
Discrete Structures for Computing
CSCE 222

Sandeep Kumar

Many slides based on [Lee19], [Rog21], [GK22]

Sandeep Kumar Discrete Structures for Computing 1 / 75

Induction and Recursion
Chapter 5

©2019 McGraw-Hill Education. All rights reserved. Authorized only for
instructor use in the classroom. No reproduction or further distribution
permitted without the prior written consent of McGraw-Hill Education.

Sandeep Kumar Discrete Structures for Computing 2 / 75

Chapter Summary

Mathematical Induction

Strong Induction

Well-Ordering

Recursive Definitions

Structural Induction

Recursive Algorithms

Sandeep Kumar Discrete Structures for Computing 3 / 75

Section Summary

Mathematical Induction

Examples of Proof by Mathematical Induction

Mistaken Proofs by Mathematical Induction

Guidelines for Proofs by Mathematical Induction

Sandeep Kumar Discrete Structures for Computing 4 / 75

Climbing an Infinite Ladder
Suppose we have an infinite ladder:

1 We can reach the first rung of the ladder.

2 If we can reach a particular rung of the
ladder, then we can reach the next rung.

3 From (1), we can reach the first rung.

▶ Then by applying (2), we can reach
the second rung.

▶ Applying (2) again, the third rung.
And so on.

▶ We can apply (2) any number of times
to reach any particular rung, no
matter how high up.

4 This example motivates proof by
mathematical induction.

Sandeep Kumar Discrete Structures for Computing 5 / 75

Principle of Mathematical Induction

Principle of Mathematical Induction: To prove that P(n) is true for all
positive integers n, we complete these steps:

Basis Step: Show that P(1) is true.

Inductive Step: Show that P(k) → P(k + 1) is true for all positive
integers k .

To complete the inductive step, assuming the inductive hypothesis that
P(k) holds for an arbitrary integer k, show that P(k + 1) must be true.

Climbing an Infinite Ladder:

BASIS STEP: By (1), we can reach rung 1.

INDUCTIVE STEP: Assume the inductive hypothesis that we can
reach rung k. Then by (2), we can reach rung k + 1.

Hence, P(k) → P(k + 1) is true for all positive integers k . We can reach
every rung on the ladder.

Sandeep Kumar Discrete Structures for Computing 6 / 75

Important Points About Using Mathematical Induction

Mathematical induction can be expressed as the rule of inference

P(1) ∧ ∀k(P(k) → P(k + 1)) → ∀n P(n)

where the domain is the set of positive integers.

In a proof by mathematical induction, we don’t assume that P(k) is true
for all positive integers! We show that if we assume that P(k) is true,
then P(k + 1) must also be true.

Proofs by mathematical induction do not always start at the integer 1. In
such a case, the basis step begins at a starting point b where b is an
integer. We will see examples of this soon.

Sandeep Kumar Discrete Structures for Computing 7 / 75

Validity of Mathematical Induction

Mathematical induction is valid because of the well ordering property,
which states that every nonempty subset of the set of positive integers has
a least element (see Section 5.2 and Appendix 1).

Suppose that P(1) holds and P(k) → P(k + 1) is true for all positive
integers k .

Assume there is at least one positive integer n for which P(n) is false.
Then the set S of positive integers for which P(n) is false is
nonempty.

By the well-ordering property, S has a least element, say m.

We know that m ̸= 1 since P(1) holds.

Since m > 1, (m − 1) must be a positive integer. Since (m − 1) < m,
it is not in S , so P(m − 1) must be true.

But then, since the conditional P(k) → P(k + 1) for every positive
integer k holds, P(m) must also be true. This contradicts P(m)
being false.

Hence, P(n) must be true for every positive integer n.
Sandeep Kumar Discrete Structures for Computing 8 / 75

Remembering How Mathematical Induction Works

Consider an infinite sequence of dominoes,
labeled 1, 2, 3, . . .where each domino is
standing.

Let P(n) be the proposition that the nth

domino is knocked over.

We know that the first domino is knocked
down, i.e., P(1) is true.

We also know that whenever the k th

domino is knocked over, it knocks over the
(k + 1)st domino, i.e, P(k) → P(k + 1) is
true for all positive integers k .

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.

Sandeep Kumar Discrete Structures for Computing 9 / 75

Examples of Mathematical Induction

Rain on Mars.
▶ Today it is raining on Mars.
▶ On Mars, it never rains on any day without raining the next day as well.

Delivering milk.
▶ Never leave milk on one day without leaving milk the next day as well.
▶ Does this imply that milk will always be delivered?

What we want is:
▶ Never leave milk on one day without leaving milk the next day as well.
▶ Leave milk today.

Let’s use recursion:
▶ Leave milk today and read this note again tomorrow.

Sandeep Kumar Discrete Structures for Computing 10 / 75

Proving a Summation Formula by Mathematical Induction

Show that1
n∑

i=1

=
n(n + 1)

2

BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.

INDUCTIVE STEP: Assume true for P(k).

The inductive hypothesis is
∑k

i=1 =
k(k+1)

2 . Then,

1 + 2 + . . .+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

1Once we have this conjecture, mathematical induction can be used to prove it
correct.

Sandeep Kumar Discrete Structures for Computing 11 / 75

Conjecturing and Proving Correct a Summation Formula

Conjecture and prove correct a formula for the sum of the first n positive
odd integers. We have:

1 = 1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

. .

