
Discrete Structures for Computing
CSCE 222

Sandeep Kumar

Many slides based on [Lee19], [Rog21], [GK22]

Sandeep Kumar Discrete Structures for Computing 1 / 96

Number Theory and Cryptography
Chapter 4

©2019 McGraw-Hill Education. All rights reserved. Authorized only for
instructor use in the classroom. No reproduction or further distribution
permitted without the prior written consent of McGraw-Hill Education.

Sandeep Kumar Discrete Structures for Computing 2 / 96

Chapter Motivation

Number theory is the part of mathematics devoted to the study of the
integers and their properties.

Key ideas in number theory include divisibility and the primality of
integers.

Representations of integers, including binary and hexadecimal
representations, are part of number theory.

Number theory has long been studied because of the beauty of its
ideas, its accessibility, and its wealth of open questions.

We’ll use many ideas developed in Chapter 1 about proof methods
and proof strategy in our exploration of number theory.

Mathematicians have long considered number theory to be pure
mathematics, but it has important applications to computer science
and cryptography studied in Sections 4.5 and 4.6.

Sandeep Kumar Discrete Structures for Computing 3 / 96

Chapter Summary

Divisibility and Modular Arithmetic

Integer Representations and Algorithms

Primes and Greatest Common Divisors

Solving Congruences

Applications of Congruences

Cryptography

Sandeep Kumar Discrete Structures for Computing 4 / 96

Section Summary
Divisibility and Modular Arithmetic

Division

Division Algorithm

Modular Arithmetic

Sandeep Kumar Discrete Structures for Computing 5 / 96

Division

Definition: If a and b are integers with a ̸= 0, then a divides b if there
exists an integer c such that b = ac .

When a divides b, we say that a is a factor or divisor of b and that b
is a multiple of a.

The notation a | b denotes that a divides b.

If a | b, then b/a is an integer.

If a does not divide b, we write a ∤ b.

Determine whether 3 | 7, and whether 3 | 12.

Sandeep Kumar Discrete Structures for Computing 6 / 96

Properties of Divisibility

Theorem 1: Let a, b, c be integers, where a ̸= 0.

1 If a | b and a | c, then a | (b + c);

2 If a | b, then a | bc for all integers c ;

3 If a | b and b | c , then a | c.

Proof: (1) Suppose a | b and a | c , then it follows that there are integers s
and t with b = as and c = at. Hence,

b + c = as + at = a(s + t)

Hence, a | (b + c). Exercises 3 and 4 ask for proofs of parts (2) and (3).

Corollary: If a, b, c are integers, where a ̸= 0, such that a | b and a | c,
then a | mb + nc whenever m and n are integers.

Can you show how it follows easily from (1) and (2) of Theorem 1?

Sandeep Kumar Discrete Structures for Computing 7 / 96

Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a
remainder. This is traditionally called the “Division Algorithm”, but is
really a theorem.

Division Algorithm: If a is an integer and d a positive integer, then there
are unique integers q and r , with 0 ≤ r < d , such that a = dq + r (proved
in Section 5.2).

d is called the divisor, a is called the dividend.

q is called the quotient, r is called the remainder.

. .
Assume non-uniqueness and show contradiction for

a = dq + r = dq′ + r ′

d(q − q′) = (r ′ − r)

Sandeep Kumar Discrete Structures for Computing 8 / 96

Division Algorithm. . .

x

y

Sandeep Kumar Discrete Structures for Computing 9 / 96

Division Algorithm ✗

What are the quotient and remainder when 101 is divided by 11?
▶ The quotient when 101 is divided by 11 is 9 = 101 div 11, and the

remainder is 2 = 101 mod 11.

What are the quotient and remainder when −11 is divided by 3?
▶ The quotient when −11 is divided by 3 is −4 = −11 div 3, and the

remainder is 1 = 11 mod 3.

Sandeep Kumar Discrete Structures for Computing 10 / 96

Congruence Relation

Definition: If a and b are integers and m is a positive integer, then a is
congruent to b modulo m if m divides a− b.

The notation a ≡ b (mod m) says that a is congruent to b modulo m.

We say that a ≡ b (mod m) is a congruence and that m is its
modulus.

Two integers are congruent mod m if and only if they have the same
remainder when divided by m.

If a is not congruent to b modulo m, we write a ̸≡ b (mod m).

Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14
are congruent modulo 6.

17 ≡ 5 (mod 6) because 6 divides 17− 5 = 12.

24 ̸≡ 14 (mod 6) since 24− 14 = 10 is not divisible by 6.

Sandeep Kumar Discrete Structures for Computing 11 / 96

More on Congruences

Theorem 4: Let m be a positive integer. The integers a and b are
congruent modulo m if and only if there is an integer k such that
a = b + km.

Proof:

If a ≡ b (mod m), then by the definition of congruence, m | a− b.
Hence, there is an integer k such that a− b = km and equivalently
a = b + km.

Conversely, if there is an integer k such that a = b + km, then
km = a− b. Hence, m | a− b and a ≡ b (mod m).

Sandeep Kumar Discrete Structures for Computing 12 / 96

The Relationship between (mod m) and modm notations

The use of “mod” in a ≡ b (mod m) and a mod m = b are different.

a ≡ b (mod m) is a relation on the set of integers.

In a mod m = b, the notation mod denotes a function.

The relationship between these notations is made clear in this theorem.

Theorem 3: Let a and b be integers, and let m be a positive integer.
Then a ≡ b (mod m) if and only if

a mod m = b mod m

Proof sketch.
. .

[a ≡ b (modm)] → [a mod m = b mod m] ∧
[a mod m = b mod m] → [a ≡ b (modm)]

a = b+ km, or (

a︷ ︸︸ ︷
r + pm =

a︷ ︸︸ ︷
r ′ + qm + km). By uniqueness of representation, r = r ′.

a = r + pm, b = r + qm. So a− b = km.

Sandeep Kumar Discrete Structures for Computing 13 / 96

Congruences of Sums and Products

Theorem 5: Let m be a positive integer. If a ≡ b (mod m) and c ≡ d
(mod m), then

a+ c ≡ b + d (mod m), and ac ≡ bd (mod m)

Proof:

Because a ≡ b (mod m) and c ≡ d (mod m), by Theorem 4 there
are integers s and t with b = a+ sm and d = c + tm.

Therefore,
▶ b + d = (a+ sm) + (c + tm) = (a+ c) +m(s + t)

▶ bd = (a+ sm)(c + tm) = ac +m(at + cs + stm)

Hence, a+ c ≡ b + d (mod m) and ac ≡ bd (mod m).

Example: ∵ 7 ≡ 2 (mod 5) and 11 ≡ 1 (mod 5), it follows from above that

18 = 7 + 11 ≡ 2 + 1 = 3 (mod 5)

77 = 7 · 11 ≡ 2 · 1 = 2 (mod 5)

Sandeep Kumar Discrete Structures for Computing 14 / 96

Algebraic Manipulation of Congruences
Skip for now

Multiplying both sides of a valid congruence by an integer preserves
validity.

▶ If a ≡ b (mod m) holds then c · a ≡ c · b (mod m), where c is any
integer, holds by Theorem 5 with d = c .

