problem exactly in one pass; instead, solve it approximately, then iterate. Multigrid methods,
perhaps the most important development in numerical computation in the past twenty years,
are based on a recursive application of this idea.

Even direct algorithms have been affected by the new manner of computing. Thanks to the
work of Skeel and others, it has been noticed that the expense of making a direct method
stable—say, of pivoting in Gaussian elimination—may in certain contexts be cost-ineffective.
Instead, skip that step—solve the problem directly but unstably, then do one or two steps of
iterative refinement. “Exact” Gaussian elimination becomes just another preconditioner!

Other problems besides Az = b have undergone analogous changes, and the famous example
is linear programming. Linear programming problems are mathematically finite, and for
decades, people solved them by a finite algorithm: the simplex method. Then Karmarkar
announced in 1984 that iterative, infinite algorithms are sometimes better. The result has
been controversy, intellectual excitement, and a perceptible shift of the entire field of linear
programming away from the rather anomalous position it has traditionally occupied towards
the mainstream of numerical computation.

I believe that the existence of finite algorithms for certain problems, together with other
historical forces, has distracted us for decades from a balanced view of numerical analysis.
Rounding errors and instability are important, and numerical analysts will always be the
experts in these subjects and at pains to ensure that the unwary are not tripped up by
them. But our central mission is to compute quantities that are typically uncomputable,
from an analytical point of view, and to do it with lightning speed. For guidance to the
future we should study not Gaussian elimination and its beguiling stability properties, but the
diabolically fast conjugate gradient iteration—or Greengard and Rokhlin’s O(N) multipole
algorithm for particle simulations—or the exponential convergence of spectral methods for
solving certain PDEs—or the convergence in O(1) iteration achieved by multigrid methods
for many kinds of problems—or even Borwein and Borwein’s magical AGM iteration for
determining 1,000,000 digits of 7 in the blink of an eye. That is the heart of numerical
analysis.

Notes

Many people, too numerous to name, provided comments on drafts of this essay. Their
suggestions led me to many publications that I would otherwise not have found.

I do not claim that any of the ideas expressed here are entirely new. In fact, 30 years ago, in
his Elements of Numerical Analysis, Peter Henrici defined numerical analysis as “the theory of
constructive methods in mathematical analysis.” Others have expressed similar views; Joseph
Traub (Communications of the ACM, 1972), for example, defined numerical analysis as “the
analysis of continuous algorithms.” For that matter, both the Random House and the Oxford
English dictionaries offer better definitions than the three quoted here.

And should the field be called “numerical analysis,” “scientific computing,” or something else
entirely? (“mathematical engineering?”). That is another essay.

Ten years ago, I would have stopped at this point. But the evolution of computing in the
past decade has given the difference between (D1) and (D2) a new topicality.

Let us return to Az = b. Much of numerical computation depends on linear algebra, and this
highly developed subject has been the core of numerical analysis since the beginning. Nu-
merical linear algebra served as the subject with respect to which the now standard concepts
of stability, conditioning, and backward error analysis were defined and sharpened, and the
central figure in these developments, from the 1950s to his death in 1986, was Jim Wilkinson.

I have mentioned that Az = b has the unusual feature that it can be solved in a finite
sequence of operations. In fact, Az = b is more unusual than that, for the standard algorithm
for solving it, Gaussian elimination, turns out to have extraordinarily complicated stability
properties. Von Neumann wrote 180 pages of mathematics on this topic; Turing wrote one of
his major papers; Wilkinson developed a theory that grew into two books and a career. Yet
the fact remains that for certain n x n matrices, Gaussian elimination with partial pivoting
amplifies rounding errors by a factor of order 2", making it a useless algorithm in the worst
case. It seems that Gaussian elimination works in practice because the set of matrices with
such behavior is vanishingly small, but to this day, nobody has a convincing explanation of
why this should be so.

In manifold ways, then, Gaussian elimination is atypical. Few numerical algorithms have
such subtle stability properties, and certainly no other was scrutinized in such depth by von
Neumann, Turing, and Wilkinson. The effect? Gaussian elimination, which should have been
a sideshow, lingered in the spotlight while our field was young and grew into the canonical
algorithm of numerical analysis. Gaussian elimination set the agenda, Wilkinson set the tone,
and the distressing result has been (D1).

