
Discrete Structures for Computing
CSCE 222

Sandeep Kumar

Many slides based on [Lee19], [Rog21], [GK22]

Sandeep Kumar Discrete Structures for Computing 1 / 169

Propositional Logic
Chapter 1

©2019 McGraw-Hill Education. All rights reserved. Authorized only for
instructor use in the classroom. No reproduction or further distribution
permitted without the prior written consent of McGraw-Hill Education.

Sandeep Kumar Discrete Structures for Computing 2 / 169

Chapter Summary

Propositional Logic
▶ The Language of Propositions
▶ Applications
▶ Logical Equivalences

Predicate Logic
▶ The Language of Quantifiers
▶ Logical Equivalences
▶ Nested Quantifiers

Proofs
▶ Rules of Inference
▶ Proof Methods
▶ Proof Strategy

Sandeep Kumar Discrete Structures for Computing 3 / 169

Propositional Logic Summary

The Language of Propositions
▶ Connectives
▶ Truth Values
▶ Truth Tables

Applications
▶ Translating English Sentences
▶ System Specifications
▶ Logic Puzzles
▶ Logic Circuits

Logical Equivalences
▶ Important Equivalences
▶ Showing Equivalence
▶ Satisfiability

Sandeep Kumar Discrete Structures for Computing 4 / 169

Section 1.1 Summary

Propositions

Connectives
▶ Negation
▶ Conjunction
▶ Disjunction
▶ Implication; contrapositive, inverse, converse
▶ Biconditional

Truth Tables

Sandeep Kumar Discrete Structures for Computing 5 / 169

Propositions

A proposition is a declarative sentence that is either true or false.

Examples of propositions:

The Moon is made of green cheese.

Trenton is the capital of New Jersey.

Toronto is the capital of Canada.

1 + 0 = 1

0 + 0 = 2

Examples that are not propositions.

Sit down!

What time is it?

x + 1 = 2

x + y = z

Sandeep Kumar Discrete Structures for Computing 6 / 169

Propositional Logic

Constructing Propositions

Propositional Variables: p, q, r , s, . . .
▶ A variable that represents propositions is called a propositional variable.
▶ Propositional variables in logic play the same role as numerical

variables in arithmetic.

The proposition that is always true is denoted by T and the
proposition that is always false is denoted by F.

Compound Propositions; constructed from logical connectives and
other propositions.

▶ Negation ¬
▶ Conjunction ∧
▶ Disjunction ∨
▶ Implication →
▶ Biconditional ↔

Sandeep Kumar Discrete Structures for Computing 7 / 169

Compound Propositions: Negation

The negation of a proposition p is denoted by ¬p and has this truth table:

p ¬p
T F

F T

Example: If p denotes “The earth is round”, then

¬p denotes “It is not the case that the earth is round”

Or more simply, “The earth is not round.”

Sandeep Kumar Discrete Structures for Computing 8 / 169

Conjunction

The conjunction of propositions p and q is denoted by p ∧ q and has this
truth table.

p q p ∧ q

T T T

T F F

F T F

F F F

Example: If

p denotes “I am at home” and,

q denotes “It is raining”, then

p ∧ q denotes “I am at home and it is raining.”

Sandeep Kumar Discrete Structures for Computing 9 / 169

Disjunction

The disjunction of propositions p and q is denoted by p ∨ q and has this
truth table.

p q p ∨ q

T T T

T F T

F T T

F F F

Example:

p denotes “I am at home” and,

q denotes “It is raining”, then,

p ∨ q denotes “I am at home or it is raining.”

Sandeep Kumar Discrete Structures for Computing 10 / 169

The Connective or in English

In English, “or” has two distinct meanings.

“Inclusive Or”—In the sentence “Students who have taken CS202 or
Math120 may take this class,” we assume that students need to have
taken one of the prerequisites, but may have taken both. This is the
meaning of disjunction. For p ∨ q to be true, either one or both of p
and q must be true.

“Exclusive Or”—When reading the sentence “Soup or salad comes
with this entr?e,” we do not expect to be able to get both soup and
salad. This is the meaning of Exclusive Or (Xor). In p ⊕ q, one of p
and q must be true, but not both. The truth table for ⊕ is.

p q p ⊕ q

T T F

T F T

F T T

F F F

Sandeep Kumar Discrete Structures for Computing 11 / 169

Implication

If p and q are propositions, then p → q is a conditional statement or
implication which is read as “if p, then q” and has this truth table.

p q p → q

T T T

T F F

F T T

F F T

Example:

p denotes “I am at home” and,

q denotes “It is raining”, then,

p → q denotes “If I am at home then it is raining.”

In p → q, p is the hypothesis (antecedent or premise) and q is the
conclusion (or consequence).

Sandeep Kumar Discrete Structures for Computing 12 / 169

Understanding Implication

In p → q there does not need to be any connection between the
antecedent or the consequent. The “meaning” of p → q depends only on
the truth values of p and q.

These implications are perfectly fine, but would not be used in ordinary
English.

“If the moon is made of green cheese, then I have more money than
Bill Gates.”

“If the moon is made of green cheese, then I’m on welfare.”

“If 1 + 1 = 3, then your grandma wears combat boots.”

Sandeep Kumar Discrete Structures for Computing 13 / 169

Understanding Implication. . .

One way to view the logical conditional is to think of an obligation or
contract.

“If I am elected, then I will lower taxes.”

“If you get 100% on the final, then you will get an A.”

If the politician is elected and does not lower taxes, then the voters can
say that he or she has broken the campaign pledge (false implication).
Something similar holds for the professor. This corresponds to the case
where p is true and q is false.

Sandeep Kumar Discrete Structures for Computing 14 / 169

Different Ways of Expressing p → q

p

q

. .

if p, then q

if p, q

q unless ¬p
▶ q is true unless p is false.
▶ we can’t say anything about q

when p is false.

q if p

q whenever p

q follows from p

p implies q

p only if q

q when p

p is sufficient for q

q is necessary for p

a necessary condition for p is q, a sufficient condition for q is p
Sandeep Kumar Discrete Structures for Computing 15 / 169

Converse, Contrapositive, and Inverse

From p → q we can form new conditional statements.

q → p is the converse of p → q

¬q → ¬p is the contrapositive of p → q

¬p → ¬q is the inverse of p → q

Example: Find the converse, inverse, and contrapositive of “It raining is a
sufficient condition for my not going to town.”

Let p be it’s raining, and q be going to town.

converse:
▶ If I do not go to town, then it is raining.

inverse:
▶ If it is not raining, then I will go to town.

contrapositive:
▶ If I go to town, then it is not raining.

Sandeep Kumar Discrete Structures for Computing 16 / 169

Biconditional

If p and q are propositions, then we can form the biconditional proposition
p ↔ q, read as “p if and only if q.” The biconditional p ↔ q denotes the
proposition with this truth table:

p q p ↔ q

T T T

T F F

F T F

F F T

Example:

p denotes “I am at home” and,

q denotes “It is raining”, then,

p ↔ q denotes “I am at home if and only if it is raining.”

Sandeep Kumar Discrete Structures for Computing 17 / 169

Expressing the Biconditional

Some alternative ways “p if and only if q” is expressed in English:

p is necessary and sufficient for q

if p then q, and conversely

p iff q

Sandeep Kumar Discrete Structures for Computing 18 / 169

Truth Tables For Compound Propositions

Construction of a truth table:

Rows

Need a row for every possible combination of values for the atomic
propositions.

Columns

Need a column for the compound proposition (usually at far right)

Need a column for the truth value of each expression that occurs in
the compound proposition as it is built up.

▶ This includes the atomic propositions

Sandeep Kumar Discrete Structures for Computing 19 / 169

Example Truth Table

Construct a truth table for p ∨ q → ¬r

p q r ¬r p ∨ q p ∨ q → ¬r
T T T F T F

T T F T T T

T F T F T F

T F F T T T

F T T F T F

F T F T T T

F F T F F T

F F F T F T

See https://schnekli-tamu.uc.r.appspot.com/logic.

Sandeep Kumar Discrete Structures for Computing 20 / 169

https://schnekli-tamu.uc.r.appspot.com/logic

Equivalent Propositions

Two propositions are equivalent if they always have the same truth value.

Example: Show using a truth table that the conditional (p → q) is
equivalent to the contrapositive (¬q → ¬p).

p q ¬p ¬q p → q ¬q → ¬p
T T F F T T

T F F T F F

F T T F T T

F F T T T T

Sandeep Kumar Discrete Structures for Computing 21 / 169

Logical Equivalence

Intuitively, two sentences are equivalent if they say the same thing.

I.e., they are true in exactly the same “worlds”.

More formally, we say that ϕ is logically equivalent to ψ iff
▶ every truth assignment that satisfies ϕ satisfies ψ, and,
▶ every truth assignment that satisfies ψ satisfies ϕ.

¬(p ∨ q) ≡ (¬p ∧ ¬q).
(p ∧ q) ̸≡ (p ∨ q).

Logically equivalence → substitutability. If ϕ ≡ ψ, then we can
substitute ϕ for ψ in any Propositional Logic sentence and the result
will be logically equivalent to the original sentence.

▶ Not true for all logics.

Sandeep Kumar Discrete Structures for Computing 22 / 169

Using a Truth Table to Show Non-Equivalence

Example: Show using truth tables that neither the converse nor inverse of
an implication are equivalent to the implication.

p q ¬p ¬q p → q ¬p → ¬q q → p

T T F F T T T

T F F T F T T

F T T F T F F

F F T T T T T

p

q

Sandeep Kumar Discrete Structures for Computing 23 / 169

Logical Entailment

We say that a sentence ϕ logically entails a sentence ψ (written ϕ |= ψ) iff
every truth assignment that satisfies ϕ also satisfies ψ.

Does p |= (p ∧ q)?
Logical entailment is not the same as logical equivalence.
Basically, implication in all possible “worlds”.

p q p p ∧ q

f f f f

f t f f

t f t f

t t t t

Use the Truth Table Method to answer the following.

{p → q ∨ r} |= (p → r)?
▶ F . Consider p = T , q = T , r = F , which makes the LHS T but the RHS F .

{p → r} |= (p → q ∨ r)?
▶ T .