We can conjecture that the sum of the first n +ve odd integers is n2,

1 + 3 + 5 + · · ·+ (2n − 1) = n2

We prove the conjecture using mathematical induction.

Sandeep Kumar Discrete Structures for Computing 12 / 75

Conjecturing and Proving Correct a Summation Formula

BASIS STEP: P(1) is true since 12 = 1.

INDUCTIVE STEP: P(k) → P(k + 1) for every positive integer k.

Assume the inductive hypothesis holds and then show that P(k + 1)
holds has well.

So, assuming P(k), it follows that:

1 + 3 + 5 + · · ·+ (2k − 1) + (2k + 1) =

P(k)︷ ︸︸ ︷
[1 + 3 + 5 + · · ·+ (2k − 1)]+(2k + 1)

= k2 + (2k + 1) by the induction hypothesis

= k2 + 2k + 1

= (k + 1)2

Hence, we have shown that P(k + 1) follows from P(k). Therefore
the sum of the first n positive odd integers is n2.

Sandeep Kumar Discrete Structures for Computing 13 / 75

Proving Inequalities

Use mathematical induction to prove that n < 2n for all positive integers n.

Let P(n) be the proposition that n < 2n.

BASIS STEP: P(1) is true since 1 < 21 = 2.

INDUCTIVE STEP: Assume P(k) holds, i.e., k < 2k , for an arbitrary
positive integer k.

Must show that P(k + 1) holds. Since by the inductive hypothesis,
k < 2k , it follows that:

k + 1 < 2k + 1 ≤ 2k + 2k = 2.2k = 2k+1

Therefore n < 2n holds for all positive integers n.

Sandeep Kumar Discrete Structures for Computing 14 / 75

Proving Inequalities. . .

Use mathematical induction to prove that 2n < n!, for every integer n ≥ 4.

Let P(n) be the proposition that 2n < n!.

BASIS STEP: P(4) is true since 24 = 16, 4! = 24.

INDUCTIVE STEP: Assume P(k) holds, i.e., 2k < k! for an arbitrary
integer k ≥ 4. To show that P(k + 1) holds:

2k+1 = 2 · 2k

< 2 · k!
< (k + 1)k!

< (k + 1)!

Therefore, 2n < n! holds, for every integer n ≥ 4. Note that here the basis
step is P(4), since P(0), P(1), P(2), and P(3) are all false.

Sandeep Kumar Discrete Structures for Computing 15 / 75

Proving Divisibility Results

Use mathematical induction to prove that n3 − n is divisible by 3, for every
positive integer n.

Let P(n) be the proposition that n3 − n is divisible by 3.

BASIS STEP: P(1) is true since 13 − 1 = 0, which is divisible by 3 .

INDUCTIVE STEP: Assume P(k) holds,
▶ I.e., k3 − k is divisible by 3, for an arbitrary positive integer k.
▶ To show that P(k + 1) follows:

(k + 1)3 − (k + 1) =
(
k3 + 3k2 + 3k + 1

)
− (k + 1)

=
(
k3 − k

)
+ 3

(
k2 + k

)
By the inductive hypothesis,

▶ The first term (k3 − k) is divisible by 3 and,
▶ The second term is divisible by 3 since it is an integer multiplied by 3.
▶ So by part (i) of Theorem 1 in Section 4.1, (k + 1)3 − (k + 1) is

divisible by 3.

Therefore, n3 − n is divisible by 3, for every integer positive integer n.
Sandeep Kumar Discrete Structures for Computing 16 / 75

Number of Subsets of a Finite Set

Use mathematical induction to show that if S is a finite set with n elements,
where n is a nonnegative integer, then S has 2n subsets.

Let P(n) be the proposition that a set with n elements has 2n subsets.

Basis Step: P(0) is true, because the empty set has only itself as a
subset and 20 = 1.
Inductive Step: Assume P(k) is true for an arbitrary nonnegative integer
k . I.e., for an arbitrary nonnegative integer k, every set with k elements
has 2k subsets.
Let T be a set with k + 1 elements. Then T = S ∪ {a}, where a ∈ T
and S = T − {a}. Hence |S | = k .
For each subset X of S , there are exactly two subsets of T , i.e., X and
X ∪ {a}.
By the inductive hypothesis S has 2k subsets. Since there are two
subsets of T for each subset of S , the number of subsets of T is
2 · 2k = 2k+1.

Sandeep Kumar Discrete Structures for Computing 17 / 75

Number of Subsets of a Finite Set

ϕ ϕ

Sandeep Kumar Discrete Structures for Computing 18 / 75

Tiling Checkerboards

Show that every 2n × 2n checkerboard with one square removed can be
tiled using right triominoes.

A right triomino is an L-shaped tile which covers three
squares at a time.

Let P(n) be the proposition that every 2n × 2n checkerboard with one
square removed can be tiled using right triominoes. Use mathematical
induction to prove that P(n) is true for all positive integers n.

BASIS STEP: P(1) is true, because each of the four 21 × 21

checkerboards with one square removed can be tiled using one right
triomino.

Sandeep Kumar Discrete Structures for Computing 19 / 75

Tiling Checkerboards. . .

INDUCTIVE STEP: Assume that P(k) is true for every 2k × 2k

checkerboard, for some positive integer k.

Inductive Hypothesis: Every 2k×2k checkerboard, for some positive integer
k, with one square removed can be tiled using right triominoes.

Consider a 2k+1 × 2k+1 checkerboard with one square removed. Split
this checkerboard into four checkerboards of size 2k × 2k , by dividing
it in half in both directions.