Of course there is more than this to the history of how (D1) acquired currency. In the early
years of computers, it was inevitable that arithmetic issues would receive concerted atten-
tion. Fixed-point computation required careful thought and novel hardware; floating-point
computation arrived as a second revolution a few years later. Until these matters were well
understood it was natural that arithmetic issues should be a central topic of numerical anal-
ysis, and, besides this, another force was at work. There is a general principle of computing
that seems to have no name: the faster the computer, the more important the speed of algo-
rithms. In the early years, with the early computers, the dangers of instability were nearly
as great as they are today, and far less familiar. The gaps between fast and slow algorithms,
however, were narrower.

A development has occurred in recent years that reflects how far we have come from that
time. Instances have been accumulating in which, even though a finite algorithm exists for
a problem, an infinite algorithm may be better. The distinction that seems absolute from a
logical point of view turns out to have little importance in practice—and in fact, Abel and
Galois notwithstanding, large-scale matrix eigenvalue problems are about as easy to solve in
practice as linear systems of equations. For Az = b, iterative methods are becoming more
and more often the methods of choice as computers grow faster, matrices grow larger and less
sparse (because of the advance from 2D to 3D simulations), and the O(N?) operation counts
of the usual direct (= finite) algorithms become ever more painful. The name of the new
game is uteration with preconditioning. Increasingly often it is not optimal to try to solve a

4

for solving a linear system of equations Az = b. To understand Gaussian elimination, you have
to understand computer science issues such as operation counts and machine architectures,
and you have to understand the propagation of rounding errors—stability. That’s all you
have to understand, and if somebody claims that (D2) is just a more polite restatement of
(D1), you can’t prove him or her wrong with the example of Gaussian elimination.

But most problems of continuous mathematics cannot be solved by finite algorithms! Unlike
Az = b, and unlike the discrete problems of computer science, most of the problems of numer-
ical analysis could not be solved exactly even if we could work in exact arithmetic. Numerical
analysts know this, and mention it along with a few words about Abel and Galois when they
teach algorithms for computing matrix eigenvalues. Too often they forget to mention that
the same conclusion extends to virtually any problem with a nonlinear term or a derivative
in it—=zerofinding, quadrature, differential equations, integral equations, optimization, you
name it.

FEven if rounding errors vanished, numerical analysis would remain. Approximating mere
numbers, the task of floating-point arithmetic, is indeed a rather small topic and maybe even
a tedious one. The deeper business of numerical analysis is approximating unknowns, not
knowns. Rapid convergence of approximations is the aim, and the pride of our field is that,
for many problems, we have invented algorithms that converge exceedingly fast.

These points are sometimes overlooked by enthusiasts of symbolic computing, especially recent
converts, who are apt to think that the existence of Maple or Mathematica renders Matlab
and Fortran obsolete. It is true that rounding errors can be made to vanish in the sense that in
principle, any finite sequence of algebraic operations can be represented exactly on a computer
by means of appropriate symbolic operations. Unless the problem being solved is a finite
one, however, this only defers the inevitable approximations to the end of the calculation, by
which point the quantities one is working with may have become extraordinarily cumbersome.
Floating-point arithmetic is a name for numerical analysts’ habit of doing their pruning at
every step along the way of a calculation rather than in a single act at the end. Whichever
way one proceeds, in floating-point or symbolically, the main problem of finding a rapidly
convergent algorithm is the same.

In summary, it is a corollary of (D2) that numerical analysis is concerned with rounding errors
and also with the deeper kinds of errors associated with convergence of approximations, which
go by various names (truncation, discretization, iteration). Of course one could choose to make
(D2) more explicit by adding words to describe these approximations and errors. But once
words begin to be added it is hard to know where to stop, for (D2) also fails to mention
some other important matters: that these algorithms are implemented on computers, whose
architecture may be an important part of the problem; that reliability and efficiency are
paramount goals; that some numerical analysts write programs and others prove theorems;
and most important, that all of this work is applied, applied daily and successfully to thousands
of applications on millions of computers around the world. “The problems of continuous
mathematics” are the problems that science and engineering are built upon; without numerical
methods, science and engineering as practiced today would come quickly to a halt. They are
also the problems that preoccupied most mathematicians from the time of Newton to the
twentieth century. As much as any pure mathematicians, numerical analysts are the heirs
to the great tradition of Euler, Lagrange, Gauss and the rest. If Euler were alive today, he
wouldn’t be proving existence theorems.

Webster’s New Collegiate Dictionary (1973): “The study of quantitative approxi-
mations to the solutions of mathematical problems including consideration of the
errors and bounds to the errors involved.”

Chambers 20th Century Dictionary (1983): “The study of methods of approximation
and their accuracy, etc.”