Adding an integer to both sides of a valid congruence preserves
validity.

▶ If a ≡ b (mod m) holds then c + a ≡ c + b (mod m), where c is any
integer, holds by Theorem 5 with d = c .

Dividing a congruence by an integer does not always produce a valid
congruence. Explain using this.

▶ The congruence 14 ≡ 8 (mod 6) holds. But dividing both sides by 2
does not produce a valid congruence since 14/2 = 7 and 8/2 = 4, but
7 ̸≡ 4 mod 6.

▶ See Section 4.3 Theorem 7 for conditions when division is ok.

Sandeep Kumar Discrete Structures for Computing 15 / 96

https://schnekli-tamu.uc.r.appspot.com/modm

Computing the (modm) function of Products and Sums

We use the following corollary to Theorem 5 to compute the remainder of
the product or sum of two integers when divided by m from the
remainders when each is divided by m.

Corollary: Let m be a positive integer and let a and b be integers. Then,

(a+ b) mod m = ((a mod m) + (b mod m)) mod m

ab mod m = ((a mod m) · (b mod m)) mod m

. .
Why? ∵ a ≡ a (mod m), b ≡ b (mod m). Apply Theorem 5.

Sandeep Kumar Discrete Structures for Computing 16 / 96

Arithmetic Modulo m
Skip for now

Let Zm be the set of nonnegative integers less than m: {0, 1, . . . ,m − 1}
The operation +m is defined as a+m b = (a+ b) mod m. This is
addition modulo m.

The operation ·m is defined as a ·m b = (a · b) mod m. This is
multiplication modulo m.

Using these operations is said to be doing arithmetic modulo m.

Example: Find 7 +11 9 and 7 ·11 9.
7 +11 9 = (7 + 9) mod 11 = 16 mod 11 = 5

7 ·11 9 = (7 · 9) mod 11 = 63 mod 11 = 8

Sandeep Kumar Discrete Structures for Computing 17 / 96

Arithmetic Modulo m . . .
Skip for now

The operations +m and ·m satisfy many of the same properties as ordinary
addition and multiplication.

Closure: If a and b ∈ Zm , then a+m b and a ·m b ∈ Zm.

Associativity : If a, b, c belong to Zm , then

(a+m b) +m c = a+m (b +m c), and
(a ·m b) ·m c = a ·m (b ·m c)

Commutativity : If a and b belong to Zm , then a+m b = b +m a and
a ·m b = b ·m a.

Identity elements: The elements 0 and 1 are identity elements for
addition and multiplication modulo m, respectively.

If a ∈ Zm, then a+m 0 = a, and a ·m 1 = a.

Sandeep Kumar Discrete Structures for Computing 18 / 96

Arithmetic Modulo m . . .
Skip for now

Additive inverses: If a ̸= 0 belongs to Zm , then m − a is the additive
inverse of a modulo m and 0 is its own additive inverse.

▶ a+m (m − a) = 0 and 0 +m 0 = 0

Distributivity : If a, b, c belong to Zm , then
▶ a ·m (b +m c) = (a ·m b) +m (a ·m c), and

▶ (a+m b) ·m c = (a ·m c) +m (b ·m c).

Exercises 42-44 ask for proofs of these properties.

Multiplicatative inverses have not been included since they do not always
exist. For example, there is no multiplicative inverse of 2 modulo 6.

Using the terminology of abstract algebra, Zm with +m is a commutative
group and Zm with +m and ·m is a commutative ring.

Sandeep Kumar Discrete Structures for Computing 19 / 96

Properties of modular arithmetic

For integers a and b and k > 0:

k mod k = 0
(a+ b) mod k = [(a mod k) + (b mod k)] mod k

ab mod k = [(a mod k) · (b mod k)] mod k
ab mod k = [(a mod k)b] mod k

ab mod k ̸= (a mod k) · (b mod k) in general.

14 mod 6 = 2, and 5 mod 6 = 5, but

(14 · 5) mod 6 = 4 ̸= 2 · 5.

Sandeep Kumar Discrete Structures for Computing 20 / 96

Subsection 1

Integer Representations and Algorithms

Sandeep Kumar Discrete Structures for Computing 21 / 96

Section Summary

Integer Representations

Base b Expansions

Binary Expansions

Octal Expansions

Hexadecimal Expansions

Base Conversion Algorithm

Algorithms for Integer Operations

Sandeep Kumar Discrete Structures for Computing 22 / 96

Representations of Integers

In the modern world, we use decimal, or base 10, notation to
represent integers. For example when we write 965, we mean

9 · 102 + 6 · 101 + 5 · 100

We can represent numbers using any base b, where b > 1.

The bases b = 2 (binary), b = 8 (octal), and b = 16 (hexadecimal)
are important for computing and communications

The ancient Mayans used base 20 and the ancient Babylonians used
base 60.

Sandeep Kumar Discrete Structures for Computing 23 / 96

Base b Representations

We can use positive integer b > 1 as a base, because of this theorem:

Theorem: Let b be a positive integer > 1. Then if n is a positive integer,
it can be expressed uniquely in the form:

n = akb
k + ak−1b

k−1 + · · ·+ a1b + a0

where k is a nonnegative integer, a0, a1, . . . ak are nonnegative integers
less than b, and ak ̸= 0. The aj , j = 0, . . . , k are called the base-b digits of
the representation.

The representation of n given in the Theorem above is called the base b
expansion of n and is denoted by (akak−1 . . . a1a0)b.

We usually omit the subscript 10 for base 10 expansions.

Sandeep Kumar Discrete Structures for Computing 24 / 96

Binary Expansions

Most computers represent integers and do arithmetic with binary (base 2)
expansions of integers. In these expansions, the only digits used are 0, 1.

Decimal expansion of (1 0101 1111)2?

1 ·28+0 ·27+1 ·26+0 ·25+1 ·24+1 ·23+1 ·22+1 ·21+1 ·20 = 351

What is the decimal expansion of the integer that has (11011)2 as its
binary expansion?

(11011)2 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 27

Sandeep Kumar Discrete Structures for Computing 25 / 96

Octal Expansions

The octal expansion (base 8) uses the digits {0, 1, 2, 3, 4, 5, 6, 7}.
What is the decimal expansion of the number with octal expansion
(7016)8 ?

7 · 83 + 0 · 82 + 1 · 81 + 6 · 80 = 3598

What is the decimal expansion of the number with octal

1 · 82 + 1 · 81 + 1 · 80 = 64 + 8 + 1 = 73

Sandeep Kumar Discrete Structures for Computing 26 / 96

Hexadecimal Expansions

The hexadecimal expansion needs 16 digits, but our decimal system
provides only 10. So letters are used for the additional symbols. The
hexadecimal system uses the digits

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C ,D,E ,F}

The letters A through F represent the decimal numbers 10 through 15.

What is the decimal expansion of the number with hexadecimal
expansion (2AE0B)16?

2 · 164 + 10 · 163 + 14 · 162 + 0 · 161 + 11 · 160 = 175627

What is the decimal expansion of the number with hexadecimal
expansion (E5)16?