Sandeep Kumar Discrete Structures for Computing 20 / 75

Tiling Checkerboards. . .

Remove a square from one of the four 2k × 2k checkerboards.

By the inductive hypothesis, this board can be tiled.

Also by the inductive hypothesis, the other three boards can be tiled
with the square from the corner of the center of the original board
removed.

We can then cover the three adjacent squares with a triomino.

Hence, the entire 2k+1 × 2k+1 checkerboard with one square removed can
be tiled using right triominoes.

Sandeep Kumar Discrete Structures for Computing 21 / 75

An Incorrect “Proof” by Mathematical Induction

Let P(n) be the statement that every set of n lines in the plane, no two of
which are parallel, meet in a common point. Here is a proof that P(n) is
true for all positive integers n ≥ 2.

BASIS STEP: The statement P(2) is true because any two lines in
the plane that are not parallel meet in a common point.

INDUCTIVE STEP: The inductive hypothesis is the statement that
▶ P(k) is true for the positive integer k ≥ 2, i.e., every set of k lines in

the plane, no two of which are parallel, meet in a common point.

Inductive Hypothesis: Every set of k lines in the plane, where k ≥ 2, no two of
which are parallel, meet in a common point.

Sandeep Kumar Discrete Structures for Computing 22 / 75

An Incorrect “Proof” by Mathematical Induction. . .

We must show that if P(k) holds, then P(k + 1) holds, i.e.,
▶ If every set of k ≥ 2 lines in the plane, no two of which are parallel,

meet in a common point, then
▶ Every set of k + 1 lines in the plane, no two of which are parallel, meet

in a common point.

Consider a set of k + 1 distinct lines in the plane, no two parallel.
▶ By the inductive hypothesis, the first k of these lines must meet in a

common point p1.
▶ By the inductive hypothesis, the last k of these lines meet in a

common point p2.

If p1 and p2 are different points,
▶ All lines containing both of them must be the same line since two

points (p1 and p2) determine a line.
▶ This contradicts the assumption that the lines are distinct.

Sandeep Kumar Discrete Structures for Computing 23 / 75

An Incorrect “Proof” by Mathematical Induction. . .

Hence, p1 = p2 lies on all k + 1 distinct lines, and therefore P(k + 1)
holds.

Assuming that k ≥ 2, distinct lines meet in a common point, then
every k + 1 lines meet in a common point.

Sandeep Kumar Discrete Structures for Computing 24 / 75

An Incorrect “Proof” by Mathematical Induction. . .

There must be an error in this proof since the conclusion is absurd.
But where is the error?

▶ P(k) → P(k + 1) only holds for k ≥ 3.
▶ It is not the case that P(2) implies P(3).
▶ The first two lines must meet in a common point p1 and the second

two must meet in a common point p2.
▶ They do not have to be the same point since only the second line is

common to both sets of lines.

Sandeep Kumar Discrete Structures for Computing 25 / 75

Guidelines: Mathematical Induction Proofs
Template for Proofs by Mathematical Induction

Express stmt to be proved as “∀n ≥ b,P(n)” for fixed integer b.
Write the words “Basis Step.”

▶ Show that P(b) is true.

Write the words “Inductive Step”.
State, and clearly identify the inductive hypothesis in the form “assume
that P(k) is true for an arbitrary fixed integer k ≥ b.”
State what needs to be proved under the assumption that the inductive
hypothesis is true. That is, write out what P(k + 1) says.
Prove the statement P(k + 1) making use of the assumption P(k).

▶ Be sure that your proof is valid for all integers k with k ≥ b, taking care
that the proof works for small values of k, including k = b.

Clearly identify the conclusion of the inductive step, such as by saying
“this completes the inductive step.”
After completing the basis step and the inductive step, state the
conclusion, namely, by mathematical induction, P(n) is true for all
integers n ≥ b.

Sandeep Kumar Discrete Structures for Computing 26 / 75

Section Summary
Section 5.2

Strong Induction

Example Proofs using Strong Induction

Well-Ordering Property

Sandeep Kumar Discrete Structures for Computing 27 / 75

Strong Induction

Strong Induction: To prove that P(n) is true for all positive integers n,
where P(n) is a propositional function, complete two steps:

Basis Step: Verify that the proposition P(1) is true.

Inductive Step: Show the conditional statement

[P(1) ∧ P(2) ∧ · · · ∧ P(k)] → P(k + 1)

holds for all positive integers k.

Strong Induction is sometimes called the second principle of mathematical
induction or complete induction.

Sandeep Kumar Discrete Structures for Computing 28 / 75

Strong Induction and the Infinite Ladder

Strong induction tells us that we can reach all
rungs if:

We can reach the first rung of the ladder.

For every integer k, if we can reach the first
k rungs, then we can reach the (k + 1)st
rung.

To conclude that we can reach every rung by
strong induction:

BASIS STEP: P(1) holds.

INDUCTIVE STEP: Assume
P(1) ∧ P(2) ∧ · · · ∧ P(k) holds for an
arbitrary integer k , and show that P(k + 1)
must also hold.

We will have then shown by strong induction
that for every positive integer n, P(n) holds, i.e.,
we can reach the nth rung of the ladder.

Sandeep Kumar Discrete Structures for Computing 29 / 75

Proof using Strong Induction

Suppose we can reach the first and second rungs of an infinite ladder, and
we know that if we can reach a rung, then we can reach two rungs higher.
Prove that we can reach every rung. (Try this with mathematical
induction.)

