
Chapter 3: Generalized Linear Models
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Generalized Linear Models for Binary Data

We will study in detail models for data where there are two possible outcomes
which we call “Success” (S) and “Failure” (F). A random variable with two
possible outcomes is known as a Bernoulli variable. Its distribution can be
specified as follows:

pr(Y = 1) = P(S) = π and P(Y = 0) = P(F ) = 1− π.

For this model,
E (Y ) = π and var(Y ) = π(1− π).

The systematic component will depend on an explanatory variable x . The

probability of success is written as π(x) to indicate its dependence on x .
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Linear Probability Model

A simple model relating the success probability π to the explanatory variable x is
a linear model:

π(x) = α+ βx

Problems with this model:

For certain x , π(x) could be more than one or less than zero.

Least squares is not optimal because var(Y ) = π(x)(1− π(x)).

Maximum likelihood estimators do not have closed form.
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Logistic Regression Model

In many cases the success probability is a nonlinear function of the linear predictor
η = α+ βx . Typically these functions

are monotonic. Means either they increase as x increases or decrease as x
increases.

satisfy 0 ≤ π(x) = π(η) ≤ 1.

often form an S-shaped curve.

A model that satisfies the above is the logistic regression function:

π(x) =
exp(α+ βx)

1 + exp(α+ βx)
=

1

1 + exp{−(α+ βx)}
.
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Remark: Because we often wish to use a monotone function π(x) satisfying
0 ≤ π(x) ≤ 1, it is convenient to use a cumulative distribution function (cdf) of a
continuous random variable. Recall that a CDF of a random variable X is defined
as

F (x) = P(X ≤ x) =

∫ x

−∞
f (t)dt,

where f is the probability density function of X .

This form of a model is useful when a tolerance distribution applies to the

subjects’ responses. For instance, mosquitoes are sprayed with insecticide at

various doses. The response is whether the mosquito dies. Each mosquito has a

tolerance and the cdf F (x) describes the distribution of tolerances.
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Several choices for modelling π in terms of x

Logistic distribution: The CDF of the logistic distribution is

F (s) =
1

1 + e−s
, −∞ < s < ∞.

Thus,

π(x) = π(η) =
exp(η)

1 + exp(η)
.

Normal distribution: The CDF of the standard normal random variable is

Φ(s) =

∫ s

−∞

1√
2π

e−t2/2dt, −∞ < s < ∞

Thus,

π(x) = Φ(η) =
1√
2π

∫ η

−∞
exp(−r2/2)dr .

Gumble distribution: The CDF of the standard Gumbel distribution is

F (s) = 1− exp{− exp(s)} −∞ < s < ∞.

Thus,
π(x) = F (η) = 1− exp{− exp(η)}.
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Link function

The link function on the mean of the response returns the linear predictor.

For the logistic model the link function is the logit link

logit(π(x)) = log

(
π(x)

1− π(x)

)
= α+ βx .

When π(x) = Φ(η) = (1/
√
2π)

∫ η

−∞ exp(−r2/2)dr , the link is called probit
link which is the inverse-CDF of the normal distribution.

When π(x) = F (η) = 1− exp{− exp(η)}, the link function is called
complementary log-log (cloglog):
cloglog{π(x)} = log[−log{1− π(x)}] = η = α+ βx
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Beetles were treated with various concentrations of insecticide for 5 hrs. The data

appear in the following table:
Dose xi Number of Number Proportion

(log10CS2mgl−1) insects, ni killed, Yi killed, yi
ni

1.6907 59 6 .1017
1.7242 60 13 .2167
1.7552 62 18 .2903
1.7842 56 28 .5000
1.8113 63 52 .8254
1.8369 59 53 .8983
1.8610 62 61 .9839
1.8839 60 59 0.9833
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To see if the logistic model is plausible, we can plot logit(π̂(x)) versus x (dose).
This plot should appear linear.

Code
x=c(1.69, 1.72, 1.76, 1.78, 1.81, 1.84, 1.86, 1.88)

y=c(0.1, 0.22, 0.29, 0.5, 0.83, 0.89, 0.9839, 0.9833)

y1=log(y/(1-y))

plot(x, y1, ylab="logit of the proportions", lwd=2)

lm(y1~x)

Call:

lm(formula = y1 ~ x)

Coefficients:

(Intercept) x

-61.58 34.88

abline(a=-61.58, b=34.88, lwd=2)
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Code

> glm(prop~dose,family=binomial(link=logit),weight=insects)

Call:

glm(formula = prop ~ dose, family = binomial(link = logit),

weights = insects)

Coefficients:

(Intercept) dose

-59.18754 33.4007

%

Degrees of Freedom: 8 Total; 6 Residual

Residual Deviance: 8.639754

> glm(prop~dose,family=binomial(link=probit),weight=insects)

Call:

glm(formula = prop ~ dose, family = binomial(link = probit),

weights = insects)

Coefficients:

(Intercept) dose

-33.91668 19.1474

%

Degrees of Freedom: 8 Total; 6 Residual

Residual Deviance: 8.430316
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Code

> glm(prop~dose,family=binomial(link=cloglog),

weight=insects)