14 · 161 + 5 · 160 = 224 + 5 = 229

Sandeep Kumar Discrete Structures for Computing 27 / 96

Base Conversion

To construct the base b expansion of an integer n:

Divide n by b to obtain a quotient and remainder.

n = bq0 + a0, 0 ≤ a0 < b

The remainder, a0, is the rightmost digit in the base b expansion of n.
Next, divide q0 by b.

q0 = bq1 + a1, 0 ≤ a1 < b

The remainder, a1, is the second digit from the right in the base b
expansion of n.

Continue by successively dividing the quotients by b, obtaining the
additional base b digits as the remainder. The process terminates
when the quotient is 0.

Sandeep Kumar Discrete Structures for Computing 28 / 96

Proof of Base Conversion

procedure base b expansion(n, b: positive integers with b > 1)
q := n

k := 0

while (q ̸= 0)
ak := q mod b
q := q div b
k := k + 1

return (ak−1, . . . , a1, a0) {base b expansion of n}

q represents the quotient obtained by successive divisions by b,
starting with q = n.

The digits in the base b expansion are the remainders of the division
given by q mod b.

The algorithm terminates when q = 0 is reached.

Sandeep Kumar Discrete Structures for Computing 29 / 96

Base Conversion

Find the octal expansion of (12345)10

Solution: Successively dividing by 8 gives:

12345 = 8 · 1543 + 1

1543 = 8 · 192 + 7

192 = 8 · 24 + 0

24 = 8 · 3 + 0

3 = 8 · 0 + 3

The remainders are the digits from right to left yielding (30071)8.

Sandeep Kumar Discrete Structures for Computing 30 / 96

Comparison of Hexadecimal, Octal, and Binary
Representations

Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15

Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Oct 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

Bin 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

Initial 0s are not shown.

Each octal digit corresponds to a block of 3 binary digits.

Each hexadecimal digit corresponds to a block of 4 binary digits.

So, conversion between binary, octal, and hexadecimal is easy.

Sandeep Kumar Discrete Structures for Computing 31 / 96

Conversion Between Binary, Octal, and Hexadecimal
Expansions

Find the octal and hexadecimal expansions of (11111010111100)2.

To convert to octal, we group the digits into blocks of three

(011 111 010 111 100)2

=(011)·84+(111)·83+(010)·82+(111)·81+(100)·80

adding initial 0s as needed. The blocks from left to right correspond
to the digits 3, 7, 2, 7, 4. Hence, the solution is (37274)8.

To convert to hexadecimal, we group the digits into blocks of four

(0011 1110 1011 1100)2

adding initial 0s as needed. The blocks from left to right correspond
to the digits 3,E ,B,C . Hence, the solution is (3EBC)16.

Sandeep Kumar Discrete Structures for Computing 32 / 96

Binary Addition of Integers

Algorithms for performing operations with integers using their binary
expansions are important as computer chips work with binary numbers.
Each digit is called a bit.

procedure add(a, b: positive integers)

{binary expansions of a and b are (an−1, an−2, . . . a0)2 and

(bn−1, bn−2, . . . , b0)2, respectively}
c := 0

for j := 0 to n-1

d := ⌊(aj + bj + c)/2⌋ carry when sum ≥ 2
sj := aj + bj + c − 2d 0 when ≤ 2, 1 when > 2
c := d

sn := c
return(s0, s1, . . . sn) {the binary expansion of the sum is (sn, sn−1, . . . , s0)2}

The number of additions of bits used by the algorithm to add two n-bit
integers is O(n).

Sandeep Kumar Discrete Structures for Computing 33 / 96

Binary Multiplication of Integers

Algorithm for computing the product of two n bit integers.

procedure multiply(a, b: positive integers)

{binary expansions of a and b are (an−1, an−2, . . . a0)2 and

(bn−1, bn−2, . . . , b0)2, respectively}
for j := 0 to n-1

if bj = 1 then

cj = a shifted j places

else

cj := 0
{c0, c1, . . . , cn−1 are the partial products}
p := 0

for j := 0 to n − 1
p := p + cj

return p {p is the value of ab}

The number of additions of bits used by the algorithm to multiply two
n-bit integers is O(n2).

Sandeep Kumar Discrete Structures for Computing 34 / 96

Modular Exponentiation
FYIO

Say you want to compute 6469 mod 7. You could compute

6× 6× 6× · · · · · · 469 times

Or, observe that

469 = 1110101012 = 28 + 27 + 26 + 24 + 22 + 20

That is
6469 = 62

8 × 62
7 × 62

6 × 62
4 × 62

2 × 62
0

So instead compute each term individually with one multiply each. That
is, compute 62, 64, 68, 616, 632, 664, 6128, 6256 by repeated squaring.

Sandeep Kumar Discrete Structures for Computing 35 / 96

Binary Modular Exponentiation
FYIO

In cryptography, it is important to be able to find bn (mod m) efficiently,
where b, n,m are large integers.

Use the binary expansion of n, n = (ak−1, . . . , a1, a0)2, to compute bn .

Note that:
bn = bak−1·2k−1+···+a1·2+a0

Therefore, to compute bn, we need only compute the values of

b, b2, (b2)2 = b4, (b4)2 = b8, . . .

and the multiply the terms in this list, where aj = 1.

Example: Compute 311 using this method.

Note that 11 = (1011)2 so that

311 = 383231 = ((32)2)23231 = (92)2 · 9 · 3 = (81)2 · 9 · 3 = 6561 · 9 · 3 = 117, 147

Sandeep Kumar Discrete Structures for Computing 36 / 96

Binary Modular Exponentiation Algorithm
FYIO

procedure modular exponentiation(b: integer, n = (ak−1ak−2a1a0)2,
m: positive integers)

x := 1

power := b mod m

for i := 0 to k-1

if ai = 1 then

x := x · power
power := (power · power) mod m

return x {x ≡ bn mod m}

O((logm)2 log n) bit operations are used to find bn mod m.

Sandeep Kumar Discrete Structures for Computing 37 / 96

Subsection 2

Primes and Greatest Common Divisors

Sandeep Kumar Discrete Structures for Computing 38 / 96

Section Summary

Prime Numbers and their Properties

Conjectures and Open Problems About Primes

Greatest Common Divisors and Least Common Multiples

The Euclidian Algorithm

GCDs as Linear Combinations

Sandeep Kumar Discrete Structures for Computing 39 / 96

Primes

Definition: A positive integer p > 1 is called prime if the only positive
factors of p are 1 and p. A positive integer that is greater than 1 and is
not prime is called composite.

Example: The integer 7 is prime because its only positive factors are 1 and
7, but 9 is composite because it is divisible by 3.

Sandeep Kumar Discrete Structures for Computing 40 / 96

The Fundamental Theorem of Arithmetic

Theorem: Every positive integer > 1 can be written uniquely as a prime
or as the product of two or more primes where the prime factors are
written in order of non-decreasing size.

Examples:

100 = 2 · 2 · 5 · 5 = 22 · 52.

641 = 641.

999 = 3 · 3 · 3 · 37 = 33 · 37.

1024 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 210.

. .

Let n be the smallest non-prime that cannot be represented as a
product of primes. Then n is a product of composites, which are
product of primes!

Uniqueness shown in a later slide.