Prove the result using strong induction.

BASIS STEP: We can reach the first two steps.

INDUCTIVE STEP:
▶ The inductive hypothesis is that we can reach the first k rungs, for any

k ≥ 2.
▶ We can reach the (k + 1)st rung since we can reach the (k − 1)st rung

by the inductive hypothesis.

Hence, we can reach all rungs of the ladder.

Sandeep Kumar Discrete Structures for Computing 30 / 75

Which Form of Induction Should Be Used?

We can always use strong induction instead of mathematical
induction.

▶ But there is no reason to use it if it is simpler to use mathematical
induction. (See page 335 of text.)

In fact, the principles of mathematical induction, strong induction,
and the well-ordering property are all equivalent. (Exercises 41-43,
page 365)

Sometimes it is clear how to proceed using one of the three methods,
but not the other two.

Sandeep Kumar Discrete Structures for Computing 31 / 75

Informally—Well Ordering → Induction

If the well-ordering principle is true, then does it mean that

[P(0) ∧ ∀n P(n) → P(n + 1)] → ∀n P(n)

Assume otherwise. Form the subset n1, n2, . . . ∈ N, where ¬P.
By the well-ordering principle, ∃ smallest n ∈ {n1, n2, . . .}.
So we have P(n − 1) ∧ ¬P(n), which is a contradiction.

So ∀n P(n).

Sandeep Kumar Discrete Structures for Computing 32 / 75

Informally—Weak Induction → Strong Induction

If
[P(0) ∧ ∀n P(n) → P(n + 1)] → ∀n P(n)

is a valid proof technique, then is

[P(0) ∧ (∀k ≤ n P(n) → P(n + 1))] → ∀n P(n)

also a valid proof technique?

If all we need to show is that P(k) → P(k + 1), but we are given

P(1) ∧ P(2) ∧ . . . ∧ P(k) → P(k + 1). But

P(1) ∧ P(2) ∧ . . . ∧ P(k) → P(k), ∴

P(k) → P(k + 1).

. .

What about Strong Induction → Weak Induction?

Sandeep Kumar Discrete Structures for Computing 33 / 75

Completion of the proof of the Fundamental Theorem of
Arithmetic

Show that if n is an integer > 1, then n can be written as the product of
primes.

Let P(n) be the proposition that n can be written as a product of primes.

BASIS STEP: P(2) is true since 2 itself is prime.

INDUCTIVE STEP: The inductive hypothesis is P(j) is true for all
integers j | 2 ≤ j ≤ k . To show that P(k + 1) must be true under this
assumption, two cases need to be considered:

▶ If k + 1 is prime, then P(k + 1) is true.
▶ Otherwise, k + 1 is composite and,

⋆ it can be written as the product of two positive integers a and b with
2 ≤ a ≤ b < k + 1.

⋆ By the inductive hypothesis, a and b can be written as the product of
primes, and ∴

⋆ k + 1 can also be written as the product of those primes.

Hence, every integer > 1 can be written as the product of primes.
Uniqueness proved in Section 4.3.

Sandeep Kumar Discrete Structures for Computing 34 / 75

Proof using Strong Induction

Prove that every amount of postage of 12¢ or more can be formed using
just 4¢ and 5¢ stamps.

Let P(n) be the proposition that postage of n¢ can be formed using 4¢
and 5¢ stamps.

BASIS STEP: P(12), P(13), P(14), and P(15) hold.
▶ P(12) = 3× 4¢ stamps. P(13) = 2× 4¢ stamps + 1× 5¢ stamp.
▶ P(14) = 1× 4¢ stamp + 2× 5¢ stamps. P(15) uses 3× 5¢ stamps.

INDUCTIVE STEP:
▶ P(j) holds for 12 ≤ j ≤ k , where k ≥ 15.
▶ Show that P(k + 1) holds.

Using the inductive hypothesis,
▶ P(k − 3) holds since k − 3 ≥ 12.
▶ To form postage of k + 1¢, add a 4¢ stamp to the postage for k − 3¢.

Hence, P(n) holds for all n ≥ 12.

Sandeep Kumar Discrete Structures for Computing 35 / 75

Proof of Same Example using Mathematical Induction

Prove that every amount of postage of 12¢ or more can be formed using
just 4¢ and 5¢ stamps.

Let P(n) be the proposition that postage of n¢ can be formed using 4¢
and 5¢ stamps.

BASIS STEP: Postage of 12¢ can be formed using three 4¢ stamps.

INDUCTIVE STEP: P(k) is that postage of k¢ can be formed using
4¢ and 5¢ stamps. To show P(k + 1) where k ≥ 12, we consider two
cases:

▶ If at least one 4¢ stamp has been used, then a 4¢ stamp can be
replaced with a 5¢ stamp to yield a total of k + 1¢.

▶ Otherwise, no 4-cent stamp have been used and at least three 5¢
stamps were used. Three 5¢ stamps can be replaced by four 4¢ stamps
to yield a total of (k + 1)¢.

Hence, P(n) holds for all n ≥ 12.

Sandeep Kumar Discrete Structures for Computing 36 / 75

Well-Ordering Property

Well-ordering property : Every nonempty set of nonnegative integers
has a least element.

The well-ordering property is one of the axioms of the positive
integers listed in Appendix 1.

The well-ordering property can be used directly in proofs, as the next
example illustrates.

The well-ordering property can be generalized.
▶ Definition: A set is well ordered if every subset has a least element.

