
Discrete Structures for Computing
CSCE 222

Sandeep Kumar

Many slides based on [Lee19], [Rog21], [GK22]

Sandeep Kumar Discrete Structures for Computing 1 / 14

Regex in Practice

Show use of fd.

Show use of ugrep.

Show use of bks.

Show use of grep.class.
▶ A line of text that only contains numbers.
▶ An HTML hyperlink
▶ A social security number anywhere in a line.
▶ The words “credit card” in a line with any number of spaces between

the words “credit” and “card”.
▶ Jack or John.

Sandeep Kumar Discrete Structures for Computing 2 / 14

https://github.com/sharkdp/fd
https://github.com/Genivia/ugrep

Regular Expressions

Regular expressions are a concise way to represent some sets of strings.
These sets are called regular languages.

Regular expressions are often used to:

Validate that some text matches a pattern,

Find fragments of a text that match some pattern,

Extract fragments of a text,

Replace fragments of text with other text.

Sandeep Kumar Discrete Structures for Computing 3 / 14

Regular Expressions (Simplified)
Based on [Fit12].

Char Meaning
. matches any single character except newline
* preceding construct may be repeated ≥ 0 times
+ preceding construct may be repeated ≥ 1 times
? preceding construct is optional (0 or 1 times)
x non-meta characters match themselves

Examples:

hello matches hello.

9+ matches 9, 99, 999 etc.

99* matches 9, 99, 999 etc.

go*gle matches ggle, gogle, google,. . .

99? matches 9, 99.

honou?r matches honor, honour.

Sandeep Kumar Discrete Structures for Computing 4 / 14

Regular Expressions (Simplified). . .
Char Meaning
^ matches beginning of input (start of line when multiline)
$ matches end of input (end of line when multiline)
\b matches a word boundary
\B matches a non-word boundary
\A matches beginning of string
\Z matches end of string
X{n} n × X

Examples:

z{3} matches zzz.

\d{5}(-\d{4})? matches a United States zip code.

^dog begins with dog.

dog$ ends with dog.

Sandeep Kumar Discrete Structures for Computing 5 / 14

Regular Expressions
Character Classes

[C1C2 . . .]

where Ci are characters, ranges represented by c-d or character classes.

Char Class Meaning
\d, \D Digits 0 . . . 9; its complement
\w, \W Word characters a . . . z ,A . . .Z , 0 . . . 9; its complement
\s, \S Spaces \n\r\t\f\x{B}; its complement

minimi[sz]e matches minimize & minimise.

\d\d\d-\d\d\d-\d\d\d\d matches 408-243-0836.

\d+-\d+-\d+ matches 408-243-0836.

[0-9]+-\d+-\d+ matches 408-243-0836.

Sandeep Kumar Discrete Structures for Computing 6 / 14

Regular Expressions
Matching a simplified floating point number

[-+]?\d+\.\d+ matches -23.56123.

Sandeep Kumar Discrete Structures for Computing 7 / 14

Regular Expressions
Sequences, Alternatives & Grouping.

Regex Meaning
X Y Any string from X , followed by any string from Y
X | Y Any string from X or Y
(X) Captures the match of X

(? : X) Non-capturing match of X

\d+(\s*,\s*\d+)* matches numbers separated by ”,”.

(abra).*\1 matches abra . . . abra.

\u00f6 matches ?.

\u0065 matches e.

Sandeep Kumar Discrete Structures for Computing 8 / 14

Lookarounds

Lookarounds do not consume anything.

Even though they have parens, they do not capture.

Positive Lookahead. Hillary(?=\s+Clinton) matches Hillary in
Hillary Clinton but not in Hillary Makasa.

Positive Lookbehind. (?<=http://)\S+ matches URL not
including the http:// part.

Negative Lookahead. q(?!u) matches q if not followed by u.

Negative Lookbehind. (?<![-+\d])(\d+) matches digits not
preceded by a digit, +, or −.

Sandeep Kumar Discrete Structures for Computing 9 / 14

Java API

Compile the regular expression with match options.

Create a Matcher object with the string against which the match is
done.

Invoke matches or find method on the Matcher object.

String r = "\\d+-\\d+-\\d+";

String s = "408-243-0836";

Pattern regex = Pattern.compile(r, Pattern.CASE_INSENSITIVE);

Matcher m = regex.matcher("408-243-0836");

System.out.printf("’%s’ matches %s? %b\n", r, s, m.matches());

m = regex.matcher("foo408-243-0836bar");

if(m.find()) {

System.out.printf("’%s’ matched %s: %s\n", r, s, m.group());

}

Sandeep Kumar Discrete Structures for Computing 10 / 14

Splitting String on a Regular Expression

Remember the magic square assignment.

String line = " 23 , 45,67, 78"

line.trim().split("\\s*,\\s*")

Pattern commas = Pattern.compile("\\s*,\\s*")

commas.split(line.trim())

Sandeep Kumar Discrete Structures for Computing 11 / 14

Replacing Regular Expression Matches

String line = " 23 , 45,67, 78"

line.trim().replaceAll("\\s*,\\s*", ",")

The replacement string can contain group numbers $n or names
${name}.

They are replaced with the contents of the corresponding captured
group.

"3:45".replaceAll("(\\d+):(?<minutes>\\d+)", "HH $1 MM ${minutes}")

Sandeep Kumar Discrete Structures for Computing 12 / 14

Regular Expression References

Java Documentation.

regular-expressions.info.

regex101.com.

Ray Toal’s notes.

Sandeep Kumar Discrete Structures for Computing 13 / 14

https://docs.oracle.com/javase/tutorial/essential/regex/
https://www.regular-expressions.info/java.html
https://regex101.com/
https://cs.lmu.edu/~ray/notes/regex/

Bibliography I

Michael Fitzgerald.
Introducing Regular Expressions.
O’Reilly, 2012.

Ashutosh Gupta and S. Krishna.
Cs 228: Logic for computer science 2022.
https://www.cse.iitb.ac.in/ akg/courses/2022-logic/, January 2022.

Hyunyoung Lee.
Discrete structures for computing.
Class slides for TAMU CSCE 222, 2019.

Phillip Rogaway.
Ecs20 fall 2021 lecture notes, Fall 2021.

Sandeep Kumar Discrete Structures for Computing 14 / 14