Sandeep Kumar Discrete Structures for Computing 41 / 96

The Sieve of Erastosthenes

The Sieve of Erastosthenes can be used to find all primes not exceeding a
specified positive integer. For example, begin with the list of integers
between 1 and 100.

Delete all the integers, other than 2, divisible by 2.

Delete all the integers, other than 3, divisible by 3.

Next, delete all the integers, other than 5, divisible by 5.

Next, delete all the integers, other than 7, divisible by 7.

Since all the remaining integers are not divisible by any of the
previous integers, other than 1, the primes are:

{2, 3, 5, 7, 11, 15, 1719, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

Sandeep Kumar Discrete Structures for Computing 42 / 96

The Sieve of Erastosthenes

If an integer n is composite, then it has a prime divisor less than or equal to√
n.

To see this, note that if n = ab, then a ≤
√
n or b ≤

√
n.

▶ By contradiction, what would happen if both a, b >
√
n?

Trial division, a very inefficient method of determining if a number n is
prime, is to try every integer i ≤ n and see if n is divisible by i .

1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

Sandeep Kumar Discrete Structures for Computing 43 / 96

Infinitude of Primes ✗

Theorem: There are infinitely many primes. (Euclid)

Proof: Assume finitely many primes: p1, p2, . . . , pn

Let q = p1p2 · · · pn + 1.

Either q is prime or by the fundamental theorem of arithmetic it is a
product of primes.

▶ But none of the primes pj divides q since if pj | q, then pj divides
q − p1p2 · · · pn = 1.

▶ Hence, there is a prime not on the list p1, p2, . . . , pn. It is either q, or if
q is composite, it is a prime factor of q. This contradicts the
assumption that p1, p2, . . . , pn are all the primes.

Consequently, there are infinitely many primes.

This proof was given by Euclid in The Elements. The proof is considered
to be one of the most beautiful in all mathematics. It is the first proof in
The Book, inspired by the famous mathematician Paul Erdös imagined
collection of perfect proofs maintained by God.

Sandeep Kumar Discrete Structures for Computing 44 / 96

Representing Functions
FYIO

Definition: Prime numbers of the form 2p − 1, where p is prime, are
called Mersenne primes.

22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 37, and 27 − 1 = 127 are Mersenne
primes.

211 − 1 = 2047 is not a Mersenne prime since 2047 = 23× 89.

There is an efficient test for determining if 2p − 1 is prime.

The largest known prime numbers are Mersenne primes.

As of mid 2011, 47 Mersenne primes were known, the largest is
243,112,609 − 1, which has nearly 13 million decimal digits.

The Great Internet Mersenne Prime Search (GIMPS) is a distributed
computing project to search for new Mersenne Primes.

See http://www.mersenne.org/.

Sandeep Kumar Discrete Structures for Computing 45 / 96

http://www.mersenne.org/

Distribution of Primes
FYIO

Mathematicians have been interested in the distribution of prime numbers
among the positive integers. In the nineteenth century, the prime number
theorem was proved which gives an asymptotic estimate for the number of
primes not exceeding x .

Prime Number Theorem: The ratio of the number of primes not
exceeding x and x/ ln x approaches 1 as x grows without bound.

The theorem tells us that the number of primes not exceeding x , can
be approximated by x/ ln x .

The odds that a randomly selected positive integer < n is prime are
approximately (n/ ln n)/n = 1/ ln n.

Sandeep Kumar Discrete Structures for Computing 46 / 96

Distribution of Primes
FYIO

 0

 5×10
6

 1×10
7

 1.5×10
7

 2×10
7

 2.5×10
7

 3×10
7

 3.5×10
7

 4×10
7

 4.5×10
7

 5×10
7

 0 1×10
8

 2×10
8

 3×10
8

 4×10
8

 5×10
8

 6×10
8

 7×10
8

 8×10
8

 9×10
8

 1×10
9

x/log(x)

Sandeep Kumar Discrete Structures for Computing 47 / 96

Primes and Arithmetic Progressions
FYIO

Euclid’s proof that there are infinitely many primes can be easily adapted
to show that there are infinitely many primes in the following
4k + 3, k = 1, 2, . . . (See Exercise 55)

In the 19th century G. Lejuenne Dirichlet showed that every arithmetic
progression ka+ b, k = 1, 2, . . . where a and b have no common factor
greater than 1 contains infinitely many primes. (The proof is beyond the
scope of the text.)

Are there long arithmetic progressions made up entirely of primes?

5, 11, 17, 23, 29 is an arithmetic progression of five primes.

199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089 is an arithmetic
progression of ten primes.

In the 1930s, Paul Erdös conjectured that for every positive integer n > 1,
there is an arithmetic progression of length n made up entirely of primes.
This was proven in 2006, by Ben Green and Terrence Tao.

Sandeep Kumar Discrete Structures for Computing 48 / 96

Generating Primes
FYIO

The problem of generating large primes is of both theoretical and practical
interest. We will see (in Section 4.6) that finding large primes with hundreds
of digits is important in cryptography.

So far, no useful closed formula that always produces primes has been found.
There is no simple function f (n) such that f (n) is prime for all positive
integers n.

But f (n) = n2 − n + 41 is prime for all integers 1, 2, . . . , 40. Because of this,
we might conjecture that f (n) is prime for all positive integers n. But
f (41) = 412 is not prime.

More generally, there is no polynomial with integer coefficients such that f (n)
is prime for all positive integers n. (See supplementary Exercise 23.)

Fortunately, we can generate large integers which are almost certainly primes.
See Chapter 7.

Sandeep Kumar Discrete Structures for Computing 49 / 96

Conjectures about Primes
FYIO

Even though primes have been studied extensively for centuries, many
conjectures about them are unresolved, including:

Goldbach’s Conjecture: Every even integer n, n > 2, is the sum of two
primes. It has been verified by computer for all positive even integers up
to 1.61018. The conjecture is believed to be true by most mathematicians.
There are infinitely many primes of the form n2 + 1, where n is a positive
integer. But it has been shown that there are infinitely many primes of
the form n2 + 1, where n is a positive integer or the product of at most
two primes.
The Twin Prime Conjecture: The twin prime conjecture is that there are
infinitely many pairs of twin primes. Twin primes are pairs of primes that
differ by 2. Examples are 3 and 5, 5 and 7, 11 and 13, etc. The current
world’s record for twin primes (as of mid 2011) consists of numbers
65, 516, 468, 3552333,333 ± 1, which have 100, 355 decimal digits.

Sandeep Kumar Discrete Structures for Computing 50 / 96

Greatest Common Divisor

Definition: Let a and b be integers, not both zero. The largest integer d
such that d | a and also d | b is called the greatest common divisor of a
and b. The greatest common divisor of a and b is denoted by gcd(a, b).

One can find greatest common divisors of small numbers by inspection.

What is the greatest common divisor of 24 and 36?
▶ gcd(24, 36) = 12

What is the greatest common divisor of 17 and 22?
▶ gcd(17, 22) = 1

Sandeep Kumar Discrete Structures for Computing 51 / 96

Greatest Common Divisor

Definition: The integers a and b are relatively prime if their greatest
common divisor is 1.

Example: 17 and 22.