⋆ N is well ordered under ≤.
⋆ The set of finite strings over an alphabet using lexicographic ordering is

well ordered.

▶ We will see a generalization of induction to sets other than the integers
in the next section.

Sandeep Kumar Discrete Structures for Computing 37 / 75

Well-Ordering Property
Skip for now—searching for a better example

Use the well-ordering property to prove the division algorithm, which
states that if a is an integer and d is a positive integer, then there are
unique integers q and r with 0 ≤ r < d , such that a = dq + r .

Let S be the set of nonnegative integers of the form a− dq, where q is an
integer. The set is nonempty since −dq can be made as large as needed.

By the well-ordering property, S has a least element r = a− dq0. The
integer r is nonnegative. It also must be the case that r < d .

If it were not, then there would be a smaller nonnegative element in
S , namely,

a− d(q0 + 1) = a− dq0 − d = r − d > 0

Therefore, there are integers q and r with 0 ≤ r < d .

Uniqueness of q and r is Exercise 37.

Sandeep Kumar Discrete Structures for Computing 38 / 75

Check-in

The sum of the interior angles of any triangle is 180◦. Now, using this fact
and induction, prove that any polygon with k ≥ 3 vertices has interior
angles that sum to 180k − 360 degrees.

Sandeep Kumar Discrete Structures for Computing 39 / 75

Section Summary

Recursively Defined Functions

Recursively Defined Sets and Structures

Structural Induction

Generalized Induction

Sandeep Kumar Discrete Structures for Computing 40 / 75

Recursively Defined Functions

Definition: A recursive or inductive definition of a function consists of
two steps.

BASIS STEP: Specify the value of the function at zero.

RECURSIVE STEP: Give a rule for finding its value at an integer
from its values at smaller integers.

A function f (n) is the same as a sequence a0, a1, . . . , where f (i) = ai .
This was done using recurrence relations in Section 2.4.

Sandeep Kumar Discrete Structures for Computing 41 / 75

Recursively Defined Functions

Suppose f is defined by

f (0) = 3

f (n + 1) = 2f (n) + 3

Find f (1), f (2), f (3), f (4).

f (1) = 2f (0) + 3 = 2 · 3 + 3 = 9
f (2) = 2f (1) + 3 = 2 · 9 + 3 = 21
f (3) = 2f (2) + 3 = 2 · 21 + 3 = 45
f (4) = 2f (3) + 3 = 2 · 45 + 3 = 93

Give a recursive definition of the factorial function n!

f (0) = 1

f (n + 1) = (n + 1) · f (n)

Sandeep Kumar Discrete Structures for Computing 42 / 75

Recursively Defined Functions

Give a recursive definition of
n∑

k=0

ak

The first part of the definition is
∑0

k=0 ak = a0.

The second part is

n+1∑
k=0

ak = an+1 +

(
n∑

k=0

ak

)

Python recursive definition of a series summation
def rec(n: int):

if n == 0:

return a0

return an + rec(n-1)

Sandeep Kumar Discrete Structures for Computing 43 / 75

Fibonacci Numbers

The Fibonacci numbers are defined as follows:

f0 = 0, f1 = 1, fn = fn−1 + fn−2

Find f2, f3, f4, f5.
f2 = f1 + f0 = 1 + 0 = 1

f3 = f2 + f1 = 1 + 1 = 2

f4 = f3 + f2 = 2 + 1 = 3

f5 = f4 + f3 = 3 + 2 = 5

In Chapter 8, we will use the Fibonacci numbers to model population
growth of rabbits. This was an application described by Fibonacci himself.

Next, we use strong induction to prove a result about the Fibonacci
numbers.

Sandeep Kumar Discrete Structures for Computing 44 / 75

Recursively Defined Functions. . .Fibonacci call graph

f (5)

f (4)

f (3)

f (2)

f (1) f (0)

f (1)

f (2)

f (1) f (0)

f (3)

f (2)

f (1) f (0)

f (1)

Sandeep Kumar Discrete Structures for Computing 45 / 75

Fibonacci Numbers
FYIO

Show that whenever n ≥ 3, fn > αn−2, where α = (1 +
√
5)/2.

Let P(n) be the statement fn > αn−2. Use strong induction to show that
P(n) is true whenever n ≥ 3.

BASIS STEP:

P(3) holds since f3 = 2 > α1 because α < 2.

P(4) holds since f4 = 3 > α2.
▶ α2 = (1 + 5 + 2

√
5)/4 = (3 +

√
5)/2 < 3.

▶
√
5 < 3.

Sandeep Kumar Discrete Structures for Computing 46 / 75

Fibonacci Numbers
FYIO

INDUCTIVE STEP: Assume that P(j) holds, i.e., fj > αj−2 for all integers
j with 3 ≤ j ≤ k, where k ≥ 4. Show that P(k + 1) holds, i.e.,
fk+1 > αk−1.

Since α2 = α+ 1 (because α is a solution of x2 − x − 1 = 0),

αk−1 =α2 ·αk−3 = (α+1) ·αk−3 = α ·αk−3+1 ·αk−3 = αk−2 + αk−3

By the inductive hypothesis, because k ≥ 4 we have

fk−1 > αk−3, fk > αk−2

Therefore, it follows that

fk+1 = fk + fk−1 > αk−2 + αk−3 = αk−1

Hence, P(k + 1) is true.