Call:

glm(formula = prop ~ dose, family = binomial(link = cloglog),

weights = insects)

Coefficients:

(Intercept) dose

-36.89805 20.5354

%

Degrees of Freedom: 8 Total; 6 Residual

Residual Deviance: 6.185176
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Three binary regression models were fit to these data. The fitted models were:

logit{π̂(x)} = −59.19 + 33.40x

probit{π̂(x)} = −33.92 + 19.15x

cloglog{π̂(x)} = −36.90 + 20.53x

Show the observed proportions and the fitted proportions for all three models.
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The logistic model as the GLM

Show that the probability mass function (pmf) of Y given X (or x) can be
written

f (Y ; θ, ϕ) = exp

[
Y θ − b(θ)

a(ϕ)
+ c(Y , ϕ)

]
,

for specified functions a(·), b(·), and c(·). These functions are related to
the mean and variance of a r.v. Y having this distribution:

µ = E (Y ) = b′(θ)

var(Y ) = a(ϕ)b′′(θ)
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Connection with the linear model

The usual multiple regression model is

Y = α+ βX + ϵ,

where ϵ ∼ N(0, σ2), and α, β, σ2 are unknown parameters.

Random component: Y ∼ N(µ, σ2)

Systematic component: α+ βX

Link: α+ βX = I (µ) = µ, I stands for the identity link.
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Examples of Generalized Linear Models

Random Systematic
Component Link Component Model Chapter

Normal Identity Continuous Regression
Normal Identity Categorical ANOVA
Normal Identity Mixed ANCOVA
Binomial Logit Mixed Logistic 4, 5, 8, 9

Regression
Poisson Log Mixed Poisson Regression 3

Log-Linear Models 7, 8
Negative binomial Log Mixed Neg. Bin. Regression 3
Multinomial Generalized Mixed Multinomial 6

Logit Response
Multinomial Cumulative Mixed Proportional 6

Logit Odds Model
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Generalized Linear Models

The conditional probability distribution of the each of the above random variable
Y given the explanatory variable X can be expressed as

f (Y ; θ(X ), ϕ) = exp

[
Y θ(X )− b(θ(X ))

a(ϕ)
+ c(Y , ϕ)

]
,

where θ(X ) is a function of X .
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GLMs for Count Data: Poisson Regression

The Poisson distribution is commonly used for count data. Often we will need a
model to relate counts to predictor variables. Since the mean of a Poisson
random variable is positive, the Poisson loglinear model uses the log link:

log(µ) = α+ βx .

This implies that the mean satisfies the relationship

µ = exp(α+ βx) = eα(eβ)x .

Thus,

Y ∼ Poisson(exp(α+ βx)).

If we increase x by 1 unit, the mean of Y is multiplied by a factor of exp(β).
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Simulation of Poisson Regression Data

Generate x1, . . . , xn, a random sample from a normal distribution with mean
0 and variance 1.

For each xi , generate Yi ∼ Poisson(exp(xi )) random variable.

Plot (xi ,Yi ), i = 1, . . . , n.

Plot µ = ex .

We also fit the data plotted on the next slide to a Poisson regression model using

R.
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Poisson data generation

Code

n=200

> set.seed(100)

> x=rnorm(n)

> mu=exp(-0.5+x)

> y=rpois(n, mu)
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Look at the figures

Code

plot(x, y, lwd=2) # scatter plot

library(dplyr);

x.new <- cut(x, breaks=3, labels=c("low","medium","high"))

boxplot(y~x.new, lwd=2, xlab="x") # boxplot of y against a categorized x
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Poisson model fitting

Code

glm(y~x, family=‘‘poisson’’(link=log))

Call: glm(formula = y ~ x, family = poisson(link = log))

Coefficients:

(Intercept) x

-0.3446 1.0102

Degrees of Freedom: 199 Total (i.e. Null); 198 Residual

Null Deviance: 404.6

Residual Deviance: 196.9 AIC: 461.4
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Poisson Multiple Regression

We consider Poisson regression models with one or more explanatory variables.

Poisson response: Y

k predictors: x = (x1, . . . , xk)

Quantity to estimate: µ(x) = E (Y |x1, . . . , xk)
The Poisson regression model is

log{µ(x)} = α+ β1x1 + · · ·+ βkxk .

The parameter βj reflects the effect of a unit change in xj on the log of the
mean response, keeping the other xi s constant.

Here, eβj is the multiplicative effect on the mean response of a one-unit
increase in xj , keeping the other xi s constant:

log(µ(x1 + 1, x2, . . . , xk))− log(µ(x1, x2, . . . , xk))

= α+ β1(x1 + 1) + · · ·+ βkxk − (α+ β1x1 + · · ·+ βkxk)

= β1
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Poisson Regression Models with Qualitative Predictors

Similar to ordinary regression, we can have qualitative explanatory variables.
Consider first a simple model

log(µ(x)) = α+ βx ,

where the predictor x which takes on the values 0 or 1. We obtain the following
table:

Explanatory
Variable (X ) log(µ(x)) µ(x)
x = 1 log(µ(1)) = α+ β exp(α+ β)

x = 0 log(µ(0)) = α exp(α)

We often call such a predictor a dummy variable.
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When a nominal predictor has k levels, we can represent the predictor in a
regression model using k − 1 dummy variables:

xℓ = 1, if Category ℓ, = 0, otherwise, ℓ = 1, ..., k − 1.