Definition: The integers a1, a2, . . . , an are pairwise relatively prime if
gcd(ai , aj) = 1 whenever 1 ≤ i < j ≤ n.
. .

Determine whether the integers 10, 17, 21 are pairwise relatively
prime.

gcd(10, 17) = 1, gcd(10, 21) = 1, and gcd(17, 21) = 1. So 10, 17,
and 21 are pairwise relatively prime.

Determine whether the integers 10, 19, 24 are pairwise relatively
prime.

Because gcd(10, 24) = 2, ∴ 10, 19, and 24 are not pairwise relatively
prime.

Sandeep Kumar Discrete Structures for Computing 52 / 96

Finding the Greatest Common Divisor Using Prime
Factorizations

Suppose the prime factorizations of a and b are:

a = pa11 pa22 . . . pann , b = pb11 pb22 . . . pbnn

where each exponent is ≥ 0, and where all primes occurring in either prime
factorization are included in both. Then,

gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 . . . p

min(an,bn)
n

This formula is valid since the integer on the right (of the equals sign)
divides both a and b. No larger integer can divide both a and b.
. .

Example: 120 = 23 · 3 · 5 500 = 22 · 53

gcd(120, 500) = 2min(3,2) · 3min(1,0) · 5min(1,3) = 22 · 30 · 51 = 20

Finding the gcd of two positive integers using their prime factorizations is not
efficient because there is no efficient algorithm for finding the prime factorization
of a positive integer.

Sandeep Kumar Discrete Structures for Computing 53 / 96

Least Common Multiple

Definition: The least common multiple of the positive integers a and b is the
smallest positive integer that is divisible by both a and b. It is denoted by (a, b).

The least common multiple can also be computed from the prime factorizations.

lcm(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 . . . p

max(an,bn)
n

This number is divided by both a and b and no smaller number is divided by a
and b.
. .

Example: lcm(233572, 2433) = 2max(3,4)3max(5,3)7max(2,0) = 243572

The greatest common divisor and the least common multiple of two integers are related
by:
. .

Theorem 5: Let a and b be positive integers. Then

ab = gcd(a, b)× lcm(a, b)

Proof is Exercise 31, page 289.
Sandeep Kumar Discrete Structures for Computing 54 / 96

The Euclidean Algorithm for finding GCDs

The Euclidian algorithm is an efficient method for computing the greatest
common divisor of two integers. It is based on the idea that

gcd(a, b) = gcd(b mod a, a), a < b

Example: Find gcd(91, 287).

287 = 91 · 3

xx

+ 14

xx
91 = 14 · 6

xx

+ 7

xx
14 = 7 · 2 + 0

287 = 91 · 3 + 14

91 = 14 · 6 + 7

14 = 7 · 2 + 0

Stopping condition: remainder is 0.

gcd(287, 91) = gcd(91, 14) = gcd(14, 7) = 7

Sandeep Kumar Discrete Structures for Computing 55 / 96

Euclidean Algorithm

procedure gcd(a, b: positive integers)

x := a

y := b

while y ̸= 0
r := x mod y
x := y

y := r

return x {gcd(a,b) is x}

In Section 5.3, we’ll see that the time complexity of the algorithm is
O(log b), where a > b.

Sandeep Kumar Discrete Structures for Computing 56 / 96

Correctness of Euclidean Algorithm

Lemma 1: Let a = bq + r , where a, b, q, and r are integers. Then

gcd(a, b) = gcd(b, r)

Proof:

Suppose that d divides both a and b.
▶ Then d also divides a− bq = r (by Theorem 1 of Section 4.1).
▶ Hence, any common divisor of a and b must also be any common

divisor of b and r .

Suppose that d divides both b and r .
▶ Then d also divides bq + r = a.
▶ Hence, any common divisor of b and r must also be a common divisor

of a and b.

Therefore, gcd(a, b) = gcd(b, r).

Sandeep Kumar Discrete Structures for Computing 57 / 96

gcds as Linear Combinations

B?zout’s Theorem: If a and b are positive integers, then there exist
integers s and t such that

gcd(a, b) = sa+ tb

Proof in exercises of Section 5.2. Illustration on the next slide.

Sandeep Kumar Discrete Structures for Computing 58 / 96

EGCD

The Extended Euclidean Algorithm EGCD(a, b) permits one to find

b−1 (mod a) and a−1 (mod b)

provided that GCD(a, b) = 1, in addition to GCD(a, b).

Start with the vectors
x1 x2 x3
1 0 a
0 1 b

and reduce one vector by subtracting a multiple of the other from it
until the result has the third component 1.

Both vectors maintain the invariant ax1 + bx2 = x3.

Eventually, you get an equation of the form ax1 + bx2 = 1.

This gives x2 = b−1 (mod a) and x1 = a−1 (mod b).

Demo.

Sandeep Kumar Discrete Structures for Computing 59 / 96

https://schnekli-tamu.uc.r.appspot.com/egcd

Modular Division

Proposition [TW02, Page 68].

Let a, b, c, n be integers with n ̸= 0 and with GCD(a, n) = 1. If ab ≡ ac
(mod n) then,

b ≡ c (mod n)

Example: 2× 1 ≡ 2× 4 (mod 6), but 1 ̸= 4 (mod 6).

Solving ax ≡ c (mod n) when GCD(a, n) = 1 is now easy.

Dividing a congruence by an integer does not always produce a valid
congruence. Explain using this demo.

▶ The congruence 14 ≡ 8 (mod 6) holds.
▶ But dividing both sides by 2 does not produce a valid congruence, since
▶ 14/2 = 7 and 8/2 = 4, but 7 ̸≡ 4 mod 6.

Sandeep Kumar Discrete Structures for Computing 60 / 96

https://schnekli-tamu.uc.r.appspot.com/modm

Consequences of B?zout’s Theorem
FYIO

Lemma 2: If a, b, and c are positive integers such that gcd(a, b) = 1 and
a | bc, then a | c .

Proof: Assume gcd(a, b) = 1 and a | bc.
Since gcd(a, b) = 1, by B?zout’s Theorem there are integers s and t
such that

sa+ tb = 1

Multiplying both sides of the equation by c , yields sac + tbc = c .

From Theorem 1 of Section 4.1: a | tbc (part ii) and a divides
sac + tbc since a | sac and a | tbc.
We conclude a | c , since sac + tbc = c .

Lemma 3: If p is prime and p | a1a2 · · · an, then p | ai for some i . Proof
uses mathematical induction—see Exercise 64 of Section 5.1)

Lemma 3 is crucial in the proof of the uniqueness of prime factorizations.

Sandeep Kumar Discrete Structures for Computing 61 / 96

Uniqueness of Prime Factorization

We will prove that a prime factorization of a positive integer where the
primes are in nondecreasing order is unique.

Proof: (By contradiction) Suppose that the positive integer n can be
written as a product of primes in two distinct ways:

n = pa11 pa22 · · · pass = qb11 qb22 · · · qbtt
Remove all common primes from the factorizations to get,

▶ ai , bj > 0.
▶ No pi = qj .

But that is not possible.
▶ If pj divides LHS, then it must divide one of the qbii by Lemma 3.

