
 

Appendix to Saleh M, R Oliva, CE Kampmann, and PI Davidsen, 2010. “A comprehensive analytical approach 

for policy analysis of system dynamics models.” European Journal of Operational Research, 203(3): 673-683. 

Appendix A: Mathematical details 

Much of the material presented in this appendix is standard knowledge in linear systems 

theory with elementary extensions and specifications. However, we found it useful to the 

readers who may not be familiar with this area to include it. 

 
A.1 Linearizing the model 
A system dynamics model takes the form of a set of ordinary differential equations,  

 ( ) ( ) ( )( )t,tft uuuuxxxxxxxx =& , (A.1) 

where x is a column vector of n state variables, x& is the vector of first time derivatives (rates), 

which is a function f of the state variables and a set of m  exogenous or input variables u , 

and t  is the simulated time.
1
 

In order to use the concepts of eigenvalue and eigenvector analysis, we linearize the model 

around a point in time and state space, ( )0txxxxxxxx 0000 =  and ( )00 tuuuuuuuu = , i.e., 

 ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )00000000000000000000000000000000 uuuuuuuuuuuuxxxxuuuu
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We assume, without loss of generality, that 00 =t and define 
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 ( ) ( ){ } n,,1i,,x,f i K& === 0000000000000000 uuuuxxxxuuuuxxxxbbbb . (A.5) 

The matrix G is called the Jacobian or gain matrix of the system. Substituting the 

approximation (A.2-A.5) into the original model (A.1) and changing notation to 

 
( ) ( )
( ) ( ),tt

,tt

uuuuuuuuuuuu

xxxxxxxxxxxx 00000000 →−

→−
 

leads to the linear system 

                                                 

1
 We henceforth use bold symbols to represent vectors and matrices and non-bold symbols to represent scalar 

variables. We also use the dot notation to represent time derivatives. An alternative representation of (A.1) uses 

time as an explicit argument to the rate equations f. However, this form can always be converted to (A.1) by an 

appropriate definition of exogenous variables u. 
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 (A.6) 

In the following, we focus on the significance of the endogenous dynamics arising from 

interactions of the state variables and therefore assume that the input variables are constant, 

i.e., u = 0. This leads to the simplified system 

 
( ) ( )
( ) .00

,tt

=

+=

xxxx
bbbbGxGxGxGxxxxx&

 (A.7) 

 

 

A.2 Solution to the linearized model 

Differentiating equation (A.7) with respect to time yields the differential equation  

 
( ) ( )
( ) ,0

,tt

bbbbxxxx
xxxxGGGGxxxx

=

=

&

&&&
 (A.8) 

which can be solved by considering the eigenvalues λk  and associated right eigenvectors kkkkrrrr , 

of G, defined as the non-zero solutions to the condition
2
 

 .k kkkkkkkk rrrrGrGrGrGr λ=  (A.9) 

Usually, G has n distinct eigenvalues, in which case the associated eigenvectors will be 

linearly independent (Chen, 1970, p. 37). (We treat the case of non-distinct eigenvalues in a 

subsequent section.) Since the eigenvectors form a basis for the space nR of the state 

variables, we may express ( )txxxx&  as a time-varying linear combination m t( ) of the 

eigenvectors, 

 ( ) ( ) ( ) nnnn1111 rrrrrrrrxxxx ttt n1 mm ++= L& . (A.10) 

Differentiating (A.10) with respect to time and comparing it to (A.9), we obtain 

                                                 

2
 When we use the term "eigenvectors" we refer to the right eigenvectors, defined by (A.10) unless otherwise 

stated. The corresponding left eigenvectors, defined by lkG = λk lk , can be found by the relation 

  
l1L ln[ ] r1Lrn[ ]'= I . 
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 (A.11) 

where we have used (A.9) to obtain the last equality. In order for (A.11) to hold true at all 

times t, we must therefore require that  

 ( ) ( ) n,1,k,tmλtm kkk K& == , (A.12) 

which has the solution  

 ( ) ( ) n,1,k,e0mtm tλ

kk
k K== , (A.13) 

where mk 0( ) is a constant. The solution to (A.8) can then be written as 

 ( ) ( ) ( ) nnnnrrrrrrrrxxxx 0me...0met n

tλ

11

tλ n1 ++=& , (A.14) 

where e
λk t  is the behavior mode corresponding to the eigenvalue λk . The factors ( ) kkkkrrrr0mk  

may be found from the initial condition in (A.8), 

 ( ) ( ) ( ) ,0m0m0 n1 bbbbrrrrrrrrxxxx nnnn1111 =++= L&  (A.15) 

which, for a given set of eigenvectors r has a unique solution in m.
3
 Integrating (A.14) with 

respect to time yields the solution 
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, (A.16) 

where the weights kkkkwwww  are determined by 

 ( )
n.,1,k,

λ

0m

k

k K==

−−−= kkkkkkkk nnnn11110000
rrrrwwww

,,,,wwww............wwwwwwww
 (A.17) 

Here, we have assumed that the eigenvalues are unique and non-zero. We treat these special 

                                                 

3
 Note that eigenvectors are not uniquely determined since, if a vector is a solution to (A.9), so is that vector 

multiplied by any scalar. However, because the r's are linearly independent, the m's and thus also the combined 

factors mr are uniquely determined by (A.15) 



Saleh M, R Oliva, CE Kampmann, and PI Davidsen, 2010 

 

4 

cases in subsequent sections. 