The resulting Poisson regression model is

log(µ(x)) = α+ β1x1 + · · ·+ βk−1xk−1.

This parameterization treats Category k as a reference category. Since

log

(
µℓ

µk

)
= log(µℓ)− log(µk) = (α+ βℓ)− α = βℓ,

the ratio of the mean response for category ℓ and that of the reference category k
is

µℓ

µk
= exp(βℓ).
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Poisson Regression for Rate Data

It is often the case that the response of interest is the rate of occurrence of some
event rather than the number of occurrences of that event.

When analyzing the number of marriages by state, we would model the
marriage rate (number of marriages per 100,000 residents) instead of the
number of marriages.

When analyzing the number of train accidents in the United States, we
would model the number of train accidents per million miles travelled.
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When the response Y has an index equal to k , the sample rate of outcomes is
Y /k . The expected rate is µ/k . A log-linear model for the expected rate has the
form

log(µ/k) = α+ βx .

This is equivalent to
log(µ)− log(k) = α+ βx .

The adjustment term, log(k), to the log-link of the mean is called the offset term.
For this model the expected number of outcomes is

µ = k exp(α+ βx) = exp(log(k) + α+ βx).

The following webpage has a nice data to illustrate the offset term. https:

//www.iihs.org/topics/fatality-statistics/detail/yearly-snapshot
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Inference for GLMs

Inference for GLMs is based on likelihood methods. Here we give a brief overview
of estimation and testing from the likelihood point of view.

Model: We suppose that Y1, . . . ,Yn are independent and (for now) identically

distributed with probability mass function f (y ; θ), where θ represents the

unknown parameter. The parameter space Θ is the set of possible values of θ.
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The likelihood function is defined as

ℓ(θ) =
n∏

i=1

f (yi ; θ) = f (y1; θ)× f (y2; θ)× · · · × f (yn; θ)

We observe y1, . . . , yn and view the likelihood as a function of θ.

We can interpret ℓ(θ) as the probability of observing y1, . . . , yn for a given
value of θ.

Often we use the log-likelihood function for inference:

ℓ(θ) = log{L(θ)} =
n∑

i=1

log{f (yi ; θ)}
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Maximum Likelihood Estimation

The value of θ in Θ that maximizes ℓ(θ), or equivalently L(θ), is known as the
maximum likelihood estimate (mle). We will use statistical software for
categorical data to compute mles.
The MLE has excellent large sample properties under certain regularity conditions
as n → ∞.
We denote the “true” value of θ by θ0.
The MLE is asymptotically normal:

θ̂ − θ0√
I(θ0)−1

d→ N(0, 1) as n → ∞.

The above statement says that for a large n, the distribution of θ̂−θ0√
I(θ0)−1

is close

to Normal(0, 1).
The quantity I(θ) is called Fisher’s information and is defined as

I(θ) = E

[
−∂2ℓ(θ)

∂θ2

]
.

This quantity can be estimated in several ways:

V̂ = I(θ̂) − Plug in

V̂ = −∂2ℓ(θ̂)

∂θ2
−Hessian or observed information.
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Maximum Likelihood Estimation

We replace I(θ0)−1 by its estimate to obtain

θ̂
approx∼ N(θ0, V̂ ).

The maximum likelihood estimate has the following properties:

In large samples the MLE has approximately the desired mean.

The variance of the MLE is as small as possible.

We can use a relatively simple distribution to provide confidence intervals for
θ. In general, the actual sampling distribution of θ̂ is very messy.√
V̂ =

[√
I(θ̂)

]−1

provides the asymptotic standard error (SE) for θ̂.

−∂2ℓ(θ̂)

∂θ2
measures the curvature of the log-likelihood function.

The greater the curvature, the greater the information about θ and the
smaller the SE.
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Maximum Likelihood Estimation

The log-likelihood for the binomial distribution is

ℓ(θ) = log{L(θ)} = y log(θ) + (n − y)log(1− θ).

The first and second derivatives are

∂ℓ(θ)

∂θ
=

y

θ
− n − y

1− θ
and

∂2ℓ(θ)

∂θ2
= − y

θ2
− n − y

(1− θ)2
.

The mle is θ̂ = y
n , and Fisher’s information is

I(θ) = −E

[
∂2ℓ(θ)

∂θ2

]
=

nθ

θ2
+

n(1− θ)

(1− θ)2
=

n

θ(1− θ)
.

Then

SE (θ̂) =

√
I(θ̂)−1 =

√
θ̂(1− θ̂)

n
.
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Confidence Interval for θ

When
θ̂

approx∼ N(θ0, V̂ ),

we can form an approximate (1− α)100% confidence interval for θ:

θ̂ ± Zα/2SE (θ̂).

