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Regex in Practice

Show use of fd.

Show use of ugrep.

Show use of bks.

Show use of grep.class.
▶ A line of text that only contains numbers.
▶ An HTML hyperlink <a href="...">...</a>.
▶ A social security number anywhere in a line.
▶ The words “credit card” in a line with any number of spaces between

the words “credit” and “card”.
▶ Jack or John.
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https://github.com/sharkdp/fd
https://github.com/Genivia/ugrep


Regular Expressions

Regular expressions are a concise way to represent some sets of strings.
These sets are called regular languages.

Regular expressions are often used to:

Validate that some text matches a pattern,

Find fragments of a text that match some pattern,

Extract fragments of a text,

Replace fragments of text with other text.
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Regular Expressions (Simplified)
Based on [Fit12].

Char Meaning
. matches any single character except newline
* preceding construct may be repeated ≥ 0 times
+ preceding construct may be repeated ≥ 1 times
? preceding construct is optional (0 or 1 times)
x non-meta characters match themselves

Examples:

hello matches hello.

9+ matches 9, 99, 999 etc.

99* matches 9, 99, 999 etc.

go*gle matches ggle, gogle, google,. . .

99? matches 9, 99.

honou?r matches honor, honour.
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Regular Expressions (Simplified). . .
Char Meaning
^ matches beginning of input (start of line when multiline)
$ matches end of input (end of line when multiline)
\b matches a word boundary
\B matches a non-word boundary
\A matches beginning of string
\Z matches end of string
X{n} n × X

Examples:

z{3} matches zzz.

\d{5}(-\d{4})? matches a United States zip code.

^dog begins with dog.

dog$ ends with dog.
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Regular Expressions
Character Classes

[C1C2 . . .]

where Ci are characters, ranges represented by c-d or character classes.

Char Class Meaning
\d, \D Digits 0 . . . 9; its complement
\w, \W Word characters a . . . z ,A . . .Z , 0 . . . 9; its complement
\s, \S Spaces \n\r\t\f\x{B}; its complement

minimi[sz]e matches minimize & minimise.

\d\d\d-\d\d\d-\d\d\d\d matches 408-243-0836.

\d+-\d+-\d+ matches 408-243-0836.

[0-9]+-\d+-\d+ matches 408-243-0836.

Sandeep Kumar Discrete Structures for Computing 6 / 14



Regular Expressions
Matching a simplified floating point number

[-+]?\d+\.\d+ matches -23.56123.
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Regular Expressions
Sequences, Alternatives & Grouping.

Regex Meaning
X Y Any string from X , followed by any string from Y
X | Y Any string from X or Y
(X ) Captures the match of X

(? : X ) Non-capturing match of X

\d+(\s*,\s*\d+)* matches numbers separated by ”,”.

(abra).*\1 matches abra . . . abra.

\u00f6 matches ?.

\u0065 matches e.
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Lookarounds

Lookarounds do not consume anything.

Even though they have parens, they do not capture.

Positive Lookahead. Hillary(?=\s+Clinton) matches Hillary in
Hillary Clinton but not in Hillary Makasa.

Positive Lookbehind. (?<=http://)\S+ matches URL not
including the http:// part.

Negative Lookahead. q(?!u) matches q if not followed by u.

Negative Lookbehind. (?<![-+\d])(\d+) matches digits not
preceded by a digit, +, or −.
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Java API

Compile the regular expression with match options.

Create a Matcher object with the string against which the match is
done.

Invoke matches or find method on the Matcher object.

String r = "\\d+-\\d+-\\d+";

String s = "408-243-0836";

Pattern regex = Pattern.compile(r, Pattern.CASE_INSENSITIVE);

Matcher m = regex.matcher("408-243-0836");

System.out.printf("’%s’ matches %s? %b\n", r, s, m.matches());

m = regex.matcher("foo408-243-0836bar");

if(m.find()) {

System.out.printf("’%s’ matched %s: %s\n", r, s, m.group());

}
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Splitting String on a Regular Expression

Remember the magic square assignment.

String line = " 23 , 45,67, 78"

line.trim().split("\\s*,\\s*")

Pattern commas = Pattern.compile("\\s*,\\s*")

commas.split(line.trim())
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Replacing Regular Expression Matches

String line = " 23 , 45,67, 78"

line.trim().replaceAll("\\s*,\\s*", ",")

The replacement string can contain group numbers $n or names
${name}.

They are replaced with the contents of the corresponding captured
group.

"3:45".replaceAll("(\\d+):(?<minutes>\\d+)", "HH $1 MM ${minutes}")

Sandeep Kumar Discrete Structures for Computing 12 / 14



Regular Expression References

Java Documentation.

regular-expressions.info.

regex101.com.

Ray Toal’s notes.
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https://docs.oracle.com/javase/tutorial/essential/regex/
https://www.regular-expressions.info/java.html
https://regex101.com/
https://cs.lmu.edu/~ray/notes/regex/
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