{q → r} |= (p → q ∨ r)?
▶ F . Consider q = F , r = F , p = T .

Sandeep Kumar Discrete Structures for Computing 24 / 169

Problem

How many rows are there in a truth table with n propositional
variables?

2n.

Note that this means that with n propositional variables, we can
construct 2n distinct (that is, not equivalent) propositions.

▶ 40 folds of a paper 1mm thick generates a thickness of 1 million km.
That’s more than the distance from the earth to the moon.

1mm× 240 ≈ 1Mkm > 382, 240km

▶ At 1 million evaluations per second, a 40 variable expression requires
12 days to run through the entire truth table.

240/106/3600/24 ≈ 12 days

Sandeep Kumar Discrete Structures for Computing 25 / 169

Precedence of Logical Operators

Operator Precedence

¬ 1

∧ 2

∨ 3

→ 4

↔ 5

p ∨ q → ¬r is equivalent to (p ∨ q)→ ¬r .
If the intended meaning is p ∨ (q → ¬r), then parentheses must be
used.

Sandeep Kumar Discrete Structures for Computing 26 / 169

Applications of Propositional Logic: Summary

Translating English to Propositional Logic

System Specifications

Boolean Searching

Logic Puzzles

Logic Circuits

AI Diagnosis Method

Sandeep Kumar Discrete Structures for Computing 27 / 169

Translating English Sentences

Steps to convert an English sentence to a statement in propositional logic.

Identify atomic propositions and represent using propositional
variables.

Determine appropriate logical connectives.

. .
“If I go to Harry’s or to the country, I will not go shopping.”

p: I go to Harry’s

q: I go to the country.

r: I will go shopping.

If p or q then not r .

(p ∨ q)→ ¬r .

Sandeep Kumar Discrete Structures for Computing 28 / 169

Example

Problem: Translate the following sentence into propositional logic:

“You can access the Internet from campus only if you are a computer
science major or you are not a freshman.”

Let a, c, and f represent respectively “You can access the internet from
campus,” “You are a computer science major,” and “You are a freshman.”

a→ (c ∨ ¬f). Why isn’t it (c ∨ ¬f)→ a?

That is a sufficiency condition for (c ∨ ¬f), meaning that if (c ∨ ¬f) then
we can deduce a. But a may be false even when (c ∨ ¬f).

a

c ∨ ¬f

Sandeep Kumar Discrete Structures for Computing 29 / 169

System Specifications

System and Software engineers take requirements in English and express
them in a precise specification language based on logic.

Example: Express in propositional logic: “The automated reply cannot be
sent when the file system is full.”

Solution: One possibility:

Let p = “The automated reply can be sent”, and

Let q = “The file system is full.”

q → ¬p

Sandeep Kumar Discrete Structures for Computing 30 / 169

Consistent System Specifications

Definition: A list of propositions is consistent if it is possible to assign truth
values to the proposition variables so that each proposition is true. I.e., their
conjunction is satisfiable.

Are these specifications consistent?

“The diagnostic message is stored in the buffer or it is retransmitted.”
“The diagnostic message is not stored in the buffer.”
“If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: Let

p = “The diagnostic message is stored in the buffer.”
q = “The diagnostic message is retransmitted.”

The specification can be written as: p ∨ q, ¬p, p → q. When p is false and q is
true all three statements are true. So the specification is consistent.

What if “The diagnostic message is not retransmitted” is added.
Solution: Now we are adding ¬q and there is no satisfying assignment. So
the specification is not consistent.

Sandeep Kumar Discrete Structures for Computing 31 / 169

Putting it together

Propositions:

P1—Person 1 rides the bus.
P2—Person 2 rides the bus.
. . .
Pn—Person n rides the bus.

But we can’t have either of the following happen:

That either P1 or P2 ride the bus and P3 or P4 ride the bus.

P2 or P3 ride the bus and either P4 rides the bus or P5 doesn’t.

Represent it in propositional form:

¬(((P1 ∨ P2) ∧ (P3 ∨ P4)) ∨ ((P2 ∨ P3) ∧ (P4 ∨ ¬P5)))

Can P3 ride the bus?

Can P3 and P4 ride the bus together?

Sandeep Kumar Discrete Structures for Computing 32 / 169

Logic Puzzles

An island has two kinds of inhabitants, knights, who always tell the truth, and
knaves, who always lie.

You go to the island and meet A and B.

A says “B is a knight.”
B says “The two of us are of opposite types.”

What are the types of A and B? Let

p refer to “A is a knight”. Then, ¬p represents that “A is a knave”.
q refer to “B is a knight”. Then, ¬q represents that “B is a knave”.

Then,

If A is a knight, then p is true. Since knights tell the truth, q must also be
true. Then (p ∧ ¬q) ∨ (¬p ∧ q) would have to be true, but it is not. So, A is
not a knight and therefore ¬p must be true.
If A is a knave, then B must not be a knight since knaves always lie. So, then
both ¬p and ¬q hold since both are knaves. I.e., the expression

¬p ∧ ¬q ∧ ¬((p ∧ ¬q) ∨ (¬p ∧ q))

has a satisfying assignment.

Sandeep Kumar Discrete Structures for Computing 33 / 169

Diagnosis of Faults in an Electrical System

AI Example (from Artificial Intelligence: Foundations of Computational
Agents by David Poole and Alan Mackworth, 2010)

Need to represent in propositional logic the features of a piece of
machinery or circuitry that are required for the operation to produce
observable features. This is called the Knowledge Base (KB).

We also have observations representing the features that the system is
exhibiting now.

Sandeep Kumar Discrete Structures for Computing 34 / 169

Electrical System Diagram

Have lights (l1, l2),
wires (w0, w1, w2, w3,
w4), switches (s1, s2,
s3), and circuit breakers
(cb1)

The next page gives the
knowledge base
describing the circuit and
the current observations.

Sandeep Kumar Discrete Structures for Computing 35 / 169

Representing the Electrical System in Propositional Logic

We need to represent our common-sense understanding of how the
electrical system works in propositional logic.
For example: “If l1 is a light and if l1 is receiving current, then l1 is lit.

light l1 ∧ live l1 ∧ ok l1→ lit l1

Also: “If w1 has current, and switch s2 is in the up position, and s2 is not
broken, then w0 has current.”

live w1 ∧ up s2 ∧ ok s2→ live w0

This task of representing a piece of our common-sense world in logic is a
common one in logic-based AI.

Sandeep Kumar Discrete Structures for Computing 36 / 169

Knowledge Base

live outside ← We have outside power.

light l1

light l2 ← Both l1 and l2 are lights.

live w0 → live l1

live w1 ∧ up s2 ∧ ok s2 → live w0

live w2 ∧ down s2 ∧ ok s2 → live w0 ← If s2 is ok and s2 is in a
down position and w2 has current, then w0 has current.

live w3 ∧ up s1 ∧ ok s1 → live w1

live w3 ∧ down s1 ∧ ok s1 → live w2

live w4 → live l2

live w3 ∧ up s3 ∧ ok s3 → live w4

live outside ∧ ok cb1 → live w3

light l1 ∧ live l1 ∧ ok l1 → lit l1

light l2 ∧ live l2 ∧ ok l2 → lit l2

Sandeep Kumar Discrete Structures for Computing 37 / 169

Observations

Observations need to be added to the KB.

Both Switches up
▶ up s1
▶ up s2

Both lights are dark
▶ ¬ lit l1
▶ ¬ lit l2

Sandeep Kumar Discrete Structures for Computing 38 / 169

Diagnosis

We assume that the components are working ok, unless we are forced
to assume otherwise. These atoms are called assumables.

The assumables (ok cb1, ok s1, ok s2, ok s3, ok l1, ok l2) represent
the assumption that we assume that the switches, lights, and circuit
breakers are ok.

If the system is working correctly (all assumables are true), the
observations and the knowledge base are consistent (i.e., satisfiable).

The augmented knowledge base is clearly not consistent if the
assumables are all true. The switches are both up, but the lights are
not lit. Some of the assumables must then be false. This is the basis
for the method to diagnose possible faults in the system.

A diagnosis is a minimal set of assumables which must be false to
explain the observations of the system.

Sandeep Kumar Discrete Structures for Computing 39 / 169

Diagnostic Results

See Artificial Intelligence: Foundations of Computational Agents (by
David Poole and Alan Mackworth, 2010) for details on this problem and
how the method of consistency based diagnosis can determine possible
diagnoses for the electrical system.

The approach yields 7 possible faults in the system. At least one of these
must hold:

Circuit Breaker 1 is not ok.

Both Switch 1 and Switch 2 are not ok.

Both Switch 1 and Light 2 are not ok.

Both Switch 2 and Switch 3 are not ok.

Both Switch 2 and Light 2 are not ok.

Both Light 1 and Switch 3 are not ok.

Both Light 1 and Light 2 are not ok.

Sandeep Kumar Discrete Structures for Computing 40 / 169

Section Summary

Tautologies, Contradictions, and Contingencies.

Logical Equivalence

Important Logical Equivalences

Showing Logical Equivalence

Normal Forms

Disjunctive Normal Form

Conjunctive Normal Form

Propositional Satisfiability

Sudoku Example

Sandeep Kumar Discrete Structures for Computing 41 / 169

Tautologies, Contradictions, and Contingencies

A tautology is a proposition which is always true.

p ∨ ¬p

A contradiction is a proposition which is always false.

p ∧ ¬p

A contingency is a proposition which is neither a tautology nor a
contradiction, such as p.

p ¬p p ∨ ¬p p ∧ ¬p
T F T F

F T T F

Sandeep Kumar Discrete Structures for Computing 42 / 169

Logically Equivalent

Two compound propositions p and q are logically equivalent if p ↔ q
is a tautology.

We write this as p ↔ q or as p ≡ q where p and q are compound
propositions.

Two compound propositions p and q are equivalent if and only if the
columns in a truth table giving their truth values agree.