This interval is the Wald confidence interval for θ.

y

n
± Zα/2

√
y
n (1−

y
n )

n
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The Likelihood Approach to Hypothesis Testing

We consider testing H0 : θ = θ0. More generally we could test H0 : θ ∈ Θ0. There
are three likelihood-based approaches to hypothesis testing:

Likelihood ratio test

Wald test

Score test
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Wald Test

The Wald test is based on the asymptotic normality of θ̂:

θ̂ − θ0√
I(θ0)−1

d→ N(0, 1) as n → ∞.

We define the Wald statistic:

Z =
θ̂ − θ0√
I(θ̂)−1

∼ N(0, 1) or W = Z 2 =
(θ̂ − θ0)

2

I(θ̂)−1
∼ χ2

1.

Binomial(n, θ) example:

Z =

√
n(θ̂ − θ0)√
θ̂(1− θ̂)

or W =
n(θ̂ − θ0)

2

θ̂(1− θ̂)
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Likelihood Ratio Test

We wish to compare the likelihood under H0, L(θ0) to the largest likelihood,
L(θ̂), using the likelihood ratio statistic:

G 2 = QL = −2 log

{
L(θ0)
L(θ̂)

}
= 2{ℓ(θ̂)− ℓ(θ0)}

d→ χ2
1 as n → ∞

ℓ(θ) = log{L(θ)}

Now ℓ(θ) ≤ ℓ(θ̂) for all θ ∈ Θ, so QL > 0.

When H0 is true, we would expect θ̂ to be close to θ0 and the ratio inside
QL to be close to 1.

When H0 is false, the value of θ̂ would differ from θ0 and ℓ(θ0) < ℓ(θ̂). We
reject H0 for large values of QL.
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Let Y ∼ Binomial(n, θ), y is the observed (realized) value of the random variable
Y

QL = −2[log{L(θ0)} − log{L(θ̂)}]
= −2{y log(θ0) + (n − y)log(1− θ0)− y log(θ̂)− (n − y)log(1− θ̂)}

= 2

{
y log

(
θ̂

θ0

)
+ (n − y)log

(
1− θ̂

1− θ0

)}
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Score Test

The score function is defined as

U(θ) =
∂log{L(θ)}

∂θ
=

∂ℓ(θ)

∂θ
.

Recall that the mle is the solution to

U(θ) =
∂ℓ(θ)

∂θ
= 0.

We evaluate the score function at the hypothesized value θ0 and see how close it
is to zero.
The score statistic is asymptotically normal:

Z =
U(θ0)√
I(θ0)

∼ N(0, 1) or S = Z 2 =
U(θ0)

2

I(θ0)
∼ χ2

1
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Bernoulli random sample

U(θ) =
∂ℓ(θ)

∂θ
=

y

θ
− n − y

1− θ
and S =

(
y
θ0

− n−y
1−θ0

)2
n

θ0(1−θ0)

=
n(θ̂ − θ0)

2

θ0(1− θ0)
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Comments

The above tests all reject for large values based on chi-squared critical
values.

The three tests are asymptotically equivalent. That is, in large samples they
will tend to have similar values and lead to the same decision.

For moderate sample sizes, the LR test is usually more reliable than the
Wald test.

A large difference in the values of the three statistics may indicate that the
distribution of θ̂ may not be normal.

The Wald test is based on the behavior of the log-likelihood at the mle θ̂.
The SE of θ̂ depends on the curvature of the log-likelihood function at θ̂.

The score test is based on the behavior of the log-likelihood function at θ0.
It uses the derivative (or slope) of the log-likelihood at the null value, θ0.
Recall that the slope at θ̂ equals zero.
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Many commonly used test statistics are score statistics:

Pearson χ2 statistic for independence in a 2-way table
Cochran-Armitage M2 statistic for testing a linear trend alternative to
independence
Cochran-Mantel-Haenszel statistic for testing conditional independence
in a 3-way table

The LR statistic combines information about the log-likelihood function
both at θ̂ and at θ0. Thus, the LR statistic uses more information than the
other two statistics and is usually the most reliable among the three.

These statistics can be used for multiparameter models. Often we have a
parameter vector θ = (θ1, . . . , θp)

T . We wish to test all components of θ
together, H0 : θ = θ0. Then

The score function is now a vector of p partial derivatives of the
log-likelihood function.
The MLE is determined by solving the resulting set of p equations in p
unknowns.
Fisher’s information is now a p × p matrix.
All three statistics are asymptotically equivalent and asymptotically
have a chi-squared distribution with p d.f.
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Deviance

The analysis of generalized linear models is facilitated by the use of the deviance.
Let ℓM denote the maximized log-likelihood of the model of interest. The
saturated model is defined to be the most complex model which has a separate
parameter for each observation and µ̂i = yi , i = 1, . . . , n. Let ℓS denote the
maximized log-likelihood of the saturated model.
The deviance D(M) is defined to be

Deviance = D(M) = 2(ℓS − ℓM)

The deviance is the LR statistic for comparing model M to the saturated model.
Often the deviance has an approximately chi-squared distribution.
An analogy to the decomposition of sums of squares for linear models holds for
the deviance in generalized linear models. Suppose that model M0 is a special
case of model M1. Such a model is said to be nested. Given that M1 holds and
that both models have the same saturated model, the LR statistic for testing that
the simpler model (M0) holds is

QL = 2(ℓM1 − ℓM0) = 2(ℓS − ℓM0)− 2(ℓS − ℓM1)