Sandeep Kumar Discrete Structures for Computing 62 / 96

Subsection 3

Solving Congruences

Sandeep Kumar Discrete Structures for Computing 63 / 96

Section Summary

Linear Congruences

The Chinese Remainder Theorem

Computer Arithmetic with Large Integers

Fermat’s Little Theorem

Pseudoprimes

Primitive Roots and Discrete Logarithms

Sandeep Kumar Discrete Structures for Computing 64 / 96

The Chinese Remainder Theorem

In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3,
the remainder is 2; when divided by 5, the remainder is 3; when divided
by 7, the remainder is 2. What will be the number of things?

This puzzle can be translated into the solution of the system of
congruences:

x ≡ 2 (mod 3),

x ≡ 3 (mod 5),

x ≡ 2 (mod 7).

We’ll see how the theorem that is known as the Chinese Remainder
Theorem can be used to solve Sun-Tsu’s problem.

ChatGPT: Is the attribution of the Chinese Remainder Theorem to
Sun-Tsu apocryphal?

Sandeep Kumar Discrete Structures for Computing 65 / 96

The Chinese Remainder Theorem

Theorem 2: (The Chinese Remainder Theorem) Let m1,m2, . . . ,mn be
pairwise relatively prime positive integers > 1 and a1, a2, . . . , an arbitrary
integers. Then the system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

...

x ≡ an (mod mn)

has a unique solution modulo m = m1m2 · · ·mn.

That is, there is a solution x with 0 ≤ x < m and all other solutions are
congruent modulo m to this solution.

Proof: We’ll show that a solution exists by describing a way to construct the
solution. Showing that the solution is unique modulo m is Exercise 30. Show
the isomorphism here.

Sandeep Kumar Discrete Structures for Computing 66 / 96

https://schnekli-tamu.uc.r.appspot.com/crt

The Chinese Remainder Theorem

To construct a solution first let Mk = m/mk for k = 1, 2, . . . , n and let
m = m1m2 · · ·mn.

Since gcd(mk ,Mk) = 1, by Theorem 1, there is an integer yk , an inverse
of Mk modulo mk , such that

Mkyk ≡ 1 (mod mk)

Form the sum

x = a1M1y1 + a2M2y2 + · · ·+ anMnyn

Note that because Mj ≡ 0 (mod mk) whenever j ̸= k , all terms except the
kth term in this sum are congruent to 0 modulo mk .

Because Mkyk ≡ 1 (mod mk), we see that

x ≡ akMkyk ≡ ak (mod mk), for k = 1, 2, . . . , n

Hence, x is a simultaneous solution to the n congruences.Sandeep Kumar Discrete Structures for Computing 67 / 96

The Chinese Remainder Theorem

Consider the 3 congruences from Sun-Tsu’s problem:

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7)

Let m = 3 · 5 · 7 = 105, M1 = m/3 = 35, M2 = m/5 = 21,
M3 = m/7 = 15.

We see that
▶ 2 is an inverse of M1 = 35 modulo 3 since 35 · 2 ≡ 2 · 2 ≡ 1 (mod 3).
▶ 1 is an inverse of M2 = 21 modulo 5 since 21 ≡ 1 (mod 5).
▶ 1 is an inverse of M3 = 15 modulo 7 since 15 ≡ 1 (mod 7).

Hence,
x = a1M1y1 + a2M2y2 + a3M3y3

= 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1
= 233 ≡ 23 (mod 105)

We have shown that 23 is the smallest positive integer that is a
simultaneous solution. Check it!

Sandeep Kumar Discrete Structures for Computing 68 / 96

Fermat’s Little Theorem

Theorem 3: (Fermat’s Little Theorem) If p is prime and a is an integer
not divisible by p, then ap−1 ≡ 1 (mod p).

Furthermore, for every integer a we have ap ≡ a (mod p). Proof
outlined in Exercise 19.

Fermat’s little theorem is useful in computing the remainders modulo
p of large powers of integers.

. .

Find 7222 (mod 11).

By Fermat’s little theorem, we know that 710 ≡ 1 (mod 11), and so
(710)k ≡ 1 (mod 11), for every positive integer k . Therefore,

7222 = 722·10+2 = (710)22 · 72 ≡ (1)22 · 49 ≡ 5 (mod 11)

Hence, 7222 (mod 11) = 5.

Sandeep Kumar Discrete Structures for Computing 69 / 96

Fermat’s Little Theorem—Proof Sketch

Consider

P = 1a · 2a · 3a · · · (p − 2)a · (p − 1)a = ap−1(p − 1)!

1 · a ̸= 2 · a ̸= 3 · a ̸= · · · ≠ (p− 1) · a because the residue system mod
p is a field and a has an inverse in it.

Thus 1a, 2a, . . . merely enumerate the numbers 1 . . . (p − 1) in some
order.

Canceling out (p− 1)! from both sides [because (p− 1)! is coprime to
p] of the equation we get ap−1 = 1.

Sandeep Kumar Discrete Structures for Computing 70 / 96

Pseudoprimes
FYIO

By Fermat’s little theorem, for n > 2 prime,

2n−1 ≡ q (mod n)

But if this congruence holds, n may not be prime. Composite integers n
such that 2n−1 ≡ 1 (mod n) are called pseudoprimes to the base 2.

Example: The integer 341 is a pseudoprime to the base 2.

341 = 11 · 31
2340 ≡ 1 (mod 341) (see in Exercise 37)

We can replace 2 by any integer b > 2.

Definition: Let b be a positive integer. If n is a composite integer, and
bn−1 ≡ 1 (mod n), then n is called a pseudoprime to the base b.

Sandeep Kumar Discrete Structures for Computing 71 / 96

Pseudoprimes
FYIO

Given a positive integer n, such that 2n−1 ≡ 1 (mod n):

If n does not satisfy the congruence, it is composite.

If n does satisfy the congruence, it is either prime or a pseudoprime to
the base 2.

Doing similar tests with additional bases b, provides more evidence as to
whether n is prime.

Among the positive integers not exceeding a positive real number x ,
compared to primes, there are relatively few pseudoprimes to the base b.

For example, among the positive integers less than 1010 there are
455, 052, 512 primes, but only 14, 884 pseudoprimes to the base 2.

Sandeep Kumar Discrete Structures for Computing 72 / 96

Carmichael Numbers I
FYIO

There are composite integers n that pass all tests with bases b such that
gcd(b, n) = 1.

Definition: A composite integer n that satisfies the congruence bn−1 ≡ 1
(mod n) for all positive integers b with gcd(b, n) = 1 is called a
Carmichael number.

Example: The integer 561 is a Carmichael number. To see this:

561 is composite, since 561 = 3 · 11 · 13.
If gcd(b, 561) = 1, then gcd(b, 3) = 1, then
gcd(b, 11) = gcd(b, 17) = 1.

Using Fermat’s Little Theorem: b2 ≡ 1 (mod 3), b10 ≡ 1 (mod 11),
b16 ≡ 1 (mod 17).

Sandeep Kumar Discrete Structures for Computing 73 / 96

Carmichael Numbers II
FYIO

Then,

b560 =
(
b2
)280 ≡ 1(mod3),

b560 =
(
b10

)56 ≡ 1(mod11),

b560 =
(
b16

)35 ≡ 1(mod17)

It follows (see Exercise 29) that b560 ≡ 1 (mod 561) for all positive
integers b with gcd(b, 561) = 1. Hence, 561 is a Carmichael number.