The following truth table shows that ¬p ∨ q is equivalent to p → q.

p q ¬p ¬p ∨ q p → q

T T F T T

T F F F F

F T T T T

F F T T T

Sandeep Kumar Discrete Structures for Computing 43 / 169

De Morgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

This truth table shows that De Morgan’s Second Law holds.

p q ¬p ¬q (p ∨ q) ¬(p ∨ q) ¬p ∧ ¬q
T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

Sandeep Kumar Discrete Structures for Computing 44 / 169

Key Logical Equivalences

Identity Laws: p ∧ T ≡ p, p ∨ F ≡ p

Domination Laws: p ∨ T ≡ T , p ∧ F ≡ F

Idempotent laws: p ∨ p ≡ p, p ∧ p ≡ p

Double Negation Law: ¬(¬p) ≡ p

Negation Laws: p ∨ ¬p ≡ T , p ∧ ¬p ≡ F

Sandeep Kumar Discrete Structures for Computing 45 / 169

Key Logical Equivalences. . .

Commutative Laws: p ∨ q ≡ q ∨ p, p ∧ q ≡ q ∧ p

Associative Laws

See https://en.wikipedia.org/wiki/Associative property.

Repeated application of the operation produces the same result
regardless of how valid pairs of parentheses are inserted in the
expression.

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributive Laws

(p ∨ (q ∧ r)) ≡ (p ∨ q) ∧ (p ∨ r) (p + q · r) = (p + q) · (p + r)

(p ∧ (q ∨ r)) ≡ (p ∧ q) ∨ (p ∧ r) p · (q + r) = p · q + p · r

Absorption Laws: p ∨ (p ∧ q) ≡ p, p ∧ (p ∨ q) ≡ p

Sandeep Kumar Discrete Structures for Computing 46 / 169

https://en.wikipedia.org/wiki/Associative_property

More Logical Equivalences

Conditional Statements

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p
p ∨ q ≡ ¬p → q

p ∧ q ≡ ¬(p → ¬q)
¬(p → q) ≡ p ∧ ¬q
(p → q) ∧ (p → r) ≡ p → (q ∧ r)

(p → r) ∧ (q → r) ≡ (p ∨ q)→ r

(p → q) ∨ (p → r) ≡ p → (q ∨ r)

(p → r) ∨ (q → r) ≡ (p ∧ q)→ r

A B

C

Biconditional Statements

p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q
p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
¬(p ↔ q) ≡ p ↔ ¬q

Sandeep Kumar Discrete Structures for Computing 47 / 169

Constructing New Logical Equivalences

We can show that two expressions are logically equivalent by developing a
series of logically equivalent statements.

To prove that A ≡ B we produce a series of equivalences beginning with A
and ending with B.

A ≡ A1

...

An ≡ B

Keep in mind that whenever a proposition (represented by a propositional
variable) occurs in the equivalences listed earlier, it may be replaced by an
arbitrarily complex compound proposition.

Sandeep Kumar Discrete Structures for Computing 48 / 169

Equivalence Proofs

Show that ¬(p ∨ (¬p ∧ q)) is logically equivalent to ¬p ∧ ¬q.

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law

≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan law

≡ ¬p ∧ (p ∨ ¬q) by the double negation law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law

≡ F ∨ (¬p ∧ ¬q) because ¬p ∧ p ≡ F

≡ (¬p ∧ ¬q) ∨ F by the commutative law

≡ (¬p ∧ ¬q) for disjunction

Sandeep Kumar Discrete Structures for Computing 49 / 169

Equivalence Proofs. . .

Show that (p ∧ q)→ (p ∨ q) is a tautology.

(p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) by truth table for →
≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law
≡ (¬p ∨ p) ∨ (¬q ∨ q) by assoc and comm laws
≡ T ∨ T by truth tables
≡ T by the domination law

Sandeep Kumar Discrete Structures for Computing 50 / 169

Disjunctive Normal Form

A propositional formula is in disjunctive normal form if it consists of

a disjunction of (1, . . . , n) disjuncts where,

each disjunct consists of a conjunction of (1, . . . ,m) atomic formulas
or the negation of an atomic formula.

Is (p ∧ ¬q) ∨ (¬p ∧ q) in DNF?
▶ Yes!

What about p ∧ (p ∨ q)?
▶ No!

Disjunctive Normal Form is important for the circuit design methods
discussed in Chapter 12.

Sandeep Kumar Discrete Structures for Computing 51 / 169

Disjunctive Normal Form

Show that every compound proposition can be put in disjunctive normal
form.

Construct the truth table for the proposition.

Then an equivalent proposition is the disjunction with n disjuncts
where n is the number of rows for which the formula evaluates to T .

Each disjunct has m conjuncts where m is the number of distinct
propositional variables.

Each conjunct includes the positive form of the propositional variable
if the variable is assigned T in that row and the negated form if the
variable is assigned F in that row.

This proposition is in disjunctive normal from.

Sandeep Kumar Discrete Structures for Computing 52 / 169

Disjunctive Normal Form

Find the Disjunctive Normal Form (DNF) of

(p ∨ q)→ ¬r

This proposition is true when r is false, or when both p and q are false.

(¬p ∧ ¬q) ∨ ¬r

Sandeep Kumar Discrete Structures for Computing 53 / 169

Conjunctive Normal Form

A compound proposition is in Conjunctive Normal Form (CNF) if it is a
conjunction of disjunctions.

Every proposition can be put in an equivalent CNF.

Conjunctive Normal Form (CNF) can be obtained by eliminating
implications, moving negation inwards and using the distributive and
associative laws.

Important in resolution theorem proving used in artificial Intelligence
(AI).

A compound proposition can be put in conjunctive normal form
through repeated application of the logical equivalences covered
earlier.

▶ See StackOverflow.
▶ For e.g., (a+ b · c) ≡ (a+ b) · (a+ c).

Sandeep Kumar Discrete Structures for Computing 54 / 169

https://stackoverflow.com/questions/655261/how-to-convert-a-propositional-formula-to-conjunctive-normal-form-cnf

Conjunctive Normal Form

Put the following into CNF:

¬(p → q) ∨ (r → p)

Eliminate implication signs:

¬(¬p ∨ q) ∨ (¬r ∨ p)

Move negation inwards; eliminate double negation:

(p ∧ ¬q) ∨ (¬r ∨ p)

Convert to CNF using associative/distributive laws1

(p ∨ ¬r ∨ p) ∧ (¬q ∨ ¬r ∨ p)

1a · b + c = (a+ c) · (b + c).
Sandeep Kumar Discrete Structures for Computing 55 / 169

Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth
values to its variables that makes it true. When no such assignments exist,
the compound proposition is unsatisfiable.

A compound proposition is unsatisfiable iff its negation is a tautology.

p ∧ ¬p is unsatisfiable, but its negation ¬p ∨ p is a tautology.

Sandeep Kumar Discrete Structures for Computing 56 / 169

Questions on Propositional Satisfiability

Determine the satisfiability of the following compound propositions:

(p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p)
▶ Satisfiable. Let p = T , q = T , r = T .

(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r)
▶ Satisfiable. Let p = T , q = F

(p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r)
▶ Not satisfiable. Check each possible assignment of truth values to the

propositional variables and none will make the proposition true.
▶ Let p = T . Then we get

(p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r)
▶ Let p = F . Then we get

(p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r)

Sandeep Kumar Discrete Structures for Computing 57 / 169

Notation

∨nj=1 pj is used for p1 ∨ p2 ∨ . . . ∨ pn

∧nj=1 pj is used for p1 ∧ p2 ∧ . . . ∧ pn

Sandeep Kumar Discrete Structures for Computing 58 / 169

Sudoku

A Sudoku puzzle is represented by a 9× 9 grid made up of nine 3× 3
subgrids, known as blocks. Some of the 81 cells of the puzzle are assigned
one of the numbers 1, 2, . . . , 9.

The puzzle is solved by assigning numbers to each blank cell so that every
row, column and block contains each of the nine possible numbers.

Sandeep Kumar Discrete Structures for Computing 59 / 169

Encoding as a Satisfiability Problem

Let p(i , j , n) denote the proposition that is true when the number n is
in the cell in the ith row and the jth column.

There are 9× 9× 9 = 729 such propositions.

In the sample puzzle p(5, 1, 6) is true, but p(5, j , 6) is false for
j = 2, 3, . . . 9.

Sandeep Kumar Discrete Structures for Computing 60 / 169

Encoding as a Satisfiability Problem I

For each cell with a given value, assert p(i , j , n), when the cell in row
i and column j has the given value.

Assert that every row contains every number.

9∧
i=1

9∧
n=1

9∨
j=1

p(i , j , n)

Assert that every column contains every number.

9∧
j=1

9∧
n=1

9∨
i=1

p(i , j , n)

Sandeep Kumar Discrete Structures for Computing 61 / 169

Encoding as a Satisfiability Problem II

Assert that each of the 3× 3 blocks contain every number.

for each n ∈ {1, . . . , 9}:

2∧
r=0

2∧
s=0

3∨
i=1

3∨
j=1

p(3r + i , 3s + j , n)

Assert that no cell contains more than one number. Take the
conjunction over all values of n, n′, i , and j , where each variable
ranges from 1 to 9 and n ̸= n′, of

p(i , j , n)→ ¬p(i , j , n′)

Sandeep Kumar Discrete Structures for Computing 62 / 169

Solving Satisfiability Problems

To solve a Sudoku puzzle, we need to find an assignment of truth values
to the 729 variables of the form p(i , j , n) that makes the conjunction of
the assertions true. Those variables that are assigned T yield a solution to
the puzzle.

A truth table can always be used to determine the satisfiability of a
compound proposition. But this is too complex even for modern
computers for large problems.

There has been much work on developing efficient methods for solving
satisfiability problems as many practical problems can be translated into
satisfiability problems.

Sandeep Kumar Discrete Structures for Computing 63 / 169

Summary

Predicate Logic (First-Order Logic (FOL), Predicate Calculus)

The Language of Quantifiers

Logical Equivalences

Nested Quantifiers

Translation from Predicate Logic to English

Translation from English to Predicate Logic

Sandeep Kumar Discrete Structures for Computing 64 / 169

Section Summary

Predicates

Variables

Quantifiers
▶ Universal Quantifier
▶ Existential Quantifier

Negating Quantifiers
▶ De Morgan’s Laws for Quantifiers

Translating English to Logic

Logic Programming?