Sandeep Kumar Discrete Structures for Computing 47 / 75

Lam?’s Theorem

Let a and b be positive integers with a ≥ b. Then the number of divisions
used by the Euclidian algorithm to find gcd(a, b) is ≤ five times the
number of decimal digits in b.

Proof: When we use the Euclidian algorithm to find gcd(a, b) with a ≥ b,

. .

n divisions are used with a = r0, b = r1.

a = r0 = r1q1 + r2 0 ≤ r2 < r1,
b = r1 = r2q2 + r3 0 ≤ r3 < r2,

...
rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,
rn−1 = rnqn

. .
rn < rn−1 and rn | rn−1. So qn ≥ 2.

Since each quotient q1, q2, . . . , qn−1 is at
least 1 and qn ≥ 2:

rn ≥ 1 = f2,

rn−1 ≥ 2rn ≥ 2f2 = f3,

rn−2 ≥ rn−1 + rn ≥ f3 + f2 = f4,

...

r2 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn,

b = r1 ≥ r2 + r3 ≥ fn + fn−1 = fn+1

Sandeep Kumar Discrete Structures for Computing 48 / 75

Lam?’s Theorem

It follows that if n divisions are used by the Euclidian algorithm to
find gcd(a, b) with a ≥ b, then b ≥ fn+1.

By Example 4, fn+1 > αn−1, for n > 2, where α = (1 +
√
5)/2.

Therefore, b > αn−1.

Because log10 α ∼ 0.208 > 1/5, log10 b > (n − 1) log10 α > (n − 1)/5.

Hence,

n − 1 < 5 log10 b

Suppose that b has k decimal digits. Then b < 10k and log10 b < k .
It follows that n − 1 < 5k and since k is an integer, n ≤ 5k .

As a consequence of Lam?’s Theorem, O(log b) divisions are used by
the Euclidian algorithm to find gcd(a, b) whenever a > b.

By Lam?’s Theorem, the number of divisions needed to find gcd(a, b)
with a > b is ≤ 5(log10 b + 1) since the number of decimal digits in b
(which equals ⌊log10b⌋+ 1) is ≤ log10 b + 1.

Sandeep Kumar Discrete Structures for Computing 49 / 75

Recursively Defined Sets and Structures

Recursive definitions of sets have two parts:

The basis step specifies an initial collection of elements.

The recursive step gives the rules for forming new elements in the set
from those already known to be in the set.

Sometimes the recursive definition has an exclusion rule, which specifies
that the set contains nothing other than those elements specified in the
basis step and generated by applications of the rules in the recursive step.

We will always assume that the exclusion rule holds, even if it is not
explicitly mentioned.

We will later develop a form of induction, called structural induction, to
prove results about recursively defined sets.

Sandeep Kumar Discrete Structures for Computing 50 / 75

Recursively Defined Sets and Structures

Example: Subset of Integers S :

Basis Step: 3 ∈ S .

Recursive Step: If x ∈ S and y ∈ S , then x + y ∈ S .

Initially 3 is in S , then 3 + 3 = 6, then 3 + 6 = 9, etc.

Example: The natural numbers N.

Basis Step: 0 ∈ N.

Recursive Step: If n is in N, then n + 1 is in N.

Initially 0 is in S , then 0 + 1 = 1, then 1 + 1 = 2, etc.

Sandeep Kumar Discrete Structures for Computing 51 / 75

Strings

Definition: The set Σ∗ of strings over the alphabet Σ:

Basis Step: λ ∈ Σ∗ (λ is the empty string)

Recursive Step: If w is in Σ∗ and x is in Σ, then wx ∈ Σ∗.

Example: If Σ = {0, 1}, the strings in Σ∗ are the set of all bit strings,
λ, 0, 1, 00, 01, 10, 11, etc.

Example: If Σ = {a, b}, show that aab ∈ Σ∗.

Since λ ∈ Σ∗ and a ∈ Σ, a ∈ Σ∗.

Since a ∈ Σ∗ and a ∈ Σ, aa ∈ Σ∗.

Since aa ∈ Σ∗ and b ∈ Σ, aab ∈ Σ∗.

Sandeep Kumar Discrete Structures for Computing 52 / 75

String Concatenation

Two strings can be combined via the operation of concatenation. Let Σ be
a set of symbols and Σ∗ be the set of strings formed from the symbols in
Σ. We can define the concatenation of two strings, denoted by ·,
recursively as follows.

Basis Step: If w ∈ Σ∗, then w · λ = w .

Recursive Step: If w1 ∈ Σ∗ and w2 ∈ Σ∗ and x ∈ Σ, then

w1 · (w2x) = (w1 · w2)x

Often w1 · w2 is written as w1w2. If w1 = abra and w2 = cadabra, the
concatenation w1w2 = abracadabra.

Python recursive string concatenation
def concat(w1: str, w2: str):

if w2 == ’’:

return w1

else:

return concat(w1, w2[:-1]) + w2[-1]

Sandeep Kumar Discrete Structures for Computing 53 / 75

Length of a String

Give a recursive definition of l(w), the length of the string w .

The length of a string can be recursively defined by:

l(λ) = 0;

l(wx) = l(w) + 1 if w ∈ Σ∗ and x ∈ Σ

Python recursive definition of l(x)
def l(x: str):

if x == ’’:

return 0

return l(x[:-1])+1

Sandeep Kumar Discrete Structures for Computing 54 / 75

Balanced Parentheses

Give a recursive definition of the set of balanced parentheses P.

Basis Step: () ∈ P

Recursive Step: If
w ∈ P, then

1 ()w ∈ P,
2 (w) ∈ P, and
3 w() ∈ P.