Even though there are infinitely many Carmichael numbers, there are other
tests (described in the exercises) that form the basis for efficient
probabilistic primality testing. (see Chapter 7)

Sandeep Kumar Discrete Structures for Computing 74 / 96

Primitive Roots
FYIO

Definition: A primitive root modulo a prime p is an integer r in Zp such
that every nonzero element of Zp is a power of r .

Example: Since every element of Z11 is a power of 2, 2 is a primitive root
of 11.

Powers of 2 modulo 11: 21 = 2, 22 = 4, 23 = 8, 24 = 5, 25 = 10, 26 = 9,
27 = 7, 28 = 3, 210 = 2.

Example: Since not all elements of Z11 are powers of 3, 3 is not a
primitive root of 11.

Powers of 3 modulo 11: 31 = 3, 32 = 9, 33 = 5, 34 = 4, 35 = 1, and the
pattern repeats for higher powers.

Important Fact: There is a primitive root modulo p for every prime
number p.

Sandeep Kumar Discrete Structures for Computing 75 / 96

Discrete Logarithms
FYIO

Suppose p is prime and r is a primitive root modulo p. If a is an integer
between 1 and p − 1, that is an element of Zp, there is a unique exponent e
such that r e (mod p) = a in Zp, that is, r e (mod p) = a.

Definition: Suppose that p is prime, r is a primitive root modulo p, and a is an
integer between 1 and p − 1, inclusive. If r e (mod p) = a and 1 ≤ e ≤ p − 1,
we say that e is the discrete logarithm of a modulo p to the base r and we write
logr a = e (where the prime p is understood).

Example 1: We write log2 3 = 8 since the discrete logarithm of 3 modulo 11 to
the base 2 is 8 as 28 = 3 modulo 11.

Example 2: We write log2 5 = 4 since the discrete logarithm of 5 modulo 11 to
the base 2 is 4 as 24 = 5 modulo 11.

There is no known polynomial time algorithm for computing the discrete
logarithm of a modulo p to the base r (when given the prime p, a root r modulo
p, and a positive integer a ∈ Zp). The problem plays a role in cryptography as
will be discussed in Section 4.6.

Sandeep Kumar Discrete Structures for Computing 76 / 96

Subsection 4

Applications of Congruences

Sandeep Kumar Discrete Structures for Computing 77 / 96

FYIO—the entire section

Hashing Functions

Pseudorandom Numbers

Check Digits

Sandeep Kumar Discrete Structures for Computing 78 / 96

Hashing Functions I
FYIO

Definition: A hashing function h assigns memory location h(k) to the
record that has k as its key.

A common hashing function is h(k) = k mod m, where m is the
number of memory locations.

Because this hashing function is onto, all memory locations are
possible.

Example: Let h(k) = k mod 111. This hashing function assigns the
records of customers with social security numbers as keys to memory
locations in the following manner:

h(064212848) = 064212848 mod 111 = 14

h(037149212) = 037149212 mod 111 = 65

Sandeep Kumar Discrete Structures for Computing 79 / 96

Hashing Functions II
FYIO

h(107405723) = 107405723 mod 111 = 14, but since location 14 is
already occupied, the record is assigned to the next available position,
which is 15.

The hashing function is not one-to-one as there are many more possible
keys than memory locations. When more than one record is assigned to
the same location, we say a collision occurs. Here a collision has been
resolved by assigning the record to the first free location.

For collision resolution, we can use a linear probing function:

h(k, i) = (h(k) + i) mod m, 0 ≤ i < m

There are many other methods of handling with collisions. You may cover
these in a later CS course.

Sandeep Kumar Discrete Structures for Computing 80 / 96

Pseudorandom Numbers I
FYIO

Randomly chosen numbers are needed for many purposes, including
computer simulations.

Pseudorandom numbers are not truly random since they are
generated by systematic methods.

The linear congruential method is one commonly used procedure for
generating pseudorandom numbers.

Four integers are needed: the modulus m, the multiplier a, the
increment c , and seed x0, with 2 ≤ a < m, 0 ≤ c < m, 0 ≤ x0 < m.

We generate a sequence of pseudorandom numbers {xn}, with
0 ≤ xn < m for all n, by successively using the recursively defined
function

xn+1 = (axn + c) (mod m)

(an example of a recursive definition, discussed in Section 5.3)

Sandeep Kumar Discrete Structures for Computing 81 / 96

Pseudorandom Numbers II
FYIO

If psuedorandom numbers between 0 and 1 are needed, then the
generated numbers are divided by the modulus, xn/m.

Sandeep Kumar Discrete Structures for Computing 82 / 96

Pseudorandom Numbers I
FYIO

Example: Find the sequence of pseudorandom numbers generated by the
linear congruential method with modulus m = 9, multiplier a = 7,
increment c = 4, and seed x0 = 3.

Solution: Compute the terms of the sequence by successively using the
congruence

xn+1 = (7xn + 4) mod 9, with x0 = 3.

x1 = 7x0 + 4 mod 9 = 7 · 3 + 4 mod 9 = 25 mod 9 = 7,

x2 = 7x1 + 4 mod 9 = 7 · 7 + 4 mod 9 = 53 mod 9 = 8,

x3 = 7x2 + 4 mod 9 = 7 · 8 + 4 mod 9 = 60 mod 9 = 6,

x4 = 7x3 + 4 mod 9 = 7 · 6 + 4 mod 9 = 46 mod 9 = 1,

x5 = 7x4 + 4 mod 9 = 7 · 1 + 4 mod 9 = 11 mod 9 = 2,

x6 = 7x5 + 4 mod 9 = 7 · 2 + 4 mod 9 = 18 mod 9 = 0,

x7 = 7x6 + 4 mod 9 = 7 · 0 + 4 mod 9 = 4 mod 9 = 4,

x8 = 7x7 + 4 mod 9 = 7 · 4 + 4 mod 9 = 32 mod 9 = 5,

x9 = 7x8 + 4 mod 9 = 7 · 5 + 4 mod 9 = 39 mod 9 = 3.

Sandeep Kumar Discrete Structures for Computing 83 / 96

Pseudorandom Numbers II
FYIO

The sequence generated is 3, 7, 8, 6, 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, 5, 3, . . .

It repeats after generating 9 terms.

Commonly, computers use a linear congruential generator with increment
c = 0. This is called a pure multiplicative generator. Such a generator
with modulus 231 − 1 and multiplier 75 = 16, 807 generates 231 − 2
numbers before repeating.

Sandeep Kumar Discrete Structures for Computing 84 / 96

Check Digits: UPCs
FYIO

A common method of detecting errors in strings of digits is to add an
extra digit at the end, which is evaluated using a function. If the final digit
is not correct, then the string is assumed not to be correct.

Example: Retail products are identified by their Universal Product Codes
(UPCs). Usually these have 12 decimal digits, the last one being the check
digit. The check digit is determined by the congruence:

3x1+x2+3x3+x4+3x5+x6+3x7+x8+3x9+x10+3x11+x12 ≡ 0 (mod 10)

Suppose that the first 11 digits of the UPC are 79357343104. What
is the check digit?

