Discrete Structures for Computing
CSCE 222

Sandeep Kumar

Many slides based on [Leel9], [Rog21], [GK22]

Sandeep Kumar Discrete Structures for Computing 1/14

Regex in Practice

@ Show use of fd.
@ Show use of ugrep.

@ Show use of bks.

@ Show use of grep.class.

» A line of text that only contains numbers.

» An HTML hyperlink

» A social security number anywhere in a line.

» The words “credit card” in a line with any number of spaces between
the words ‘“credit” and “card”.
Jack or John.

v

Sandeep Kumar Discrete Structures for Computing 2/14

https://github.com/sharkdp/fd
https://github.com/Genivia/ugrep

Regular Expressions

Regular expressions are a concise way to represent some sets of strings.
These sets are called regular languages.

Regular expressions are often used to:
@ Validate that some text matches a pattern,
@ Find fragments of a text that match some pattern,
@ Extract fragments of a text,

@ Replace fragments of text with other text.

Sandeep Kumar Discrete Structures for Computing 3/14

Regular Expressions (Simplified)

Based on [Fit12].

Char | Meaning
. matches any single character except newline
* preceding construct may be repeated > 0 times
+ preceding construct may be repeated > 1 times
? preceding construct is optional (0 or 1 times)
X non-meta characters match themselves
Examples:

@ hello matches hello.

9+ matches 9, 99, 999 etc.

99% matches 9, 99, 999 etc.

goxgle matches ggle, gogle, google,. ..
997 matches 9, 99.

honou?r matches honor, honour.

Sandeep Kumar Discrete Structures for Computing 4/14

Regular Expressions (Simplified). . .

Char | Meaning
- matches beginning of input (start of line when multiline)
$ | matches end of input (end of line when multiline)
\b | matches a word boundary
\B | matches a non-word boundary
\A | matches beginning of string
\Z | matches end of string

X{n} | nx X

Examples:

o z{3} matches zzz.
@ \d{5}(-\d{4})? matches a United States zip code.
@ “dog begins with dog.

@ dog$ ends with dog.

Sandeep Kumar Discrete Structures for Computing

5/14

Regular Expressions

Character Classes

GG]
where C; are characters, ranges represented by c-d or character classes.

Char Class | Meaning
\d, \D Digits 0...9; its complement
\w, \W Word characters a...z,A...Z,0...9; its complement
\s, \S Spaces _\n\r\t\f\x{B}; its complement

@ minimi[sz]e matches minimize & minimise.

o \d\d\d-\d\d\d-\d\d\d\d matches 408-243-0836.
@ \d+-\d+-\d+ matches 408-243-0836.

o [0-9]+-\d+-\d+ matches 408-243-0836.

Sandeep Kumar Discrete Structures for Computing 6/14

Regular Expressions
Matching a simplified floating point number

o [-+]7\d+\.\d+ matches -23.56123.

Sandeep Kumar Discrete Structures for Computing

Regular Expressions

Sequences, Alternatives & Grouping.

Regex | Meaning

XY | Any string from X, followed by any string from Y
X | Y | Any string from X or Y

(X) | Captures the match of X
(?: X) | Non-capturing match of X

o \d+(\s*,\s*\d+)* matches numbers separated by ",".
o (abra).*\1 matches abra... abra.

@ \uOOf6 matches ?.

@ \u0065 matches e.

Sandeep Kumar Discrete Structures for Computing 8/14

Lookarounds

@ Lookarounds do not consume anything.

@ Even though they have parens, they do not capture.

o Positive Lookahead. Hillary(?=\s+Clinton) matches Hillary in
Hillary Clinton but not in Hillary Makasa.

e Positive Lookbehind. (7<=http://)\S+ matches URL not
including the http:// part.

o Negative Lookahead. q(7!u) matches g if not followed by wv.

o Negative Lookbehind. (7<![-+\d]) (\d+) matches digits not
preceded by a digit, +, or —.

Sandeep Kumar Discrete Structures for Computing 9/14

Java API

@ Compile the regular expression with match options.

o Create a Matcher object with the string against which the match is
done.

@ Invoke matches or find method on the Matcher object.

String r = "\\d+-\\d+-\\d+";
String s = "408-243-0836";
Pattern regex = Pattern.compile(r, Pattern.CASE_INSENSITIVE);
Matcher m = regex.matcher("408-243-0836") ;
System.out.printf("’%s’ matches %s? %b\n", r, s, m.matches());
m = regex.matcher("foo408-243-0836bar") ;
if(m.find()) {

System.out.printf("’%s’ matched %s: %s\n", r, s, m.group());
}

Sandeep Kumar Discrete Structures for Computing 10/ 14

Splitting String on a Regular Expression

Remember the magic square assignment.
String line =" 23 , 45,67, 78"

line.trim() .split ("\\s*,\\s*")

Pattern commas = Pattern.compile("\\s*,\\s*")
commas.split(line.trim())

Sandeep Kumar Discrete Structures for Computing 11/14

Replacing Regular Expression Matches

String line =" 23 , 45,67, 78"

line.trim() .replaceAll ("\\s*,\\s*x", ",")

@ The replacement string can contain group numbers $n or names
${name}.

@ They are replaced with the contents of the corresponding captured
group.

"3:45" .replaceAll (" (\\d+) : (?<minutes>\\d+)", "HH $1 MM ${minutes}")

Sandeep Kumar Discrete Structures for Computing 12/14

Regular Expression References

o Java Documentation.
@ regular-expressions.info.
o regex101.com.

@ Ray Toal’s notes.

Sandeep Kumar Discrete Structures for Computing 13/14

https://docs.oracle.com/javase/tutorial/essential/regex/
https://www.regular-expressions.info/java.html
https://regex101.com/
https://cs.lmu.edu/~ray/notes/regex/

Bibliography |

[Michael Fitzgerald.
Introducing Regular Expressions.
O'Reilly, 2012.

[3 Ashutosh Gupta and S. Krishna.
Cs 228: Logic for computer science 2022.
https://www.cse.iitb.ac.in/ akg/courses/2022-logic/, January 2022.

[Hyunyoung Lee.

Discrete structures for computing.

Class slides for TAMU CSCE 222, 20109.
[@ Phillip Rogaway.

Ecs20 fall 2021 lecture notes, Fall 2021.

Sandeep Kumar Discrete Structures for Computing 14 /14