Sandeep Kumar Discrete Structures for Computing 65 / 169

Propositional Logic Not Enough

If we have:

“All men are mortal.”

“Socrates is a man.”

Does it follow that “Socrates is mortal?”

Can’t be represented in propositional logic. Need a language that talks
about objects, their properties, and their relations.

Later we’ll see how to draw inferences.

Sandeep Kumar Discrete Structures for Computing 66 / 169

Introducing Predicate Logic

Predicate logic uses the following new features:

Variables: x , y , z

Predicates: P(x),M(x)

Quantifiers

Propositional functions are a generalization of propositions.

They contain variables and a predicate, e.g., P(x)

Variables can be replaced by elements from their domain.

Sandeep Kumar Discrete Structures for Computing 67 / 169

Propositional Functions

Propositional functions become propositions, and have truth values when

their variables are each replaced by a value from their domain, or

when the variables are bound by a quantifier (as we will see later).

The statement P(x) is said to be the value of the propositional function P
at x .

For e.g., let P(x) denote “x > 0” and the domain be the integers. Then:

P(-3) is false.

P(0) is false.

P(3) is true.

Often the domain is denoted by U. So in this example U is the
integers.

Sandeep Kumar Discrete Structures for Computing 68 / 169

Examples of Propositional Functions

Let “x + y = z” be denoted by R(x , y , z) and U (for all three variables)
be the integers. Find these truth values:

R(2,−1, 5). Solution: F.
R(3, 4, 7). Solution: T.

R(x , 3, z). Solution: Not a Proposition.

Now let “x − y = z” be denoted by Q(x , y , z), with U as the integers.
Find these truth values:

Q(2,−1, 3). Solution: T.
Q(3, 4, 7). Solution: F.

Q(x , 3, z). Solution: Not a Proposition.

Sandeep Kumar Discrete Structures for Computing 69 / 169

Compound Expressions

Connectives from propositional logic carry over to predicate logic.

If P(x) denotes “x > 0” find these truth values:

P(3) ∨ P(−1) Solution: T
P(3) ∧ P(−1) Solution: F
P(3)→ P(−1) Solution: F
P(3)→ ¬P(−1) Solution: T

Expressions with variables are not propositions and therefore do not have
truth values. For example,

P(3) ∧ P(y)

P(x)→ P(y)

When used with quantifiers (to be introduced next), these expressions
(propositional functions) become propositions.

Sandeep Kumar Discrete Structures for Computing 70 / 169

Quantifiers

We need quantifiers to express the meaning of English words including all
and some:

“All men are Mortal.”

“Some cats do not have fur.”

The two most important quantifiers are:

Universal Quantifier, “For all,” symbol: ∀
Existential Quantifier, “There exists,” symbol: ∃

We write as in ∀x P(x) and ∃x P(x).
∀x P(x) asserts P(x) is true for every x in the domain.

∃x P(x) asserts P(x) is true for some x in the domain.

The quantifiers are said to bind the variable x in these expressions.

Sandeep Kumar Discrete Structures for Computing 71 / 169

Universal Quantifier

∀x P(x) is read as “For all x , P(x)” or “For every x , P(x)”

Examples:

If P(x) denotes x > 0 and U is the integers, then ∀x P(x) is false.
If P(x) denotes x > 0 and U is the positive integers, then ∀x P(x) is
true.

If P(x) denotes x is even and U is the integers, then ∀x P(x) is false.

Sandeep Kumar Discrete Structures for Computing 72 / 169

Existential Quantifier

∃x P(x) is read as “For some x , P(x)”, or as “There is an x such that
P(x),” or “For at least one x , P(x).”

Examples:

If P(x) denotes x > 0 and U is the integers, then ∃x P(x) is true. It
is also true if U is the positive integers.

If P(x) denotes x < 0 and U is the positive integers, then ∃x P(x) is
false.

If P(x) denotes x is even and U is the integers, then ∃x P(x) is true.

Sandeep Kumar Discrete Structures for Computing 73 / 169

Thinking about Quantifiers

When the domain of discourse is finite, we can think of quantification as
looping through the elements of the domain.

To evaluate ∀x P(x) loop through all x in the domain.

If at every step P(x) is true, then ∀x P(x) is true.
If at a step P(x) is false, then ∀x P(x) is false and the loop
terminates.

To evaluate ∃x P(x) loop through all x in the domain.

If at some step, P(x) is true, then ∃x P(x) is true and the loop
terminates.

If the loop ends without finding an x for which P(x) is true, then
∃x P(x) is false.

Even if the domains are infinite, we can still think of the quantifiers this
fashion, but the loops will not terminate in some cases.

Sandeep Kumar Discrete Structures for Computing 74 / 169

Properties of Quantifiers

The truth value of ∃x P(x) and ∀x P(x) depend on both the propositional
function P(x) and on the domain U.

Examples:

If U is the positive integers and P(x) is the statement x < 2, then
∃x P(x) is true, but ∀x P(x) is false.
If U is the negative integers and P(x) is the statement x < 2, then
both ∃x P(x) and ∀x P(x) are true.

If U consists of 3, 4, 5, and P(x) is the statement x > 2, then both
∃x P(x) and ∀x P(x) are true.

But if P(x) is the statement x < 2, then both ∃x P(x) and ∀x P(x)
are false.

Sandeep Kumar Discrete Structures for Computing 75 / 169

Precedence of Quantifiers

The quantifiers ∀ and ∃ have higher precedence than all the logical
operators.

For example, ∀x P(x) ∨ Q(x) means [∀x P(x)] ∨ Q(x)

∀x (P(x) ∨ Q(x)) means something different.

Unfortunately, often people write

∀x P(x) ∨ Q(x)

when they mean ∀x (P(x) ∨ Q(x)).

Sandeep Kumar Discrete Structures for Computing 76 / 169

Translating from English to Logic

Translate the following sentence into predicate logic: “Every student in
this class has taken a course in Java.”

First decide on the domain U.

If U is all students in this class, define a propositional function J(x)
denoting “x has taken a course in Java,” and translate as

∀x J(x)

But if U is all people, also define a propositional function S(x)
denoting “x is a student in this class,” and translate as

∀x (S(x)→ J(x))

∀x (S(x) ∧ J(x)) is not correct. What does it mean?

Sandeep Kumar Discrete Structures for Computing 77 / 169

Translating from English to Logic. . .

Translate the following sentence into predicate logic: “Some student in
this class has taken a course in Java.”

First decide on the domain U.

If U is all students in this class, translate as

∃x J(x)

But if U is all people, then translate as

∃x (S(x) ∧ J(x))

∃x (S(x)→ J(x)) is not correct. What does it mean?

Sandeep Kumar Discrete Structures for Computing 78 / 169

Returning to the Socrates Example

Introduce the propositional functions Man(x) denoting “x is a man” and
Mortal(x) denoting “x is mortal.” Specify the domain as all people.

The two premises are:

∀x (Man(x)→ Mortal(x))

Man(Socrates)

The conclusion is:

Mortal(Socrates)

Later we will show how to prove that the conclusion follows from the
premises.

Sandeep Kumar Discrete Structures for Computing 79 / 169

Equivalences in Predicate Logic ✗

Statements involving predicates and quantifiers are logically equivalent if
and only if they have the same truth value:

for every predicate substituted into these statements and

for every domain of discourse used for the variables in the expressions.

The notation S ≡ T indicates that S and T are logically equivalent.

For example: ∀x ¬¬S(x) ≡ ∀x S(x)

Sandeep Kumar Discrete Structures for Computing 80 / 169

Quantifiers as Conjunctions and Disjunctions

If the domain is finite,

a universally quantified proposition is equivalent to a conjunction of
propositions without quantifiers, and

an existentially quantified proposition is equivalent to a disjunction of
propositions without quantifiers.

If U consists of the integers 1, 2, and 3:

∀x P(x) ≡ P(1) ∧ P(2) ∧ P(3)

∃x P(x) ≡ P(1) ∨ P(2) ∨ P(3)

Even if the domains are infinite, you can still think of the quantifiers in
this fashion, but the equivalent expressions without quantifiers will be
infinitely long.

Sandeep Kumar Discrete Structures for Computing 81 / 169

Negating Quantified Expressions

Consider for example ∀x J(x).
“Every student in your class has taken a course in Java.”

Here J(x) is “x has taken a course in Java” and the domain is
students in your class.

Negating the original statement gives

“It is not the case that every student in your class has taken Java.”

This implies that

“There is a student in your class who has not taken Java.”

Symbolically, ¬∀x J(x) ≡ ∃x ¬ J(x).

Sandeep Kumar Discrete Structures for Computing 82 / 169

Negating Quantified Expressions. . .

Now consider ∃x J(x).
“There is a student in this class who has taken a course in Java.”

Where J(x) is “x has taken a course in Java.”

Negating the original statement gives

“It is not the case that there is a student in this class who has taken
Java.”

This implies that

“Every student in this class has not taken Java”.

Symbolically, ¬∃x J(x) ≡ ∀x ¬ J(x).

Sandeep Kumar Discrete Structures for Computing 83 / 169

De Morgan’s Laws for Quantifiers

The rules for negating quantifiers are:

Negation Equivalent When Is negation True? When False?
¬∃x P(x) ∀x ¬P(x)

For every x , P(x) is false. There is x for which P(x)
is true.

¬∀x P(x) ∃x ¬P(x)
There is an x for which
P(x) is false.

P(x) is true for every x .

The reasoning in the table shows that:

¬∀x P(x) ≡ ∃x ¬P(x)
¬∃x P(x) ≡ ∀x ¬P(x)

Sandeep Kumar Discrete Structures for Computing 84 / 169

Translation from English to Logic

“Some student in this class has visited Mexico.”

Let M(x) denote “x has visited Mexico,” and S(x) denote “x is a
student in this class,” and U be all people.

∃x (S(x) ∧M(x))

“Every student in this class has visited Canada or Mexico.” Add C (x)
denoting “x has visited Canada.”

∀x [S(x)→ (M(x) ∨ C (x))]

Sandeep Kumar Discrete Structures for Computing 85 / 169

Some Fun with Translating from English into Logical
Expressions ✗

U = fleegles, snurds, thingamabobs

F (x): x is a fleegle

S(x): x is a snurd

T (x): x is a thingamabob

Translate “Everything is a fleegle.”

