ft be the sigma algebra generated by the set {Ys}ts=0. Then

E

(
Y 2
t+1 − 2

1− λ
λ

t∑
s=0

Ys −

[
Y 2
t − 2

1− λ
λ

t−1∑
s=0

Ys

] ∣∣∣∣∣ Ft
)

= V ar(Yt+1|Ft)− 2
1− λ
λ

Yt = 0,

since V ar(ζt+1,i) = 21−λ
λ

for any i. So Y 2
t − 21−λ

λ

∑t−1
s=0 Ys is a martingale. Thus, by the

Optional Stopping Theorem, using stopping time σh ∧ ω, we have

k2 = E

(
Y 2
σh∧ω − 2

1− λ
λ

σh∧ω−1∑
s=0

Y

∣∣∣∣∣Y0 = k

)
≤ E(Y 2

σh
|Y0 = k)− 2E(σh ∧ ω|Y0 = k),

since Ys ≥ 1 for s < ω w.p.1. Therefore,

2E(σh ∧ ω|Y0 = k) ≤ E(Y 2
σh
|Y0 = k, σh <∞)P (σh <∞|Y0 = k)− k2 < C2h

2,

by (34) of Corollary 6.2. This completes the proof.
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We state the following inequality on the tail probabilities of sums of i.i.d. random vari-
ables, which is proven in [34].

Sublemma 6.4 (Exponential Kolmogorov Inequality). Let ξj, j ≥ 1, be i.i.d. random
variables with E

(
eθ|ξj |

)
< ∞ for some θ > 0 and E(ξj) = 0. Then for any N > 0 and

n ∈ N,

P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

ξj

∣∣∣∣∣ > N

)
≤ e−θN

(
E
(
eθξj
)n

+ E
(
e−θξj

)n)
Let ξj = ζj − 1, where P (ζj = x) =

{
1− λ if x = 0
λ2(1− λ)x−1 if x ≥ 1

. Then, for any t,

E(etξ1) = (1− λ)e−t +
λ2

1− (1− λ)et

=
(1− λ)e−t − 1 + 2λ

1− (1− λ)et

=
2e−t − e−2t − 2(1− λ) + (1− λ)e−t + e−2t − 2e−t + 1

1− (1− λ)et

= 2e−t − e−2t +
e−2t − 2e−t + 1

1− (1− λ)et
.

Note that for fixed t, the formula in the final line decreases with an increase in λ, so for
λ ∈ [1

2
, 1), E(etζ1) is maximized at λ = 1

2
, which is the simple walk case. So, by [30], assuming

that λ ∈
[

1
2
, 1
)
, there is a constant θ0 > 0 such that for all θ ∈ [0, θ0), E(eθξ1) < e2θ2 and

E(e−θξ1) < e2θ2 . Using the Exponential Kolmogorov Inequality and choosing θ = N/(4n),
we obtain the following:

Sublemma 6.5. There is a constant such that for any N > 0 and n ∈ N satisfying N/(4n) <
θ0,

P

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

(ζi − 1)

∣∣∣∣∣ > N

)
≤ 2 exp(−N2/(8n)).

Proof of Lemma B. We prove the first inequality here in detail. The proof of the second
inequality is similar and is left for the reader. Choose 0 < γ < 1

16
.

P (Mh > h1/2+ε|Y0 = k) ≤P (Mh > h1/2+ε, σh ∧ ω ≤ h2 exp(γh2ε)|Y0 = k)

+ P (σh ∧ ω > h2 exp(γh2ε)|Y0 = k)

For the first term on the right-hand side, we represent the Markov chain Yt as the sum
of i.i.d. random variables,

Yt+1 =
Yt∑
j=1

ζt+1,j,
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in order to obtain the following:

P (Mh > h1/2+ε, σh ∧ ω ≤ h2 exp(γh2ε)

≤ P

(
max

{
max
1≤j≤h

∣∣∣∣∣
j∑
i=1

(ζt,i − 1)

∣∣∣∣∣ : 1 ≤ t ≤ h2 exp(γh2ε)

}
> h1/2+ε

)

= 1−

(
1− P

(
max
1≤j≤h

∣∣∣∣∣
j∑
i=1

(ζt,i − 1)

∣∣∣∣∣ > h1/2+ε

))h2 exp(γh2ε)

≤ h2 exp(γh2ε)P

(
max
1≤j≤h

∣∣∣∣∣
j∑
i=1

(ζt,i − 1)

∣∣∣∣∣ > h1/2+ε

)
.

Note that the last inequality above comes from the analytical fact that 1−na ≤ (1−a)n

for 0 ≤ a ≤ 1 and n > 1. From Sublemma 6.5, we get

P

(
max
1≤j≤h

∣∣∣∣∣
j∑
i=1

(ζt,i − 1)

∣∣∣∣∣ > h1/2+ε

)
≤ 2 exp(−h2ε/8).