= D(M0)− D(M1)
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Deviance

Thus, one can compare models by comparing deviances. For large samples, this

statistic is approximately chi-squared with df equal to the difference in residual

df for the two models.
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Analysis of Agresti’s Crab Data

Agresti, Ch. 3, presents a data set from a study of nesting crabs. Each female in
the study had a male crab accompanying her. Additional male crabs living near
her are call satellites. The number satellites for each female crab is the response.
Predictors include the color, spine condition, width, and weight of the female
crab. Since the plot of the number of satellites against the carapace width does
not reveal a clear trend, one can group the crabs into width categories and plot
the mean number of satellites for the female crabs within each category.
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The fitted model for the mean number of satellites for a female crab is

log(µ̂) = α̂+ β̂x = −3.3048 + 0.1640x .

The asymptotic standard error of β̂ is ŝe(β̂) = 0.0200. The Wald chi-square
statistic for testing H0 : β1 = 0 is W = 67.51 which gives strong evidence of an
effect due to width on the mean number of satellites.
We can estimate the mean number of satellites for a female crab with a width of
30 cm:

µ̂ = exp[α̂+ β̂x ] = exp[−3.3048 + 0.1640(30)] = 5.03.

The effect of a 1cm increase in width is a multiplicative effect of

exp(β̂) = exp(0.164) = 1.18 on the mean number of satellites.

Scott Crawford (TAMU) Contingency table August 14, 2024 47 / 83



A Poisson regression model with identity link was also fit to the data resulting in
a estimated mean response of

µ̂ = α̂+ β̂x = −11.5321 + 0.5495x .

The estimated mean number of satellites for a female crab with a width of 30 cm
is µ̂ = −11.5321+ 0.5495(30) = 4.9529 which is similar to the above fitted value.

We can set that both models produce similar estimates of the mean number of
satellites over the middle part of the range of width, but the fit seems to be
better for the identity link for small widths.
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To illustrate the fitting of a Poisson regression model with an offset term we will
fit the grouped horseshoe crab data. We consider the following variables:

Y = total number of satellites for females in a width category

k = number of female crabs having in the width category

w = the average width of the female crabs in the width category

If µ = E (Y ), then µ/k is the expected number of satellites per female crab at
that width. We fit the model

log(µ/k) = α+ βw .

The Poisson regression model with an offset of log(k) results in the same fit as
using the ungrouped data.
When we group the data by width categories, we obtain the fitted model,

log(µ̂/k) = −3.5355 + 0.1727w ,

which is similar to the fit we obtained from the complete data.
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Poisson model as a GLM

f (y ;µ) = exp(−µ)
µy

y !

= exp{−µ+ y log(µ)− log(y !)}
= exp{yθ − exp(θ)− log(y !)},

where θ = log(µ) so µ = exp(θ). So, in the exponential family form
b(θ) = exp(θ), ϕ = 1, c(y , ϕ) = −log(y !).

Also, observe that E (Y ) = b′(θ) = exp(θ) = µ, and var(Y ) = b′′(θ) = exp(θ).
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Model Checking for GLMs Using Residuals

Residuals are based on chi-squared statistics for testing lack of fit in a generalized
linear model. Consider the two statistics for lack-of-fit.

Likelihood ratio (deviance) statistic

Deviance = 2
n∑

i=1

[yi (θ̂
S
i − θ̂Mi )− b(θ̂Si ) + b(θ̂Mi )]/ai (ϕ)

=
n∑

i=1

di ,

Here θ̂Si = log(Yi ), θ̂
M
i = log(µ̂M

i ), if µM
i = exp(α+ βXi ), then

θ̂Mi = α̂+ β̂Xi
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Model Checking for GLMs Using Residuals

Generalized Pearson statistic

X 2 =
n∑

i=1

(yi − µ̂i )
2

V̂ (yi )

Under H0 that the model is correct, both statistics should have an
approximate chi-squared distribution with n − p − 1 degrees of freedom.
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We can use the terms in either sum to define a residual to assess lack of fit.

Deviance residual

rDi = sign(yi − µ̂i )
√
di ,

where µ̂i we simply refer to µ̂M
i

Pearson residual

rPi =
yi − µ̂i√
V̂ (yi )

See Simonoff, p. 133, for standardized versions of these residuals.

Model checking can be carried out using plots of these residuals.
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Checking a Poisson Regression Model

For the Poisson generalized linear model, the Pearson and the likelihood ratio
statistics for goodness of fit are

X 2 =
n∑

i=1

(yi − µ̂i )
2

µ̂i
and G 2 = 2

∑
{yi log

(
yi
µ̂i

)
},

respectively. When the expected values (µ̂i ) are large enough (≥ 5) and n is
fixed, they have an approximate chi-squared distribution with df = n − p where
p = the number of parameters in the model. We reject the Poisson regression
model for large values of these statistics.

For the Poisson regression model, G 2 = Residual deviance
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When the null hypothesis holds and the approximation is adequate, the
expected values of G 2 and X 2 both equal approximately df = n − p. Thus,
when the model fits, the ratio of deviance (or chi-squared) ratio to degrees
of freedom will be close to one.