∀x F (x)

Sandeep Kumar Discrete Structures for Computing 86 / 169

Some Fun with Translating from English into Logical
Expressions. . . ✗

“Nothing is a snurd.”
¬∃x S(x)

Or,
∀x ¬S(x)

Sandeep Kumar Discrete Structures for Computing 87 / 169

Some Fun with Translating from English into Logical
Expressions. . . ✗

“All fleegles are snurds.”

∀x (F (x)→ S(x))

Sandeep Kumar Discrete Structures for Computing 88 / 169

Some Fun with Translating from English into Logical
Expressions. . . ✗

“Some fleegles are thingamabobs.”

∃x (F (x) ∧ T (x))

Sandeep Kumar Discrete Structures for Computing 89 / 169

Some Fun with Translating from English into Logical
Expressions. . . ✗

“No snurd is a thingamabob.”

¬∃x (S(x) ∧ T (x))

Or,
∀x (S(x)→ ¬T (x))

. .

Why not
¬∃x (S(x)→ T (x))

If you consider S(x) ∧ T (x) vs. S(x) → T (x), there are many “worlds” in which they
yield different truth values for choices of S & T. They are not equivalent. In particular,
if S(x) ̸→ T (x) then S(x) ∧ T (x) is false everywhere, but S(x) → T (x) is true when
¬S(x).

Sandeep Kumar Discrete Structures for Computing 90 / 169

Some Fun with Translating from English into Logical
Expressions. . . ✗

“If any fleegle is a snurd then it is also a thingamabob.”

∀x [(F (x) ∧ S(x))→ T (x)]

. .

Could it also be

∀x [(F (x)→ S(x))→ (F (x)→ T (x))]

This says that there is no x for which F (x) → S(x), but F (x) ̸→ T (x).

Sandeep Kumar Discrete Structures for Computing 91 / 169

System Specification Example ✗

Predicate logic is used to specify properties that systems must satisfy. For
example, translate into predicate logic:

Every mail message larger than one megabyte will be compressed.

If a user is active, at least one network link will be available.

Decide on predicates and domains (left implicit here) for the variables:

Let L(m, y) be “Mail message m is larger than y megabytes.”

Let C (m) denote “Mail message m will be compressed.”

Let A(u) represent “User u is active.”

Let S(n, x) represent “Network link n is state x .”

Now we have:
∀m (L(m, 1)→ C (m))

∃u A(u)→ ∃n S(n, available)

Sandeep Kumar Discrete Structures for Computing 92 / 169

Lewis Carroll Example ✗

The first two are called premises and the third is called the conclusion.

“All lions are fierce.”

“Some lions do not drink coffee.”

“Some fierce creatures do not drink coffee.”

Here is one way to translate these statements to predicate logic. Let P(x),
Q(x), and R(x) be the propositional functions “x is a lion,” “x is fierce,”
and “x drinks coffee,” respectively.

∀x (P(x)→ Q(x))

∃x (P(x) ∧ ¬R(x))
∃x (Q(x) ∧ ¬R(x))

Later we will see how to prove that the conclusion follows from the
premises.

Sandeep Kumar Discrete Structures for Computing 93 / 169

Some Predicate Calculus Definitions ✗

An assertion involving predicates and quantifiers is valid if it is true

for all domains

every propositional function substituted for the predicates in the
assertion.

Example:
∀x ¬S(x)↔ ¬∃x S(x)

An assertion involving predicates is satisfiable if it is true

for some domains

some propositional functions that can be substituted for the
predicates in the assertion.

Otherwise, it is unsatisfiable. For example,

∀x(F (x)↔ T (x)) not valid but satisfiable

∀x(F (x) ∧ ¬F (x)) unsatisfiable

Sandeep Kumar Discrete Structures for Computing 94 / 169

Nested Quantifiers
Section Summary

Nested Quantifiers

Order of Quantifiers

Translating from Nested Quantifiers into English

Translating Mathematical Statements into Statements involving
Nested Quantifiers.

Translated English Sentences into Logical Expressions.

Negating Nested Quantifiers.

Sandeep Kumar Discrete Structures for Computing 95 / 169

Nested Quantifiers

Nested quantifiers are often necessary to express the meaning of sentences
in English as well as important concepts in computer science and
mathematics.

Example: “Every real number has an additive inverse” is

∀x ∃y (x + y = 0)

where the domains of x and y are the real numbers.

We can also think of nested propositional functions. ∀x ∃y (x + y = 0) can
be viewed as

∀x Q(x), where

Q(x) is ∃y P(x , y), where
P(x , y) is (x + y = 0).

Sandeep Kumar Discrete Structures for Computing 96 / 169

Thinking of Nested Quantification ✗

Nested Loops
To see if ∀x ∀y P(x , y) is true, loop through the values of x :

▶ At each step, loop through the values for y .
▶ If for some pair of x and y , P(x , y) is false, then ∀x ∀y P(x , y) is false

and both the outer and inner loop terminate.

∀x ∀y P(x , y) is true if the outer loop ends after stepping through
each x .
To see if ∀x ∃y P(x , y) is true, loop through the values of x :

▶ At each step, loop through the values for y .
▶ The inner loop ends when a pair x and y is found such that P(x , y) is

true.
▶ If no y is found such that P(x , y) is true the outer loop terminates as
∀x ∃y P(x , y) has been shown to be false.

∀x ∃y P(x , y) is true if the outer loop ends after stepping through
each x .

If the domains of the variables are infinite, then this process cannot be
carried out.

Sandeep Kumar Discrete Structures for Computing 97 / 169

Order of Quantifiers

1 Let P(x , y) be the statement “x + y = y + x .”
▶ Assume that U is the real numbers.
▶ Then ∀x ∀y P(x , y) and ∀y ∀x P(x , y) have the same truth value.

2 Let Q(x , y) be the statement “x + y = 0.”
▶ Assume that U is the real numbers.
▶ Then ∀x ∃y Q(x , y) is true, but ∃y ∀x Q(x , y) is false.

Sandeep Kumar Discrete Structures for Computing 98 / 169

Questions on Order of Quantifiers ✗

Let U be the real numbers, define

P(x , y) : x · y = 0

What is the truth value of the following?

∀x ∀y P(x , y). False.
∀x ∃y P(x , y). True.
∃x ∀y P(x , y). True.
∃x ∃y P(x , y). True.

Sandeep Kumar Discrete Structures for Computing 99 / 169

Questions on Order of Quantifiers ✗

Let U be the real numbers, define

P(x , y) : x/y = 1

What is the truth value of the following?

∀x ∀y P(x , y). False.
∀x ∃y P(x , y). False.
∃x ∀y P(x , y). False.
∃x ∃y P(x , y). True.

Sandeep Kumar Discrete Structures for Computing 100 / 169

Quantifications of Two Variables

Statement When True? When False

∀x∀y P(x , y)
∀y∀x P(x , y)

P(x , y) is true for every
pair x , y .

There is a pair x , y for
which P(x , y) is false.

∀x∃y P(x , y) For every x there is a
y for which P(x , y) is
true.

There is an x such that
P(x , y) is false for every
y .

∃x∀y P(x , y) There is an x for which
P(x , y) is true for every
y .

For every x there is a
y for which P(x , y) is
false.

∃x∃y P(x , y)
∃y∃x P(x , y)

There is a pair x , y for
which P(x , y) is true.

P(x , y) is false for every
pair x , y .

Sandeep Kumar Discrete Structures for Computing 101 / 169

Quantifications of Two Variables. . .

∀x∃y P(x , y).

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-3 -2 -1 0 1 2 3

∃x∀yP(x , y).

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-3 -2 -1 0 1 2 3

Sandeep Kumar Discrete Structures for Computing 102 / 169

Translating Nested Quantifiers into English

▶ Translate the statement

∀x(C (x) ∨ ∃y(C (y) ∧ F (x , y)))

where

C (x) is “x has a computer,” and

F (x , y) is “x and y are friends,”

and the domain for both x and y consists of all students in your school.

Every student in your school has a computer or has a friend who has a
computer.

▶ Translate the statement

∃x ∀y ∀z ((F (x , y) ∧ F (x , z) ∧ (y ̸= z))→ ¬F (y , z))

There is a student none of whose friends are also friends with each other.

Sandeep Kumar Discrete Structures for Computing 103 / 169

Translating Mathematical Statements into Predicate Logic
✗

Translate “The sum of two positive integers is always positive” into a
logical expression.

Rewrite the statement to make the implied quantifiers and domains
explicit:

“For every two integers, if these integers are both positive, then the
sum of these integers is positive.”

Introduce the variables x and y , and specify the domain, to obtain:

“For all positive integers x and y , x + y is positive.”

The result is:

∀x∀y [((x > 0) ∧ (y > 0))→ (x + y > 0)]

where the domain of both variables consists of all integers.

Sandeep Kumar Discrete Structures for Computing 104 / 169

Translating English into Logical Expressions Example ✗

Use quantifiers to express the statement “There is a woman who has taken
a flight on every airline in the world.”

Let P(w , f) be “w has taken f ” and Q(f , a) be “f is a flight on a.”

The domain of w is all women, the domain of f is all flights, and the
domain of a is all airlines.

Then the statement can be expressed as:

∃w ∀a ∃f (P(w , f) ∧ Q(f , a))

Sandeep Kumar Discrete Structures for Computing 105 / 169

Calculus in Logic ✗

Use quantifiers to express the definition of the limit of a real-valued
function f (x) of a real variable x at a point a in its domain.

Recall the definition of the statement

lim
x→a

f (x) = L

is “For every real number ϵ > 0, there exists a real number δ > 0 such
that |f (x)− L| < ϵ whenever 0 < |x − a| < δ.”

Using quantifiers:

∀ϵ ∃δ ∀x (0 < |x − a| < δ → |f (x)− L| < ϵ)

Where the domain for the variables ϵ and δ consists of all positive real
numbers and the domain for x consists of all real numbers.

Sandeep Kumar Discrete Structures for Computing 106 / 169

Questions on Translation from English ✗

Choose the obvious predicates and express in predicate logic.