 

 

A.3 Complex Eigenvalues 

In general, the eigenvalues, eigenvectors and behavior modes may not be real numbers. 

However, because the coefficients in the matrix G are all real, the complex eigenvalues and 

their associated eigenvectors always appear in conjugate pairs. We may therefore remove the 

complex numbers as follows. Consider two complex conjugate eigenvalues  

 
λ1 = α + iω,

λ2 = α − iω.
 (A.18) 

Then the corresponding terms in (A.16) are 

 ( ) ( ) ( ) ( ) ( ) ( ) tiωαtiωαtiωαtiωα eieiee −+−+ ++−=+ hhhhcccchhhhccccwwwwwwww 22221111 , (A.19) 

where the c and h are real-valued vectors. Using the identity isinzcosze iz +=  and collecting 

terms, we get the expression 

 ( )( ) ( )( )[ ]t sinωi2t cosωi2eαt cccccccchhhhhhhhhhhhcccc −+++−+ , (A.20) 

which amounts to the following real vector 

 [ ]tsinω2tcosω2eαt hhhhcccc +  (A.21) 

i.e. the expression reduces to 

 ( )tsinωtcosω2eαt hhhhcccc + . (A.22) 

In our analysis, we have chosen an equivalent, in our opinion more intuitive, form of (A.22), 

 ( )θθθθaaaa +tωsine tα , (A.23) 

where the vector components n,1,i,θ,a ii K=  are determined by 
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 (A.24) 
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A.4 Zero eigenvalues 

If one of the eigenvalues of G, say 1λ , is zero, the expression for the corresponding weight in 

(A.17) is no longer valid. It is easy to see, however, that a zero eigenvalue contributes with a 

constant term, 11

0
rr =te , in (A.14). When integrated with respect to time, this constant term 

contributes with a linear growth mode yielding the solution 

 ( ) tλtλ n1 e...ett nnnn222211110000 wwwwwwwwwwwwwwwwxxxx ++++=  (A.25) 

where 
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 (A.26) 

 

 

A.5 Non-distinct eigenvalues 

We now relax the assumption that all the eigenvalues are all distinct. The eigenvalues are 

found as the roots of the polynomial equation 0λ =− IIIIGGGG . An eigenvalue that is a p-fold root 

to this equation is said to have multiplicity p. It is now no longer certain that this eigenvalue 

will have p linearly independent associated eigenvectors, which is required for the 

transformation (A.10). It is then necessary to employ generalized eigenvectors. A generalized 

eigenvector v of rank k of the matrix G associated with an eigenvalue λ is defined by the 

property 
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( ) 0.λ

0,λ
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=−

− vvvvIIIIGGGG
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 (A.27) 

Note that for k=1, (A.27) reduces to 

 
( )

0,

0,λ

≠

=−

vvvv
vvvvIIIIGGGG

 (A.28) 

which is the definition of an ordinary eigenvector. 

Now assume, without loss of generality, that the matrix G has a single eigenvalue λ, which 
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thus has multiplicity n.
4
 Assume also that the matrix IIIIGGGG λ−  has rank n-1, i.e., there is only 

one linearly independent associated eigenvector, 1111rrrr .
5
 A set of n generalized eigenvectors may 

be found in recursive manner by successively solving  
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 (A.29) 

It can be shown both that such a solution exists and that the generalized eigenvectors nnnn1111 rrrr,,,,,,,,rrrr K  

are linearly independent (Chen 1970, p. 40). We may now use this set of vectors as a basis in 

the model state space and repeat the analysis in section A.2, where differentiating (A.10) now 

yields 
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 (A.30) 

leading to the differential equations for the modes m, 
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 (A.31) 

which can be solved recursively to yield 

                                                 

4
 If G has other eigenvalues, these simply contribute extra terms in the solution. For notational convenience, we 

have chosen to ignore these terms, since they do not affect the solution for the repeated eigenvalue. 
5
 If more than one linearly independent vector exists for the same eigenvalue, the procedure in the following is 

repeated for each vector. However, this condition implies that two or more of the modes are exactly equal and 

the system therefore exhibits less than n different behavior modes. We believe, but have not yet verified, that the 

only way this can happen is if parts of the system are uncoupled from each other, something that is rare in 

system dynamics models because of the endogenous viewpoint underlying the methodology. 
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As before, setting 0=t , yields 
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where the fact that the generalized eigenvectors are linearly independent assures a unique 

solution for the ( )0mk . The solution for the time derivative is then 
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where 

 ( ) n,1,k,0m
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−+ iiiikkkk rrrrssss . (A.35) 

Integrating (A.34) yields the solution 

 ( ) λt1nλt1jλtλt et...et...etet −− ++++++= nnnnjjjj222211110000 wwwwwwwwwwwwwwwwwwwwxxxx , (A.36) 

where 
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