In many cases, there are too few observations per value of the predictor(s)
to ensure the adequacy of the chi-squared approximation. In such a case, we
use large values of the ratio of deviance to degrees of freedom to indicate
possible inadequacy of the model.

The value of the deviance and its degrees of freedom will depend on how we
define a single observation. This will be discussed in more detail when we
test the fit of logistic regression models.
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Examining the Fit of the Poisson Regression Model for the
Crab Data

We could consider the fit in two ways:

There are 173 crabs. The resulting goodness-of-fit statistics when treating
these as separate observations are

X 2 = 544.16, X 2/df = 3.18 and

G 2 = 567.88, G 2/df = 3.32 with df = 64.

There are 66 distinct values of width for the 173 crabs. Each of these values
has a total count of satellites yi with fitted values µ̂i . The above
goodness-of-fit statistics were computed resulting in

X 2 = 174.27, X 2/df = 2.72 and

G 2 = 190.03, G 2/df = 2.97 with df = 64.
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Code for the two model fitting

Code

ac=read.csv("/Users/Samiran/Downloads/agresti_crab.csv")

out1=glm(satell~width, family=poisson, data=ac)

out1

Call: glm(formula = satell ~ width, family = poisson, data = ac)

Coefficients:

(Intercept) width

-3.305 0.164

Degrees of Freedom: 172 Total (i.e. Null); 171 Residual

Null Deviance: 632.8

Residual Deviance: 567.9 AIC: 927.2
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Code for the two model fitting

Code

newwidth= unique(ac$width)

newy=rep(0, length(newwidth))

for( i in 1: length(newy)) newy[i]= sum(ac$satell[ac$width==newwidth[i]])

newn=rep(0, length(newwidth))

for( i in 1: length(newy)) newn[i]= sum(as.numeric(ac$width==newwidth[i]))

out2=glm(newy~newwidth, family=poisson, offset=log(newn))

out2

Call: glm(formula = newy ~ newwidth, family = poisson, offset = log(newn))

Coefficients:

(Intercept) newwidth

-3.305 0.164

Degrees of Freedom: 65 Total (i.e. Null); 64 Residual

Null Deviance: 254.9

Residual Deviance: 190 AIC: 402.5
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The validity of the large sample approximation using the chi-squared distribution is
doubtful for a couple of reasons:

Most of the expected frequencies are small.

If we had more crabs in the sample, the number n of different settings would
increase (not stay fixed).

Code

data2=data.frame(newy, newn, newwidth)

head(data2)

newy newn newwidth

1 23 3 28.3

2 5 3 22.5

3 38 6 26.0

4 0 1 24.8

5 6 3 23.8

6 16 6 26.5
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A better chi-squared approximation can be obtained by grouping the data. The

data were placed into the width categories:

< 23.25, 23.25− 24.25, . . . , 28.25− 29.25, > 29.25. The resulting data is given in

a table on the next slide. This results in categories with yi and µ̂i much larger

than they were in the original 66 width categories.

Code

newy2=c(14, 20, 67, 105, 63, 93, 71, 72)

newn2=c(14, 14, 28, 39, 22, 24, 18, 14)

newx2=0:7; out4=glm(newy2~newx2, family=poisson, offset=log(newn2))

out4

Call: glm(formula = newy2 ~ newx2, family = poisson, offset = log(newn2))

Coefficients:

(Intercept) newx2

0.3640 0.1845

Degrees of Freedom: 7 Total (i.e. Null); 6 Residual

Null Deviance: 72.38

Residual Deviance: 5.996 AIC: 56.44
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The goodness-of-fit statistics were computed resulting in

X 2 = 5.78, X 2/df = 0.963 and G 2 = 5.996, G 2/df = 0.999, with df = 6.

This indicates no lack of fit for the Poisson regression model. However, this
analysis fails to indicate the presence of overdispersion.
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Residual Analysis

For the Poisson generalized linear model, the Pearson residual is

rPi =
yi − µ̂i√

µ̂i
.

The Pearson residual divided by its standard deviation is called the adjusted
residual:

r̃Pi =
rPi√

(1− hi )
=

yi − µ̂i√
µ̂i (1− hi )

.

The term hi is called the leverage of an observation i . See p.148 of Agresti or p.

132 of Simonoff a discussion of the “hat matrix” and leverage.
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This table contains the fitted values and residuals for the grouped crab data:
Width ni yi µ̂i rPi r̃Pi
< 23.25 14 14 20.5 −1.44 −1.63
23.25− 24.25 14 20 25.2 −1.01 −1.11
24.25− 25.25 28 67 58.9 1.06 1.23
25.25− 26.25 39 105 98.6 0.64 0.75
26.25− 27.25 22 63 65.5 −0.31 −0.34
27.25− 28.25 24 93 84.3 0.95 1.06
28.25− 29.25 18 71 74.2 −0.37 −0.42
> 29.25 14 72 77.9 −0.67 −1.00
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A Brief Look at Overdispersion

An assumption for Poisson regression is that the mean and variance of the
responses are equal. Heterogeneity of the experimental units can cause the
variance to be larger than the mean. This can occur in models where one or more
important predictors is omitted. In our example, suppose that the responses are
Poisson with the mean depending on four variables: width, weight, color, and
spine condition. If we consider only one of these predictors, say width, the crabs
with a given width will have differing values of weight, color, and spine condition
resulting in different means. This will result in a larger variance than the Poisson
model predicts.