“Brothers are siblings.” ∀x∀y(B(x , y)→ S(x , y))

“Siblinghood is symmetric.” ∀x∀y(S(x , y)→ S(y , x))

“Everybody loves somebody.” ∀x∃yL(x , y)
“There is someone who is loved by everyone.” ∃y∀xL(x , y)
“There is someone who loves someone.” ∃x∃yL(x , y)
“Everyone loves himself.” ∀xL(x , x)

Sandeep Kumar Discrete Structures for Computing 107 / 169

Negating Nested Quantifiers ✗

Recall the logical expression developed three slides back:

∃w ∀a ∃f (P(w , f) ∧ Q(f , a))

Use quantifiers to express the statement that “There does not exist a
woman who has taken a flight on every airline in the world.”

¬∃w ∀a ∃f (P(w , f) ∧ Q(f , a))

Now use De Morgan’s Laws to move the negation as far inwards as
possible.

1 ¬∃w ∀a ∃f (P(w , f) ∧ Q(f , a))

2 ∀w ¬∀a ∃f (P(w , f) ∧ Q(f , a)) by De Morgan’s for ∃
3 ∀w ∃a¬∃f (P(w , f) ∧ Q(f , a)) by De Morgan’s for ∀
4 ∀w ∃a ∀f ¬(P(w , f) ∧ Q(f , a)) by De Morgan’s for ∃
5 ∀w ∃a ∀f (¬P(w , f) ∨ ¬Q(f , a)) by De Morgan’s for ∧.

Sandeep Kumar Discrete Structures for Computing 108 / 169

Negating Nested Quantifiers. . . ✗

Can you translate the result back into English?

“For every woman there is an airline such that for all flights, this woman
has not taken that flight or that flight is not on this airline”

Sandeep Kumar Discrete Structures for Computing 109 / 169

Some Questions about Quantifiers (optional)

Can you switch the order of quantifiers?

Is this a valid equivalence? ∀x∀yP(x , y) ≡ ∀y∀xP(x , y)
▶ Yes! The left and the right side will always have the same truth value.

The order in which x and y are picked does not matter.

Is this a valid equivalence? ∀x∃yP(x , y) ≡ ∃y∀xP(x , y)
▶ No! The left and the right side may have different truth values for

some propositional functions for P. Try “x + y = 0” for P(x , y) with
U being the integers. The order in which the values of x and y are
picked does matter.

Sandeep Kumar Discrete Structures for Computing 110 / 169

Some Questions about Quantifiers (optional). . .

Can you distribute quantifiers over logical connectives?

Is this a valid equivalence? ∀x(P(x) ∧ Q(x)) ≡ ∀xP(x) ∧ ∀xQ(x)
▶ Yes! The left and the right side will always have the same truth value

no matter what propositional functions are denoted by P(x) and Q(x).

Is this a valid equivalence? ∀x (P(x)→ Q(x)) ≡ ∀x P(x)→ ∀x Q(x)
▶ No! The left and the right side may have different truth values. Pick

⋆ “x is a fish” for P(x), and
⋆ “x has scales” for Q(x)

with the domain of discourse being all animals.

Then the left side is false, because there are some fish that do not have
scales. But the right side is true since not all animals are fish.

Sandeep Kumar Discrete Structures for Computing 111 / 169

Summary

Valid Arguments and Rules of Inference

Proof Methods

Proof Strategies

Sandeep Kumar Discrete Structures for Computing 112 / 169

Rules of Inference
Section Summary

Valid Arguments

Inference Rules for Propositional Logic

Using Rules of Inference to Build Arguments

Rules of Inference for Quantified Statements

Building Arguments for Quantified Statements

Sandeep Kumar Discrete Structures for Computing 113 / 169

Revisiting the Socrates Example

We have the two premises:

“All men are mortal.”

“Socrates is a man.”

And the conclusion: “Socrates is mortal.”

How do we get the conclusion from the premises?

Sandeep Kumar Discrete Structures for Computing 114 / 169

The Argument

We can express the premises (above the line) and the conclusion (below
the line) in predicate logic as an argument:

∀x(Man(x)→ Mortal(x))

Man(Socrates)

∴ Mortal (Socrates)

We will see shortly that this is a valid argument.

Sandeep Kumar Discrete Structures for Computing 115 / 169

Valid Arguments

We will show how to construct valid arguments in two stages:

first for propositional logic, and then

for predicate logic.

The rules of inference are the essential building block in the construction
of valid arguments.

Propositional Logic: Inference Rules.

Predicate Logic: Inference rules for propositional logic plus additional
inference rules to handle variables and quantifiers.

Sandeep Kumar Discrete Structures for Computing 116 / 169

Arguments in Propositional Logic

An argument in propositional logic is a sequence of propositions. All but
the final proposition are called premises. The last statement is the
conclusion.

The argument is valid if the premises imply the conclusion. An argument
form is an argument that is valid no matter what propositions are
substituted into its propositional variables.

If the premises are p1, p2, . . . , pn and the conclusion is q then

(p1 ∧ p2 ∧ · · · ∧ pn)→ q

is a tautology.

Inference rules are all argument simple argument forms that will be used to
construct more complex argument forms.

Sandeep Kumar Discrete Structures for Computing 117 / 169

Rules of Inference for Propositional Logic: Modus Ponens

. .

p → q
p

∴ q

Corresponding Tautology

(p ∧ (p → q))→ q

. .

Let p be “It is snowing.”

Let q be “I will study discrete math.”

“If it is snowing, then I will study discrete math.”

“It is snowing.”

“Therefore, I will study discrete math.”

Sandeep Kumar Discrete Structures for Computing 118 / 169

Modus Tollens

. .

p → q
¬q
∴ ¬p

Corresponding Tautology

(¬q ∧ (p → q))→ ¬p

. .

Let p be “it is snowing.”

Let q be “I will study discrete math.”

“If it is snowing, then I will study discrete math.”

“I will not study discrete math.”

“Therefore, it is not snowing.”

p

q

Sandeep Kumar Discrete Structures for Computing 119 / 169

Hypothetical Syllogism

. .

p → q
q → r

∴ p → r

Corresponding Tautology

((p → q)∧(q → r))→ (p → r)

. .

Let p be “it snows.”

Let q be “I will study discrete math.”

Let r be “I will get an A.”

“If it snows, then I will study discrete math.”

“If I study discrete math, I will get an A.”

“Therefore, If it snows, I will get an A.”

p

q

r

Sandeep Kumar Discrete Structures for Computing 120 / 169

Disjunctive Syllogism

. .

p ∨ q
¬p
∴ q

Corresponding Tautology

(¬p ∧ (p ∨ q))→ q

. .

Let p be “I will study discrete math.”

Let q be “I will study English literature.”

“I will study discrete math or I will study English literature.”

“I will not study discrete math.”

“Therefore, I will study English literature.”

Sandeep Kumar Discrete Structures for Computing 121 / 169

Addition

. .

p

∴ p ∨ q

Corresponding Tautology

p → (p ∨ q)
. .

Let p be “I will study discrete math.”

Let q be “I will visit Las Vegas.”

“I will study discrete math.”

“Therefore, I will study discrete math or I will visit Las Vegas.”

Sandeep Kumar Discrete Structures for Computing 122 / 169

Simplification

. .

p ∧ q

∴ p

Corresponding Tautology

(p ∧ q)→ p
. .

Let p be “I will study discrete math.”

Let q be “I will study English literature.”

“I will study discrete math and English literature”

“Therefore, I will study discrete math.”

Sandeep Kumar Discrete Structures for Computing 123 / 169

Conjunction

. .

p
q

∴ p ∧ q

Corresponding Tautology

((p) ∧ (q))→ (p ∧ q)

. .

Let p be “I will study discrete math.”

Let q be “I will study English literature.”

“I will study discrete math.”

“I will study English literature.”

“Therefore, I will study discrete math and I will study English
literature.”

Sandeep Kumar Discrete Structures for Computing 124 / 169

Resolution

Resolution plays an important role in AI and is used in Prolog.
. .

¬p ∨ r

p ∨ q

∴ q ∨ r

Corresponding Tautology

((¬p ∨ r)∧ (p ∨ q))→ (q ∨ r)

. .

Let p be “I will study discrete math.”

Let r be “I will study English literature.”

Let q be “I will study databases.”

“I will not study discrete math or I will study English literature.”

“I will study discrete math or I will study databases.”

“Therefore, I will study databases or I will study English literature.”

Sandeep Kumar Discrete Structures for Computing 125 / 169

Using the Rules of Inference to Build Valid Arguments

A valid argument is a sequence of statements. Each statement is either a
premise or follows from previous statements by rules of inference. The last
statement is called conclusion.

S1

S2
...

Sn

∴ C

Sandeep Kumar Discrete Structures for Computing 126 / 169

Valid Arguments

From the single proposition

p ∧ (p → q)

Show that q is a conclusion.

Step Reason
1. p ∧ (p → q) Premise
2. p Simplification using (1)
3. p → q Simplification using (1)
4. q Modus Ponens using (2) and (3)

Sandeep Kumar Discrete Structures for Computing 127 / 169

Valid Arguments

With these hypotheses:

“It is not sunny this afternoon and it is colder than yesterday.”
“We will go swimming only if it is sunny.”
“If we do not go swimming, then we will take a canoe trip.”
“If we take a canoe trip, then we will be home by sunset.”

Using the inference rules, construct a valid argument for the conclusion:

“We will be home by sunset.”

Choose propositional variables:

p : “It is sunny this afternoon.”, q : “It is colder than yesterday.”
r : “We will go swimming.”, t : “We will be home by sunset.”
s : “We will take a canoe trip.”

Translation into propositional logic:

Hypotheses: ¬p ∧ q, r → p,¬r → s, s → t.
Conclusion: t (show using resolution).

Sandeep Kumar Discrete Structures for Computing 128 / 169

https://schnekli-tamu.uc.r.appspot.com/sresolution

Valid Arguments
Step Reason
1. ¬p ∧ q Premise
2. ¬p Simplification using (1)
3. r → p Premise
4. ¬r Modus tollens using (2) and (3)
5. ¬r → s Premise
6. s Modus ponens using (4) and (5)
7. s → t Premise
8. t Modus ponens using (6) and (7)

Sandeep Kumar Discrete Structures for Computing 129 / 169

Handling Quantified Statements

Valid arguments for quantified statements are a sequence of statements.
Each statement is either a premise or follows from previous statements by
rules of inference which include:

Rules of Inference for Propositional Logic

Rules of Inference for Quantified Statements

The rules of inference for quantified statements are introduced in the next
several slides.