The American Heritage Dictionary (1992): “The study of approximate solutions to
mathematical problems, taking into account the extent of possible errors.”

“Approximations” ... “accuracy” ... “errors” again. It seems to me that these definitions
would serve most effectively to deter the curious from investigating further.

The singular value decomposition (SVD) affords another example of the perception of nu-
merical analysis as the science of rounding errors. Although the roots of the SVD go back
more than 100 years, it is mainly since the 1960s, through the work of Gene Golub and other
numerical analysts, that it has achieved its present degree of prominence. The SVD is as
fundamental an idea as the eigenvalue decomposition; it is the natural language for discussing
all kinds of questions of norms and extrema involving nonsymmetric matrices or operators.
Yet today, thirty years later, most mathematical scientists and even many applied mathe-
maticians do not have a working knowledge of the SVD. Most of them have heard of it, but
the impression seems to be widespread that the SVD is just a tool for combating rounding
errors. A glance at a few numerical analysis textbooks suggests why. In one case after an-
other, the SVD is buried deep in the book, typically in an advanced section on rank-deficient
least-squares problems, and recommended mainly for its stability properties.

I am convinced that consciously or unconsciously, many people think that (D1) is at least
half true. In actuality, it is a very small part of the truth. And although there are historical
explanations for the influence of (D1) in the past, it is a less appropriate definition today and
is destined to become still less appropriate in the future.

I propose the following alternative definition with which to enter the new century:

Numerical analysis is the study of algorithms (D2)
for the problems of continuous mathematics.
Boundaries between fields are always fuzzy; no definition can be perfect. But it seems to me

that (D2) is as sharp a characterization as you could come up with for most disciplines.

The pivotal word is algorithms. Where was this word in those chapter headings and dictionary
definitions? Hidden between the lines, at best, and yet surely this is the center of numerical
analysis: devising and analyzing algorithms to solve a certain class of problems.

These are the problems of continuous mathematics. “Continuous” means that real or complex
variables are involved; its opposite is “discrete.” A dozen qualifications aside, numerical ana-
lysts are broadly concerned with continuous problems, while algorithms for discrete problems
are the concern of other computer scientists.

Let us consider the implications of (D2). First of all it is clear that since real and complex
numbers cannot be represented exactly on computers, (D2) implies that part of the business
of numerical analysis must be to approximate them. This is where the rounding errors come
in. Now for a certain set of problems, namely the ones that are solved by algorithms that take
a finite number of steps, that is all there is to it. The premier example is Gaussian elimination

2

[The following essay appeared in the November, 1992 issue of SIAM News and the March,
1993 issue of the Bulletin of the Institute for Mathematics and Applications.)

THE DEFINITION OF NUMERICAL ANALYSIS

Lloyd N. Trefethen
Dept. of Computer Science
Cornell Unviersity
LNT@cs.cornell.edu
1992

What is numerical analysis? I believe that this is more than a philosophical question. A
certain wrong answer has taken hold among both outsiders to the field and insiders, distorting
the image of a subject at the heart of the mathematical sciences.

Here is the wrong answer:
Numerical analysis is the study of rounding errors. (D1)

The reader will agree that it would be hard to devise a more uninviting description of a
field. Rounding errors are inevitable, yes, but they are complicated and tedious and —not
fundamental. If (D1) is a common perception, it is hardly surprising that numerical analysis is
widely regarded as an unglamorous subject. In fact, mathematicians, physicists, and computer
scientists have all tended to hold numerical analysis in low esteem for many years—a most
unusual consensus.

Of course nobody believes or asserts (D1) quite as baldly as written. But consider the following
opening chapter headings from some standard numerical analysis texts:

Isaacson & Keller (1966): 1. Norms, arithmetic, and well-posed computations.
Hamming (1971): 1. Roundoff and function evaluation.

Dahlquist & Bjorck (1974): 1. Some general principles of numerical calculation.
2. How to obtain and estimate accuracy....

Stoer & Bulirsch (1980): 1. Error analysis.
Conte & de Boor (1980): 1. Number systems and errors.
Atkinson (1987): 1. Error: its sources, propagation, and analysis.

Kahaner, Moler & Nash (1989): 1. Introduction.
2. Computer arithmetic and computational errors.

“Error” ... “roundoft” ... “computer arithmetic” — these are the words that keep reappearing.
What impression does an inquisitive college student get upon opening such books? Or consider
the definitions of numerical analysis in some dictionaries:

1