We can carry out tests for overdispersion as outlined in Section 5.3 of Simonoff.

Here we will check for overdispersion in the crab data by computing the sample

mean and variance of the number of satellites for the crabs in the various weight

categories:
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Width ni yi ȳ s2i
< 23.25 14 14 1.00 2.77

23.25− 24.25 14 20 1.43 8.88
24.25− 25.25 28 67 2.39 6.54
25.25− 26.25 39 105 2.69 11.38
26.25− 27.25 22 63 2.86 6.88
27.25− 28.25 24 93 3.87 8.81
28.25− 29.25 18 71 3.94 16.88

> 29.25 14 72 5.14 8.29
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Negative Binomial Model

The negative binomial model is often used for regression models for overdispersed
data. For this distribution,

E (Y ) = µ and var(Y ) = µ+ kµ2,

where k is the negative binomial dispersion parameter that must be estimated
from the data. As k → 0, the distribution approaches a Poisson distribution.

For handling extra zeros, one may consider the zero-inflated negative binomial

distribution.
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Further materials on Negative Binomial

The negative binomial distribution (NegBinom(r , p)):

f (Y = y ; p, r) =

(
y + r − 1

y

)
(1− p)rpy , y = 0, 1, 2, 3, . . . ,

where p ∈ (0, 1) while r is a positive number. Sometime the probability mass
function is written as

f (Y = y ; p, r) =
Γ(y + r)

y !Γ(r)
(1− p)rpy , y = 0, 1, 2, 3, . . . ,

The mean and variance are

µ = E (Y ) =
pr

1− p
, var(Y ) =

pr

(1− p)2
.

Clearly, var(Y ) = µ+ µ2/r .
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Data generation from a negative binomial distribution

Code

# Generates 10 random numbers from NegBinom(r=2, p=0.2)

set.seed(10)

rnbinom(10, 2, 0.2)

[1] 5 6 3 5 7 11 14 4 16 17

# r need not be a positive integer, here data are generated from

# NegBinom(r=4.21, p=0.1)

set.seed(10)

rnbinom(10, 4.21, 0.10)

[1] 32 11 32 28 36 58 29 57 29 22
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Negative binomial and poisson connection

The negative binomial distribution can be obtained when the mean of the poisson
distribution follows a Gamma distribution.
Suppose that conditional on λ, Y ∼ Poisson(λ) and λ follows a Gamma
distribution with the shape parameter r and scale parameter p/1(1− p) then the
marginal distribution of Y is the NegBinom(r , p). That means when

f (y ;λ) = exp(−λ)
λy

y !
, f (λ; r , p) = exp{−λ(1− p)/p}λ

(r−1){(1− p)/p}r

Γ(r)
,

we obtain Y ∼ NegBinom(r , p).
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negative binomial model fitting

Code

# Generates 30 random numbers from NegBinom(r=2.2, p=0.2)

set.seed(10)

y=rnbinom(30, 2.2, 0.4)

# Fit a NegBinom distribution to the data and obtain the MLE

library(MASS)

out=fitdistr(y, "Negative Binomial")

out

size mu

2.7689726 2.9000031

(1.4352723) (0.4448687)

# Here size=r

# Need some discussion about estimating p, in R, mu=r(1-p)/p

out2=fitdistr(y, "Poisson")

# Compare these two through AIC

c(AIC(out), AIC(out2))

[1] 132.1619 140.3683
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Negative binomial continues

In the presence of explanatory variables, we intend to find how the mean of the
response is governed by the explanatory variables. In the negative binomial case
we write

log(µ) = β0 + βT
1 X .

Thus, like the poisson model here the link function between the linear predictor
and the mean is the log link. For the ease of understanding we write the Negative
Binomial model in terms of µ and r .

f (y ;µ, r) =
Γ(y + r)

y !Γ(r)

µy r r

(µ+ r)(µ+r)
.

In data generation, we can also specify the size r and mean µ in lieu of r and p.
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Another example

Code

set.seed(10)

> x=rnorm(30)

> lambda= exp(0.2+x*1)

> lambda=lambda*exp(-0.2+rnorm(30))

> y=rpois(30, lambda)

> out2=glm.nb(y~x)

> summary(out2)

Call:

glm.nb(formula = y ~ x, init.theta = 0.4451546934, link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.2376 -1.0554 -0.8485 0.2082 1.6750

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1758 0.3434 0.512 0.609

x 0.5812 0.4083 1.423 0.155

(Dispersion parameter for Negative Binomial(0.4452) family taken to be 1)
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Another example

Code

Null deviance: 28.668 on 29 degrees of freedom

Residual deviance: 25.409 on 28 degrees of freedom

AIC: 87.613

Number of Fisher Scoring iterations: 1

Theta: 0.445

Std. Err.: 0.229

2 x log-likelihood: -81.613

# Theta is 1/r according to our notation
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Zero-Inflated Poisson Model