Sandeep Kumar Discrete Structures for Computing 130 / 169

Universal Instantiation (UI)

∀x P(x)
∴ P(c)

Example: Our domain consists of all dogs and Fido is a dog.

“All dogs are cuddly.”

“Therefore, Fido is cuddly.”

Sandeep Kumar Discrete Structures for Computing 131 / 169

Universal Generalization (UG)

P(c) for an arbitrary c

∴ ∀x P(x)

Used often implicitly in Mathematical Proofs.

Sandeep Kumar Discrete Structures for Computing 132 / 169

Existential Instantiation (EI)

∃x P(x)
∴ P(c) for some element c

“There is someone who got an A in the course.”

“Let’s call her a and say that a got an A”

Sandeep Kumar Discrete Structures for Computing 133 / 169

Existential Generalization (EG)

P(c) for some element c

∴ ∃x P(x)

“Michelle got an A in the class.”

“Therefore, someone got an A in the class.”

Sandeep Kumar Discrete Structures for Computing 134 / 169

Using Rules of Inference

Using the rules of inference, construct a valid argument to show that
“John Smith has two legs” is a consequence of the premises:

“Every man has two legs.”

“John Smith is a man.”

Let M(x) denote “x is a man”, L(x) “x has two legs”, and let John Smith
be a member of the domain.

Step Reason
1. ∀x(M(x)→ L(x)) Premise
2. M(J)→ L(J) UI from (1)
3. M(J) Premise
4. L(J) Modus Ponens using (2) and (3)

Sandeep Kumar Discrete Structures for Computing 135 / 169

Using Rules of Inference

Use the rules of inference to construct a valid argument showing that the
conclusion “Someone who passed the first exam has not read the book.”
follows from the premises:

“A student in this class has not read the book.”

“Everyone in this class passed the first exam.”

Let

C (x) denote “x is in this class”,

B(x) denote “x has read the book”, and

P(x) denote “x passed the first exam”.

∃x (C (x) ∧ ¬B(x))
∀x (C (x)→ P(x))

∴ ∃x (P(x) ∧ ¬B(x))

Sandeep Kumar Discrete Structures for Computing 136 / 169

Using Rules of Inference
Step Reason
1. ∃x (C (x) ∧ ¬B(x)) Premise
2. C (a) ∧ ¬B(a) EI from (1)
3. C (a) Simplification from (2)
4. ∀x (C (x)→ P(x)) Premise
5. C (a)→ P(a) UI from (4)
6. P(a) MP from (3) and (5)
7. ¬B(a) Simplification from (2)
8. P(a) ∧ ¬B(a) Conj from (6) and (7)
9. ∃x (P(x) ∧ ¬B(x)) EG from (8)

Sandeep Kumar Discrete Structures for Computing 137 / 169

Returning to the Socrates Example ✗

∀x (Man(x)→ Mortal(x))

Man(Socrates)

∴ Mortal(Socrates)

Step Reason
1. ∀x (Man(x)→ Mortal(x)) Premise
2. Man(Socrates)→ Mortal(Socrates) UI from (1)
3. Man(Socrates) Premise
4. Mortal(Socrates) MP from (2) and (3)

Sandeep Kumar Discrete Structures for Computing 138 / 169

Universal Modus Ponens

Universal Modus Ponens combines universal instantiation and modus
ponens into one rule.

∀x(P(x)→ Q(x))

P(x), for a specific a

∴ Q(a)

This rule could be used in the Socrates example.

Sandeep Kumar Discrete Structures for Computing 139 / 169

Section 1.7

Mathematical Proofs

Forms of Theorems

Direct Proofs

Indirect Proofs
▶ Proof of the Contrapositive
▶ Proof by Contradiction

Sandeep Kumar Discrete Structures for Computing 140 / 169

Proofs of Mathematical Statements ✗

A proof is a valid argument that establishes the truth of a statement. In
math, CS, and other disciplines, informal proofs which are generally
shorter, are generally used.

More than one rule of inference are often used in a step.

Steps may be skipped.

The rules of inference used are not explicitly stated.

Easier to understand and to explain to people.

But it’s also easier to introduce errors.

Proofs have many practical applications:

Verification that computer programs are correct,

Establishing that operating systems are secure,

Enabling programs to make inferences in artificial intelligence,

Showing that system specifications are consistent.

Sandeep Kumar Discrete Structures for Computing 141 / 169

Definitions ✗

A theorem is a statement that can be shown to be true using:

Definitions,

Other theorems,

Axioms (statements which are given as true),

Rules of inference.

A lemma is a ‘helping theorem’ or a result which is needed to prove a
theorem. A corollary is a result which follows directly from a theorem.

Less important theorems are sometimes called propositions.

A conjecture is a statement that is being proposed to be true. Once a
proof of a conjecture is found, it becomes a theorem. It may turn out to
be false.

Sandeep Kumar Discrete Structures for Computing 142 / 169

Forms of Theorems ✗

Many theorems assert that a property holds for all elements in a domain,
such as the integers, the real numbers, or some of the discrete structures
that we will study in this class.

Often the universal quantifier (needed for a precise statement of a
theorem) is omitted by standard mathematical convention.

For example, the statement:

If x > y , where x and y are positive real numbers, then x2 > y2

really means

For all positive real numbers x and y , if x > y , then x2 > y2

Sandeep Kumar Discrete Structures for Computing 143 / 169

Proving Theorems

Many theorems have the form

∀x (P(x)→ Q(x))

By universal generalization of P(c)→ Q(c), where c is an arbitrary
element of the domain, the truth of the original formula follows.

So, we must prove something of the form p → q.

Sandeep Kumar Discrete Structures for Computing 144 / 169

Proving Conditional Statements: p → q

Trivial Proof : If we know that q is true, then p → q is true as well.
▶ “If it is raining, then 1=1”.
▶ ¬p ∨ q basically says that.

Vacuous Proof : If we know that p is false then p → q is true as well.
▶ “If I am both rich and poor then 2 + 2 = 5”.

Even though these examples seem silly, both trivial and vacuous proofs are
often used in mathematical induction, as we will see in Chapter 5.

Sandeep Kumar Discrete Structures for Computing 145 / 169

Even and Odd Integers

Definition: The integer n is

even if ∃ an integer k such that n = 2k , and

odd if there exists an integer k, such that n = 2k + 1.

Note that every integer is either even or odd and no integer is both even
and odd.

We will need this basic fact about the integers in some of the example
proofs to follow. We will learn more about the integers in Chapter 4.

Sandeep Kumar Discrete Structures for Computing 146 / 169

Proving Conditional Statements: p → q

Direct Proof : Assume that p is true. Use rules of inference, axioms, and
logical equivalences to show that q must also be true.

Example: Give a direct proof of the theorem “If n is an odd integer,
then n2 is odd.”

Assume that n is odd. Then n = 2k + 1 for an integer k . Squaring
both sides of the equation, we get:

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2r + 1,

where r = 2k2 + 2k , an integer.

We have proved that if n is an odd integer, then n2 is an odd integer.

Sandeep Kumar Discrete Structures for Computing 147 / 169

Proving Conditional Statements: p → q

Definition: The real number r is rational if there exist integers p and q
where q ̸= 0 such that r = p/q.

Prove that the sum of two rational numbers is rational. ✗
Assume r and s are two rational numbers. Then there must be
integers p, q and also t, u such that

r = p/q, s = t/u, u ̸= 0, q ̸= 0

r + s =
p

q
+

t

u
=

pu + qt

qu
=

v

w
where v = pu + qt,w = qu ̸= 0

Thus, the sum is rational.

Sandeep Kumar Discrete Structures for Computing 148 / 169

Proving Conditional Statements: p → q

Proof by Contraposition: Assume ¬q and show that ¬p is true. This
is sometimes called an indirect proof method. If we give a direct
proof of ¬q → ¬p then we have a proof of p → q.

Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Assume n is even. So, n = 2k for some integer k . Thus,

3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) = 2j for j = 3k + 1

Therefore 3n + 2 is even. Since we have shown ¬q → ¬p, p → q
must hold as well. If n is an integer and 3n + 2 is odd (not even),
then n is odd (not even).

Why does this work?

n even

3n + 2 even

Sandeep Kumar Discrete Structures for Computing 149 / 169

Proving Conditional Statements: p → q ✗

Prove that for an integer n, if n2 is odd, then n is odd. I.e.,

Odd(n2)→ Odd(n)

Use proof by contraposition.

Assume n is even (i.e., not odd). Therefore, there exists an integer k
such that n = 2k . Hence,

n2 = 4k2 = 2(2k2)

and n2 is even (i.e., not odd). Or, ¬Odd(n)→ ¬Odd(n2).
We have shown that if n is an even integer, then n2 is even. ∴ by
contraposition, for an integer n, if n2 is odd, then n is odd.

Sandeep Kumar Discrete Structures for Computing 150 / 169

Proving Conditional Statements: p → q

Proof by Contradiction: (aka reductio ad absurdum)

To prove p, assume ¬p and derive a contradiction such as p ∧ ¬p.
▶ This shows that ¬p → F is true,
▶ ∴ it follows that the contrapositive T → p also holds.

Example: Prove that if you pick 22 days from the calendar, at least 4
must fall on the same day of the week.

▶ Assume that no more than 3 of the 22 days fall on the same day of the
week.

M T W R F S Su
≤ 3 ≤ 3 ≤ 3 ≤ 3 ≤ 3 ≤ 3 ≤ 3

▶ Because there are 7 days of the week, we could only have picked 21
days.

▶ This contradicts the assumption that we have picked 22 days. This is
also known as the pigeonhole principle.

Sandeep Kumar Discrete Structures for Computing 151 / 169

Proof by Contradiction

Use proof by contradiction to show that
√
2 is irrational.

Suppose that
√
2 is rational. Then,

▶ ∃ integers a and b with
√
2 = a/b, b ̸= 0 and where

▶ a and b have no common factors (see Chapter 4).