Hence, with γ < 1
16

, there is a constant C > 0 such that

P (Mh > h1/2+ε, σh ∧ ω ≤ h2 exp(γh2ε) ≤ 2h2 exp

((
γ − 1

8

)
h2ε

)
≤ C exp(−γh2ε).

For the second term, we have from Sublemma 6.3 that there is a constant C such that

E(σh ∧ ω)|Y0 = k) ≤ Ch2.

We get the following inequality after applying Markov’s inequality:

P (σh ∧ ω > h2 exp(γh2ε)|Y0 = k) ≤ C exp(−γh2ε).

Since both terms are bounded above by scalar multiples of exp(−γh2ε), the result follows.

6.4 Lemma C

In order to prove Lemma C, we need the following sublemma:

Sublemma 6.6. There exists a constant C s.t. for any h ≥ 1 and ` ∈
[
h−h1/2+ε

2
, h+h1/2+ε

2

]
,

π(`, h− `)∑
m≥h−` π(`,m)

< Ch−1/2+ε

Proof. We make use of the inequalities found in Corollary 5.5. We shall split this proof

into two cases. First, assume ` ∈
[
h
2
, h+h1/2+ε

2

]
. Then ` > h − `. Let {ζk}`k=1 be a set of

20



i.i.d. random variables with the same distribution as in (9). Recall that E(ζk) = 1 and
Var(ζk) = 21−λ

λ
. Let σ2 = Var(X), and let Φ be the standard normal cdf. Then

π(`, h− `) ≤ π(`, `− 1) = P

(∑̀
k=1

ζk = `− 1

)

= lim
t→1−

P

(∑̀
k=1

ζk ≤ `− 1

)
− P

(∑̀
k=1

ζk ≤ `− t

)

= lim
t→1−

P

(∑`
k=1(ζk − 1)√

`σ
≤ − 1√

`

)
− P

(∑`
k=1(ζk − 1)√

`σ
≤ − t√

`

)

≤ lim
t→1−

Φ

(
− 1√

`σ

)
− Φ

(
− t√

`σ

)
+
C1√
`

=
C1√
`
.

The last inequality above comes from the Berry-Esseen inequality. By the central limit
theorem applied to {ζk}∞k=1, lim`→∞

∑
m≥` π(`,m) = 1

2
. So there is a constant C2 > 0 s.t.∑

m≥h−`

π(`,m) ≥
∑
m≥`

π(`,m) ≥ C2.

By these inequalities, we have our result for ` ∈
[
h
2
, h+h1/2+ε

2

]
.

We now continue with the ` ∈
[
h−h1/2+ε

2
, h

2

]
case for the proof of the lemma. Note that

` < h − `. Let k = bh − ` + h1/2−εc. Then we get the following inequalities, which will be
described in more detail below:

π(`, h− `)∑
m≥h−` π(`,m)

≤ (k − h+ `+ 1)−1π(`, h− `)
π(`, k)

≤ (k − h+ `+ 1)−1

(
π(`, k − 1)

π(`, k)

)k−h+`

< (k − h+ `+ 1)−1

(
1 +

1

1− λ
k − `
k − 1

)k−h+`

≤ h−1/2+ε

(
1 +

1

1− λ
h1/2+ε + h1/2−ε

h/2 + h1/2−ε − 1

)h1/2−ε
≤ h−1/2+ε

(
1 +

2

1− λ
h−1/2+ε

)h1/2−ε
≤ exp

(
2

1− λ

)
h−1/2+ε.

The first inequality comes from Corollary 5.5. The second comes from the log-concavity
of {π(`, j)}. The third is Lemma 5.10. The fourth used k ≤ h − ` + h1/2−ε and ` ≥
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(h − h1/2+ε)/2. The fifth is due to the convergence of the base of the exponent above, as
well as the monotonicity of that convergence. The final inequality relies on the exponential
convergence of the power, as well as the monotonicity of that convergence.

Proof of Lemma C. We provide details of the proof of the first inequality and leave the
similar details of the second inequality for the reader. First, observe that

P (σ̃h <∞, Ỹσ̃h = h|Y0 = k)

=
∞∑
`=0

P (σ̃h <∞, Yσ̃h−1 = `, Yσ̃h = h− `|Y0 = k)

We split the infinite sum above into two sums, one for values of ` inside the interval[
h−h1/2+ε

2
, h+h1/2+ε

2

]
and the other for values of ` outside the interval. For the first sum,

we use Sublemma 6.6 to obtain

∑
`:|h−2`|≤h1/2+ε

P (σ̃h <∞, Yσ̃h−1 = `, Yσ̃h = h− `|Y0 = k)

=
∑

`:|h−2`|≤h1/2+ε
P (σ̃h <∞, Yσ̃h−1 = `|Y0 = k)

π(`, h− `)∑∞
m=h−` π(`,m)

≤ Ch−1/2+ε.

For the second sum, we use Lemma B to obtain∑
`:|h−2`|>h1/2+ε

P (σ̃h <∞, Yσ̃h−1 = `, Yσ̃h = h− `|Y0 = k)

P (Mh > h1/2+ε|Y0 = k) < C exp(−γh2ε).