Show that (()()) is in P.

Why is))(() not in P?

def balanced_paren() -> str:

c = random.randint(1, 4)

if c == 1:

return "()"

elif c == 2:

return f"(){balanced_paren()}"

elif c == 3:

return f"({balanced_paren()})"

else:

return f"{balanced_paren()}()"

Sandeep Kumar Discrete Structures for Computing 55 / 75

Well-Formed Formulae in Propositional Logic

The set of well-formed formulae in propositional logic involving T , F ,
propositional variables, and operators from the set {¬,∧,∨,→,↔}.

Basis Step: T , F , and s, where s is a propositional variable, are
well-formed formulae.

Recursive Step: If E and F are well formed formulae, then (¬E),
(E ∧ F), (E ∨ F), (E → F), (E ↔ F), are well-formed formulae.

Examples:

((p ∨ q) → (q ∧ F)) is a well-formed formula.

pq∧ is not a well-formed formula.
▶ Can also show this by induction. If pq∧ is well-formed, then it’s

generated at some recursive step.

Sandeep Kumar Discrete Structures for Computing 56 / 75

Rooted Trees

The set of rooted trees, where a rooted tree consists of a set of vertices
containing a distinguished vertex called the root, and edges connecting
these vertices, can be defined recursively by these steps:

Basis Step: A single vertex r is a rooted tree.

Recursive Step: Suppose that T1,T2, . . . ,Tn are disjoint rooted trees
with roots r1, r2, . . . , rn, respectively. Then the graph formed by

▶ Starting with a root r , which is not in any of the rooted trees
T1,T2, . . . ,Tn, and

▶ Adding an edge from r to each of the vertices r1, r2, . . . , rn, is also a
rooted tree.

r

r1 r2 . . . rn

Sandeep Kumar Discrete Structures for Computing 57 / 75

Building Up Rooted Trees

Trees are studied extensively in Chapter 11.

Next we look at a special type of tree, the full binary tree.

Sandeep Kumar Discrete Structures for Computing 58 / 75

Full Binary Trees

The set of full binary trees can be defined recursively by these steps.

Basis Step: There is a full binary tree consisting of only a single
vertex r .

Recursive Step: If T1 and T2 are disjoint full binary trees, there is a
full binary tree, denoted by T1 · T2, consisting of

▶ A root r ,
▶ Together with edges connecting the root to each of the roots of the

left subtree T1 and the right subtree T2.

•

T1 T2

Sandeep Kumar Discrete Structures for Computing 59 / 75

Is this a full binary tree?

•

•

•

•

• •

•

•

• •

•

•

• •

Go to https://schnekli-tamu.uc.r.appspot.com/poll to cast your vote.

Sandeep Kumar Discrete Structures for Computing 60 / 75

Building Up Full Binary Trees

Sandeep Kumar Discrete Structures for Computing 61 / 75

Induction and Recursively Defined Sets

Show that the set S defined by specifying that 3 ∈ S and that if x ∈ S and y ∈ S ,
then x + y is in S , is the set of all positive integers that are multiples of 3.

3

n=1
��

3, 6

n=2
��

3, 6, 9, 12

n=3
��

3, 6, 9, 12, 15, 18, 21, 24

n=4
��

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48

Sandeep Kumar Discrete Structures for Computing 62 / 75

Induction and Recursively Defined Sets

Let A be the set of all positive integers divisible by 3. To prove that A = S , show
that A is a subset of S and S is a subset of A.

A ⊂ S : Let P(n) be the statement that 3n belongs to S.
▶ Basis Step: 3 · 1 = 3 ∈ S , by the first part of recursive definition.
▶ Inductive Step: Assume P(k) is true. By the second part of the recursive

definition, if 3k ∈ S , then
⋆ Since 3 ∈ S , 3k + 3 = 3(k + 1) ∈ S .
⋆ Hence, P(k + 1) is true.

S ⊂ A:
▶ Basis Step: 3 ∈ S by the first part of recursive definition, and 3 = 3 · 1.
▶ Inductive Step: The second part of the recursive definition adds x + y to S , if

both x and y are in S .
⋆ If x and y are both in A, then both x and y are divisible by 3.
⋆ By part (i) of Theorem 1 of Section 4.1, it follows that x + y is divisible by 3.

We used mathematical induction to prove a result about a recursively defined set.
Next, we study a more direct form of induction for proving results about recursively
defined sets.

Sandeep Kumar Discrete Structures for Computing 63 / 75

Structural Induction

To prove a property of the elements of a recursively defined set, we use
structural induction.

Basis Step: Show that the result holds for all elements specified in
the basis step of the recursive definition.

Recursive Step: Show that if the statement is true for each of the
elements used to construct new elements in the recursive step of the
definition, the result holds for these new elements.

The validity of structural induction can be shown to follow from the
principle of mathematical induction.

A proof by structural induction is identical in form to a proof by strong
induction on the number of applications of the inductive-case rules used to
generate the object.

Sandeep Kumar Discrete Structures for Computing 64 / 75

Full Binary Trees

The height h(T) of a full binary tree T is defined recursively as follows:

Basis Step: The height of a full binary tree T consisting of only a root r
is h(T) = 0.
Recursive Step: If T1 and T2 are full binary trees, then the full binary tree
T = T1 · T2 has height

h(T) = 1 + max(h(T1), h(T2))

The number of vertices n(T) of a full binary tree T satisfies the following
recursive formula:

Basis Step: The number of vertices of a full binary tree T consisting of
only a root r is n(T) = 1.
Recursive Step: If T1 and T2 are full binary trees, then the full binary tree
T = T1 · T2 has the number of vertices

n(T) = 1 + n(T1) + n(T2)

Sandeep Kumar Discrete Structures for Computing 65 / 75

Structural Induction and Binary Trees

If T is a full binary tree, then n(T) ≤ 2h(T)+1 − 1.