Is 041331021641 a valid UPC?

Sandeep Kumar Discrete Structures for Computing 85 / 96

Check Digits: UPCs. . .
FYIO

Solution:

3 · 7 + 9 + 3 · 3 + 5 + 3 · 7 + 3 + 3 · 4 + 3 + 3 · 1 + 0 + 3 · 4 + x12 ≡ 0 (mod 10)

21 + 9 + 9 + 5 + 21 + 3 + 12 + 3 + 3 + 0 + 12 + x12 ≡ 0 (mod 10)

98 + x12 ≡ 0 (mod 10)

x12 ≡ 2 (mod 10). So, the check digit is 2.

3 · 0 + 4 + 3 · 1 + 3 + 3 · 3 + 1 + 3 · 0 + 2 + 3 · 1 + 6 + 3 · 4 + 1 ≡ 0 (mod 10)

0 + 4 + 3 + 3 + 9 + 1 + 0 + 2 + 3 + 6 + 12 + 1 = 44 ≡ 4 ̸≡ 0 (mod 10)

Hence, 041331021641 is not a valid UPC.

See Wikipedia.

Sandeep Kumar Discrete Structures for Computing 86 / 96

https://en.wikipedia.org/wiki/Universal_Product_Code

Check Digits: ISBNs
FYIO

Books are identified by an International Standard Book Number
(ISBN-10), a 10 digit code. The first 9 digits identify the language, the
publisher, and the book. The tenth digit is a check digit, which is
determined by the following congruence

x10 ≡
9∑

i=1

ixi (mod 11)

The validity of an ISBN-10 number can be evaluated with the equivalent

Suppose that the first 9 digits of the ISBN-10 are 007288008. What
is the check digit?

Is 084930149X 1 a valid ISBN10?

1X is used for the digit 10.
Sandeep Kumar Discrete Structures for Computing 87 / 96

Check Digits: ISBNs. . .
FYIO

Solution:

X10 ≡ 1 · 0 + 2 · 0 + 3 · 7 + 4 · 2 + 5 · 8 + 6 · 8 + 7 · 0 + 8 · 0 + 9 · 8 (mod 11)

X10 ≡ 0 + 0 + 21 + 8 + 40 + 48 + 0 + 0 + 72 (mod 11)

X10 ≡ 189 ≡ 2 (mod 11). Hence, X10 = 2.

1 · 0 + 2 · 8 + 3 · 4 + 4 · 9 + 5 · 3 + 6 · 0 + 7 · 1 + 8 · 4 + 9 · 9 + 10 · 10 =

0 + 16 + 12 + 36 + 15 + 0 + 7 + 32 + 81 + 100 = 299 ≡ 2 ≡ 0 (mod 11)

Hence, 084930149X is not a valid ISBN-10.

A single error is an error in one digit of an identification number and a
transposition error is the accidental interchanging of two digits. Both of these
kinds of errors can be detected by the check digit for ISBN-10. (see text for more
details)

Sandeep Kumar Discrete Structures for Computing 88 / 96

Subsection 5

Cryptography

Sandeep Kumar Discrete Structures for Computing 89 / 96

Section Summary

Classical Cryptography

Cryptosystems

Public Key Cryptography

RSA Cryptosystem

Cryptographic Protocols

Primitive Roots and Discrete Logarithms

Sandeep Kumar Discrete Structures for Computing 90 / 96

The RSA Cryptosystem

A public key cryptosystem, now known as the RSA system was introduced
in 1976 by three researchers at MIT.

It is now known that the method was discovered earlier by Clifford Cocks,
working secretly for the UK government.

The public encryption key is (n, e), where n = pq (the modulus) is
the product of two large (200 digits) primes p and q,

An exponent e that is relatively prime to (p − 1)(q − 1).

The two large primes can be quickly found using probabilistic
primality tests, discussed earlier.

But n = pq, with approximately 400 digits, cannot be factored in a
reasonable length of time.

Sandeep Kumar Discrete Structures for Computing 91 / 96

RSA Encryption

To encrypt a message using RSA using a key (n, e):

Translate the plaintext message M into sequences of two digit
integers representing the letters. Use 00 for A, 01 for B, etc.

Concatenate the two digit integers into strings of digits.

Divide this string into equally sized blocks of 2N digits where 2N is
the largest even number 2525 . . . 25 with 2N digits that does not
exceed n.

The plaintext message M is now a sequence of integers
m1,m2, . . . ,mk .

Each block (an integer) is encrypted using C = Me (mod n).

Sandeep Kumar Discrete Structures for Computing 92 / 96

RSA Encryption Example

Encrypt the message “STOP” using the RSA cryptosystem with key
(2537, 13).

2537 = 43 · 59, p = 43 and q = 59 are primes and

gcd(e, (p − 1)(q − 1)) = gcd(13, 42 · 58) = 1.

Translate the letters in “STOP” to their numerical equivalents
18 19 14 15.

Divide into blocks of four digits (because 2525 < 2537 < 252525) to
obtain 1819 1415.

Encrypt each block using the mapping C = M13 (mod 2537).

Since 181913 (mod 2537) = 2081 and 141513 (mod 2537) = 2182,
the encrypted message is 2081 2182.

Sandeep Kumar Discrete Structures for Computing 93 / 96

RSA Decryption

To decrypt an RSA ciphertext message, the decryption key d , an
inverse of e modulo (p − 1)(q − 1), is needed.

The inverse exists since gcd(e, (p − 1)(q − 1)) = 1.

With the decryption key d , we can decrypt each block with the
computation M = Cd (mod n).

RSA works as a public key system since,
▶ the only known method of finding d is based on a factorization of n

into primes.
▶ There is currently no known feasible method for factoring large

numbers into primes.

Sandeep Kumar Discrete Structures for Computing 94 / 96

RSA Decryption Example

The message 0981 0461 is received. What is the decrypted message if it
was encrypted using the RSA cipher from the previous example?

The message was encrypted with n = 43 · 59 and exponent 13. An inverse
of 13 modulo 42 · 58 = 2436 is d = 937.

To decrypt a block C , M = C 937 (mod 2537).

Since 0981937 (mod 2537) = 0704 and 0461937 (mod 2537) = 1115,
▶ the decrypted message is 0704 1115.
▶ Translating back to English letters, the message is HELP.

Sandeep Kumar Discrete Structures for Computing 95 / 96

Bibliography I

Ashutosh Gupta and S. Krishna.
Cs 228: Logic for computer science 2022.
https://www.cse.iitb.ac.in/ akg/courses/2022-logic/, January 2022.

Hyunyoung Lee.
Discrete structures for computing.
Class slides for TAMU CSCE 222, 2019.

Phillip Rogaway.
Ecs20 fall 2021 lecture notes, Fall 2021.

Wade Trappe and Lawrence Washington.
Introduction to Cryptography with Coding Theory.
Prentice Hall, 2002.

Sandeep Kumar Discrete Structures for Computing 96 / 96

	Integer Representations and Algorithms
	Primes and Greatest Common Divisors
	Solving Congruences
	Applications of Congruences
	Cryptography