Therefore, we arrive at the result.

6.5 Lemma D

For Lemma D, we require the following sublemma based on Corollary 6.2:

Sublemma 6.7. There exists a constant C <∞ such that for any 0 ≤ k < h,

P (σh =∞|Y0 = k) <
h− k
h

+ Ch−1/2.

Proof. Let Ft be the sigma algebra generated by the set {Ys}ts=0. Then

E(Yt+1|Ft) = E(Yt+1|Yt) = 1 · Yt,

since E(ζt+1,i) = 1 for any i. So Yt is a martingale. Thus, by the Optional Stopping Theorem,
using stopping time σh ∧ ω, we have

k = E(Yσh∧ω|Y0 = k) = E(Yσh|Y0 = k, σh <∞)P (σh <∞|Y0 = k) ≤ (h+C1h
1/2)P (σh <∞|Y−0 = k),

by (33) of Corollary 6.2. This completes the proof.
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Proof of Lemma D. Note that by Sublemma 6.7 and Lemma B, we get for two constants C1,
C2,

P (σ̃h =∞|Y0 = k) ≤P (σ̃h =∞,Mh ≤ h1/2+ε|Y0 = k) + P (Mh > h1/2+ε|Y0 = k)

≤ P (σ(h+h1/2+ε)/2 =∞|Y0 = k) + P (Mh > h1/2+ε|Y0 = k)

≤ C1h
−1/2 + C2 exp(−γh2ε)

for values of k ∈
[
h−h1/2+ε

2
, h+h1/2+ε

2

]
.

6.6 Lemma E

In order to prove Lemma E, we first need upper bounds for the moments of τh.

Sublemma 6.8. There exists a constant C <∞ such that for any 0 ≤ k < h,

E(τh|Z0 = k) < (h− k) + Ch1/2.

Proof. Let Gt be the sigma algebra generated by the set {Zs}ts=0. Then

E(Zt+1 − (t+ 1)|Gt) = E(Zt+1|Zt)− (t+ 1) = Zt − t,
since E(ζ∗t+1,i) = 1 for any i. So Zt − t is a martingale. Thus, by the Optional Stopping
Theorem, using stopping time τh, we have

E(τh|Z0 = k) = E(Zτh|Z0 = k)− k ≤ h− k + C3h
1/2,

by (35) of Corollary 6.2. This completes the proof.

Sublemma 6.9. There exists a constant C <∞ such that for any 0 ≤ k < h,

E(τ 2
h |Z0 = k) < Ch2.

Proof. Let Gt be the sigma algebra generated by the set {Zs}ts=0. Then

E((t+1)2−2(t+1)Zt+1|Gt) = (t+1)2−2(t+1)−2tZt−2Zt = t2−2tZt+(1−2Zt) ≤ t2−2tZt,

since Zt ≥ 1 for any t. So t2 − 2tZt is a supermartingale. Thus, by the Optional Stopping
Theorem, using stopping time τh, as well as the Cauchy-Schwarz Inequality, we have

E(τ 2
h |Z0 = k) ≤ 2E(τhZτh|Z0 = k) ≤ 2

√
E(τ 2

h |Z0 = k)
√
E(Z2

τh
|Z0 = k).

Therefore, by (36) of Corollary 6.2,

E(τ 2
h |Z0 = k) ≤ 4E(Z2

τh
|Z0 = k) ≤ 4C4h

2.

Proof of Lemma E.

E(τ̃h|Z0 = k) = E(τ̃hI(Nh≤h1/2+ε)|Z0 = k) + E(τ̃hI(Nh>h1/2+ε)
|Z0 = k).

Note that τ̃hI(Nh≤h1/2+ε) ≤ τ(h+h1/2+ε)/2 and τ̃h ≤ τh w.p.1. Thus, with the Cauchy-Schwarz
Inequality, we get

E(τ̃h|Z0 = k) ≤ E(τ(h+h1/2+ε)/2|Z0 = k) +
√
E(τ 2

h |Z0 = k)
√
P (Nh > h1/2+ε|Z0 = k).

Through Lemma B and Sublemmas 6.8 and 6.9, we arrive at the result.
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7 Future Work

In [5], it was shown that for the simple random walk, the typical favorite site is transient.
This immediately implied that f(1) = f(2) = ∞ almost surely, for f(r) defined in (2), and
the fact was also used to prove that f(3) = ∞ almost surely as well in [9]. The transience
of the favorite sites is a property we would also desire for the persistent random walk,
particularly in examining the cases of f(r) for r = 2, 3. We conjecture that the favorite
sites of the persistent walk exhibit the same transience, based on our observations on the
distribution of local times. However, this conjecture does not easily extend from the simple
walk case in [5], as the result relies on the strong invariance principle of the local times
between simple walks and Brownian motion. As no such strong invariance exists for the
local times of directionally-reinforced random walks, a different approach is necessary for
the case of the persistent walk.
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