Proof: Use structural induction.

BASIS STEP: The result holds for a full binary tree consisting only of a
root, n(T) = 1 and h(T) = 0. Hence, n(T) = 1 ≤ 20+1 − 1 = 1.
RECURSIVE STEP: Assume n(T1) ≤ 2h(T1)+1 − 1 and also

n(T2) ≤ 2h(T2)+1 − 1

whenever T1 and T2 are full binary trees. Then,

n (T2) ≤ 2h(T2)+1 − 1 whenever T1 and T2 are full binary trees.
n(T) = 1 + n (T1) + n (T2) , by recursive formula of n(T)

≤ 1 +
(
2h(T1)+1 − 1

)
+
(
2h(T2)+1 − 1

)
, by inductive hypothesis

≤ 2 ·max
(
2h(T1)+1, 2h(T2)+1

)
− 1

= 2 · 2max(h(T1),h(T2)+1) − 1, max (2x , 2y) = 2max(x ,y)

= 2 · 2h(t) − 1

= 2h(t)+1 − 1

Sandeep Kumar Discrete Structures for Computing 66 / 75

Generalized Induction
FYIO

Generalized induction is used to prove results about sets other than
the integers that have the well-ordering property (explored in more
detail in Chapter 9).

For example, consider an ordering on N × N ordered pairs of
non-negative integers. Specify that (x1, y1) is less than or equal to
(x2, y2) if either x1 < x2, or x1 = x2 ∧ y1 < y2. This is called the
lexicographic ordering.

Strings are also commonly ordered by a lexicographic ordering.

The next example uses generalized induction to prove a result about
ordered pairs from N × N.

Sandeep Kumar Discrete Structures for Computing 67 / 75

Generalized Induction
FYIO

Suppose that am,n is defined for (m, n) ∈ N × N by a0,0 = 0 and

am,n =

{
am−1,n + 1 if n = 0 and m > 0
am,n−1 + n if n > 0

Show that am,n = m + n(n + 1)/2 is defined for all (m, n) ∈ N × N.

Sandeep Kumar Discrete Structures for Computing 68 / 75

Recursive Algorithms
Section 5.4

Recursive Algorithms

Proving Recursive Algorithms Correct

Recursion and Iteration

Merge Sort

Sandeep Kumar Discrete Structures for Computing 69 / 75

Recursive Algorithms

Definition: An algorithm is called recursive if it solves a problem by
reducing it to an instance of the same problem with smaller input.

For the algorithm to terminate, the instance of the problem must
eventually be reduced to some initial case for which the solution is known.

Sandeep Kumar Discrete Structures for Computing 70 / 75

Recursive Factorial Algorithm

Give a recursive algorithm for computing n!, where n is a nonnegative
integer.

procedure factorial(n: nonnegative integer)

if n = 0 then

return 1
else

return n · factorial(n − 1)
{output is n!}

Sandeep Kumar Discrete Structures for Computing 71 / 75

Recursive Exponentiation Algorithm

Give a recursive algorithm for computing an, where a is a nonzero real
number and n is a nonnegative integer.

procedure power(a: nonzero real number, n: nonnegative integer)

if n = 0 then

return 1
else

return a × power(a, n − 1)
{output is aˆn}

Sandeep Kumar Discrete Structures for Computing 72 / 75

Recursive GCD Algorithm

Give a recursive algorithm for computing the greatest common divisor of
two nonnegative integers a and b with a < b.

Use the reduction gcd(a, b) = gcd(b mod a, a) and the condition
gcd(0, b) = b, b > 0.

procedure gcd(a,b: nonnegative integers with a < b)
if a = 0 then

return b
else

return gcd(b mod a, a)

{output is gcd(a, b)}

Sandeep Kumar Discrete Structures for Computing 73 / 75

Recursive Binary Search Algorithm

Assume we have a1, a2, . . . , an, an increasing sequence of integers. Initially
i is 1 and j is n. We are searching for x .

procedure binarysearch(i, j, x: integers, 1 ≤ i ≤ j ≤ n)
m := ⌊ (i + j)/2 ⌋
if x = am then

return m
else if(x < am ∧ i < m) then

return binarysearch(i , m − 1, x)
else if(x > am ∧ j > m) then

return binarysearch(m + 1, j , x)
else

return 0
{output is location of x in a1, . . . , an if present, otherwise 0}

Sandeep Kumar Discrete Structures for Computing 74 / 75

Bibliography I

Ashutosh Gupta and S. Krishna.
Cs 228: Logic for computer science 2022.
https://www.cse.iitb.ac.in/ akg/courses/2022-logic/, January 2022.

Hyunyoung Lee.
Discrete structures for computing.
Class slides for TAMU CSCE 222, 2019.

Phillip Rogaway.
Ecs20 fall 2021 lecture notes, Fall 2021.

Sandeep Kumar Discrete Structures for Computing 75 / 75

	Mathematical Induction
	Strong Induction and Well-Ordering
	Recursive Definitions and Structural Induction
	Recursive Algorithms