The zero-inflated Poisson model allows for an excessive number of zero
observations relative to the Poisson distribution. For this distribution,

pr(Y = y) =

{
ω + (1− ω) exp(−λ) if y = 0,
(1− ω) exp(−λ)λy/y ! for y > 0

Thus the random variable stems from a mixture of two distributions, 1) that has
probability mass fully concentrated on zero and 2) the other is the poisson
distribution. The mixing weights are ω and 1− ω respectively. If an observation is
non-zero, that is sure to come from the Poisson distribution while a zero value of
Y may come from either distributions. This model has two parameters (λ, ω),
λ > 0 and 0 < ω < 1.
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Zero-Inflated Poisson (ZIP) Model

E (Y ) = µ and var(Y ) = µ+
ω

1− ω
µ2

where µ = (1− ω)λ. It is obvious that here var(Y ) > E (Y ) for ω > 0, and
var(Y ) = E (Y ) when ω = 0 (i.e., Y is a simple poisson random variable).
If you are interested in knowing more about zero-inflation and its application, I
would suggest you to read the following article 1

1Comparing statistical methods for analyzing skewed longitudinal count data with
many zeros: An example of smoking cessation by Xie at al. (2013).
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Zero-Inflated Poisson Model

Like the GLM, we can model the mean of the second component of the ZIP
distribution in terms of covariates X and also we can model the inflation
parameter ω in terms of X . The standard models are

λ(x) = exp(β0 + βT
1 X ),

ω(X ) =
exp(γ0 + γT

1 X )

1 + exp(γ0 + γT
1 X )

.

These model parameters can be estimated via the maximum likelihood method.
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ZIP model fitting

Code

# simulated data example

set.seed(20)

n=200

x=rnorm(n)

lambda=exp(0.2+1.2*x)

y=rpois(n, lambda)

b=rbinom(n, 1, 0.8)

y=y*b # zero-inflated response

mydata=data.frame(x, y)

#

barplot(table(mydata$y))
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ZIP model fitting

Code

#you need the following package

library(pscl)

# Regular poisson model fitting

out.p=glm(y~x, family=poisson, data=mydata)

# ZIP model fitting with a model for the inflation parameter

out.zip.m.infl=zeroinfl(y~x|x, data=mydata)

# ZIP model fitting without any model for the inflation parameter

out.zip.nm.infl=zeroinfl(y~x|1, data=mydata)

#
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R code for model comparisons

Code

# Compare the models via AIC (available under the base package)

c(AIC(out.p), AIC(out.zip.m.infl), AIC(out.zip.nm.infl))

[1] 635.7601 595.4074 594.7901

# Compare the models via BIC (available under the base package)

c(BIC(out.p), BIC(out.zip.m.infl), BIC(out.zip.nm.infl))

[1] 642.3567 608.6007 604.6851

# Compare the models via BIC (need the qpcR package)

library(qpcR)

c(AICc(out.p), AICc(out.zip.m.infl), AICc(out.zip.nm.infl))

[1] 635.8210 595.6125 594.9126
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Choosing the “Best” Model

When the models are nested (i.e., all the explanatory variables in the smaller
model are also contained in the larger model), one can use a LR test to
choose between the two models.

There are various criteria one can use to select a model from a collection of
possible models that need not be nested. Some of the more commonly used
criteria are presented below.

1 -2 Log-likelihood or deviance
Since the log-likelihood tends to be larger and the deviance tends to be
smaller for models with more variables, we should consider measures
that penalize the log-likelihood for the number of parameters in the
model. The goal is to balance the goodness of fit of the model with
simplicity of the model. One such measure is the AIC.
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2 Akaike Information Criterion

AIC = −2L+ 2ν

where ν is the number of parameters in the model.

When comparing models, we choose the model with a smaller value of AIC.
AIC has a tendency to overfit models; that is, AIC can lead to models with
too many variables.

Scott Crawford (TAMU) Contingency table August 14, 2024 81 / 83



We note that the AIC criterion can be written in terms of the deviance:

AIC∗ = Deviance− 2LS + 2ν

Since the likelihood of the saturated model will be the same for all the models
being compared, we can order the models based on the sum of the deviance and
twice the number of parameters:

AIC = Deviance + 2ν.

Similarly we can consider the corrected AIC criterion that has a increased
protection against overfitting:

AICC = Deviance + 2ν

(
n

n − ν − 1

)
= AIC +

2ν(ν + 1)

n − ν − 1
.
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4 Schwarz Criterion — A Bayesian argument yields the Bayesian information
criterion:

BIC = Deviance + νlog(n).

Comments:

AIC, AICC , and BIC penalize the log likelihood for the number of parameters
in the model.

Smaller values of AIC, AICC , or BIC indicate a more preferable model.

For large sample sizes, the models chosen by AIC and AICC will be virtually
the same.

For large sample sizes, BIC will produce a larger penalty for additional
variables and will tend to choose models with fewer predictors.

One can produce a list of models to obtain a single “best” model using
these criteria. It is more useful to use the criteria for comparing models.

A difference of less than 2 means that the models are essentially
equivalent.
A difference of more than 10 means that the model with larger AIC has
a much poorer fit.
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