Then

2 =
a2

b2
, 2b2 = a2

Therefore a2 must be even.
▶ If a2 is even then a must be even (an exercise).
▶ Since a is even, a = 2c for some integer c .

Thus,
2b2 = 4c2, b2 = 2c2

Therefore b2 is even. So, b must be even as well.
But then 2 must divide both a and b. This contradicts our assumption that
a and b have no common factors.
Thus our initial assumption must be false, and therefore

√
2 is irrational.

Sandeep Kumar Discrete Structures for Computing 152 / 169

Proof by Contradiction

Prove that there is no largest prime number.

Assume that there is a largest prime number. Call it pn. Hence, we
can list all the primes 2, 3, . . . , pn. Form

r = p1 × p2 × · · · × pn + 1

None of the prime numbers on the list divides r .

Therefore, (by a theorem in Chapter 4), either r is prime or there is a
smaller prime that divides r .

This contradicts the assumption that there is a largest prime, or that
p1 . . . pn are the only primes.

Therefore, there is no largest prime.

Sandeep Kumar Discrete Structures for Computing 153 / 169

Theorems that are Biconditional Statements

To prove a theorem that is a biconditional statement, that is, a statement
of the form p ↔ q, we show that p → q and q → p are both true.

Example: Prove that “If n is an integer, then n is odd if and only if n2 is
odd.”

We have already shown (previous slides) that both p → q and q → p.
Therefore we can conclude that p ↔ q.

Sometimes iff is used as an abbreviation for “if and only if,” as in “If n is
an integer, then n is odd iff n2 is odd.”

Sandeep Kumar Discrete Structures for Computing 154 / 169

What is wrong with this? ✗

“Proof” that 1 = 2.

Step Reason

1 a = b Premise

2 a2 = a× b Multiply both sides of (1) by a

3 a2 − b2 = a× b − b2 Subtract b2 from both sides of (2)

4 (a− b)(a+ b) = b(a− b) Algebra on (3)

5 a+ b = b Divide both sides by a− b

6 2b = b Replace a by b in (5) because a = b

7 2 = 1 Divide both sides of (6) by b

Sandeep Kumar Discrete Structures for Computing 155 / 169

Looking Ahead ✗

If direct methods of proof do not work:

We may need a clever use of a proof by contraposition.

Or a proof by contradiction.

In the next section, we will see strategies that can be used when
straightforward approaches do not work.

In Chapter 5, we’ll see mathematical induction and related techniques.

In Chapter 6, we’ll see combinatorial proofs

Sandeep Kumar Discrete Structures for Computing 156 / 169

Section 1.8

Proof by Cases

Existence Proofs
▶ Constructive
▶ Nonconstructive

Disproof by Counterexample

Nonexistence Proofs

Uniqueness Proofs

Proof Strategies

Proving Universally Quantified Assertions

Open Problems

Sandeep Kumar Discrete Structures for Computing 157 / 169

Proof by Cases

To prove a conditional statement of the form:

(p1 ∨ p2 ∨ · · · ∨ pn)→ q

Use the tautology

[(p1 ∨ p2 ∨ · · · ∨ pn)→ q]↔
[(p1 → q) ∧ (p2 → q) ∧ · · · ∧ (pn → q)]

Each of the implications pi → q is a case.

Sandeep Kumar Discrete Structures for Computing 158 / 169

Proof by Cases ✗

Example: Let a @ b = max(a, b) = a if a ≥ b, otherwise b.

Show that for all real numbers a, b, c

(a @ b) @ c = a @ (b @ c)

This means the operation @ is associative.

Let a, b, c be arbitrary real numbers. Then one of the following 6 cases
must hold.

1 a ≥ b ≥ c

2 a ≥ c ≥ b

3 b ≥ a ≥ c

4 b ≥ c ≥ a

5 c ≥ a ≥ b

6 c ≥ b ≥ a

Sandeep Kumar Discrete Structures for Computing 159 / 169

Proof by Cases ✗

Case 1: a ≥ b ≥ c

(a @ b) = a, a @ c = a, b @ c = b

Hence (a @ b) @ c = a = a @ (b @ c)

Therefore the equality holds for the first case.

A complete proof requires that the equality be shown to hold for all 6
cases. But the proofs of the remaining cases are similar. Try them.

Sandeep Kumar Discrete Structures for Computing 160 / 169

Without Loss of Generality ✗

Show that if x and y are integers and both x · y and x + y are even, then
both x and y are even.

Use proof by contraposition. Suppose x and y are not both even. Then,
one or both are odd. Without loss of generality, assume that x is odd.
Then x = 2m + 1 for some integer m.

Case 1: y is even. Then y = 2n for some integer n, so

x + y = (2m + 1) + 2n = 2(m + n) + 1

is odd.

Case 2: y is odd. Then y = 2n + 1 for some integer n, so

x · y = (2m + 1) · (2n + 1) = 2(2m · n +m + n) + 1

is odd.

We only cover the case where x is odd because the case where y is odd is
similar. The use phrase without loss of generality (WLOG) indicates this.

Sandeep Kumar Discrete Structures for Computing 161 / 169

Existence Proofs

Proof of theorems of the form ∃x P(x).

Constructive existence proof:

Find an explicit value of c , for which P(c) is true.

Then ∃x P(x) is true by Existential Generalization (EG).

Show that there is a positive integer that can be written as the sum of
cubes of positive integers in two different ways:

1729 is such a number since

1729 = 103 + 93 = 123 + 13

Sandeep Kumar Discrete Structures for Computing 162 / 169

Nonconstructive Existence Proofs

In a nonconstructive existence proof, we assume no c exists which makes
P(c) true and derive a contradiction.

Show that there exist irrational numbers x and y such that xy is rational.

We know that
√
2 is irrational. Consider the number

√
2
√
2
.

If it is rational, we have two irrational numbers x and y with xy

rational, namely x =
√
2 and y =

√
2.

But if
√
2
√
2
is irrational, then we can let x =

√
2
√
2
and y =

√
2 so

that

xy =

(√
2

√
2
)√

2

=
√
2
2
= 2

Sandeep Kumar Discrete Structures for Computing 163 / 169

Counterexamples

Recall ∃x ¬P(x) ≡ ¬∀x P(x).
To establish that ¬∀x P(x) is true (or ∀x P(x) is false), find a c such
that ¬P(c) is true or P(c) is false.

c is called a counterexample to the assertion ∀x P(x).
Example: “Every positive integer is the sum of the squares of 3 integers.”

The integer 7 is a counterexample. So the claim is false.

Sandeep Kumar Discrete Structures for Computing 164 / 169

Uniqueness Proofs

Some theorems assert the existence of a unique element with a particular
property, ∃!x P(x). The two parts of a uniqueness proof are

Existence: We show that an element x with the property exists.

Uniqueness: We show that if y ̸= x , then y does not have the
property.

Example: Show that if a and b are real numbers and a ̸= 0, then there is a
unique real number r such that ar + b = 0.

Existence: The real number r = −b/a is a solution of ar + b = 0
because a(−b/a) + b = −b + b = 0.

Uniqueness: Suppose that s is a real number such that as + b = 0.
▶ Then ar + b = as + b, where r = −b/a.
▶ Subtracting b from both sides and dividing by a shows that r = s.
▶ I.e., a has a multiplicative inverse.

Sandeep Kumar Discrete Structures for Computing 165 / 169

Proof Strategies for proving p → q ✗

Choose a method.

First try a direct method of proof.

If this does not work, try an indirect method (e.g., try to prove the
contrapositive).

For whichever method you are trying, choose a strategy.

First try forward reasoning. Start with the axioms and known
theorems and construct a sequence of steps that end in the
conclusion. Start with p and prove q, or start with ¬q and prove ¬p.
If this doesn?t work, try backward reasoning. When trying to prove q,
find a statement p that we can prove with the property p → q.

Sandeep Kumar Discrete Structures for Computing 166 / 169

Backward Reasoning ✗
Suppose that two people play a game taking turns removing, 1, 2, or 3 stones at
a time from a pile that begins with 15 stones. The person who removes the last
stone wins the game. Show that the first player can win the game no matter
what the second player does.

Proof: Let n be the last step of the game.

Step n: P1 can win if the pile contains 1, 2, 3 stones.
Step n − 1: P2 will have to leave such a pile if the pile that he/she is faced
with has 4 stones.
Step n − 2: P1 can leave 4 stones when there are 5, 6, 7 stones left at the
beginning of his/her turn.
Step n − 3: P2 must leave such a pile, if there are 8 stones.
Step n − 4: P1 has to have a pile with 9, 10, 11 stones to ensure that there
are 8 left.
Step n − 5: P2 needs to be faced with 12 stones to be forced to leave
9, 10, 11.
Step n − 6: P1 can leave 12 stones by removing 3 stones.
Now reasoning forward, the first player can ensure a win by removing 3
stones and leaving 12.

Sandeep Kumar Discrete Structures for Computing 167 / 169

Universally Quantified Assertions

To prove theorems of the form ∀x P(x), assume x is an arbitrary member
of the domain and show that P(x) must be true. Using UG it follows that
∀x P(x).

Example: An integer x is even if and only if x2 is even.

The quantified assertion is ∀x [x is even↔ x2 is even]

We assume x is arbitrary.

Recall that p ↔ q ≡ (p → q) ∧ (q → p) ≡ p → q ∧ ¬p → ¬q
▶ x is even → x2 is even by direct proof.
▶ x is not even → x2 is not even.

Sandeep Kumar Discrete Structures for Computing 168 / 169

Bibliography I

Ashutosh Gupta and S. Krishna.
Cs 228: Logic for computer science 2022.
https://www.cse.iitb.ac.in/ akg/courses/2022-logic/, January 2022.

Hyunyoung Lee.
Discrete structures for computing.
Class slides for TAMU CSCE 222, 2019.

Phillip Rogaway.
Ecs20 fall 2021 lecture notes, Fall 2021.

Sandeep Kumar Discrete Structures for Computing 169 / 169

	Propositional Logic
	Predicate Logic
	Logic and Proofs
	Introduction to Proofs
	Proof Methods and Strategy

