
Chapter 4: Logistic Regression

Scott Crawford (TAMU) Contingency table September 10, 2024 1 / 95



Logistic Regression Model

Logistic regression is a technique for relating a binary response variable to
explanatory variables. The explanatory variables may be categorical, continuous,
or both.

Interpreting the Logistic Regression Model:

We will look at the logistic regression model with one explanatory variable. The
binary response variable is defined as

Y =

{
1 when the actual response is “yes” or success
0 when the actual response is “no” or failure

.

We want to model
π(x) = pr(Y = 1|X = x)

This is the probability of a success when X = x .
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The logistic regression model has a linear form for the logarithm of the odds, or
logit function,

logit[π(x)] = log

{
π(x)

1− π(x)

}
= α+ βx

We can solve for π(x):

π(x) =
exp(α+ βx)

1 + exp(α+ βx)
=

1

1 + exp{−(α+ βx)}
.

Note: The logistic model is a special case of the generalized linear model with
the following components:

Link: Logit (log-odds)

Linear predictor: α+ βx

Distribution: Binomial
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Fun with R

Code

x=seq(-3, 3, 0.001)

prob.pos= exp(-1+1*x)/(1+exp(-1+1*x))

prob.neg= exp(-1-0.5*x)/(1+exp(-1-0.5*x))

prob.0= exp(-1-0*x)/(1+exp(-1-0*x))

plot(x, prob.pos, type="l", lwd=2, ylim=c(0, 1), ylab="")

par(new=T)

plot(x, prob.neg, type="l", lwd=2, ylim=c(0, 1), col="blue",

ylab="", xlab="")

par(new=T)

plot(x, prob.0, type="l", lwd=2, ylim=c(0, 1), col="red",

ylab="", xlab="")
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From the figures we see that π(x) is a monotone function of x .

If β > 0, π(x) is an increasing function of x (black curve)

If β < 0, π(x) is an decreasing function of x (blue curve)

If β = 0, π(x) is constant and the probability of a success does not depend
on x (red curve)
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Beetle Mortality -modelling mortality in terms of dose

Code

n=c(59, 60, 62, 56, 63, 59, 62, 60)

obs.y=c(6, 13, 18, 28, 52, 53, 61, 59)

obs.x=c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113, 1.8369, 1.8610, 1.8839)

glm(obs.y/n~obs.x, family=binomial, weight=n)

Call: glm(formula = obs.y/n ~ obs.x, family = binomial, weights = n)

Coefficients:

(Intercept) obs.x

-59.19 33.40

Degrees of Freedom: 7 Total (i.e. Null); 6 Residual

Null Deviance: 274.9

Residual Deviance: 8.64 AIC: 40.82
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Code

glm(obs.y/n~obs.x, family=binomial(link=probit), weight=n)

Call: glm(formula = obs.y/n ~ obs.x, family = binomial(link = probit),

weights = n)

Coefficients:

(Intercept) obs.x

-33.92 19.15

Degrees of Freedom: 7 Total (i.e. Null); 6 Residual

Null Deviance: 274.9

Residual Deviance: 8.43 AIC: 40.61
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Code

glm(obs.y/n~obs.x, family=binomial(link=cloglog), weight=n)

Call: glm(formula = obs.y/n ~ obs.x, family = binomial(link = cloglog),

weights = n)

Coefficients:

(Intercept) obs.x

-36.90 20.53

Degrees of Freedom: 7 Total (i.e. Null); 6 Residual

Null Deviance: 274.9

Residual Deviance: 6.185 AIC: 38.37
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Beetle Mortality Data (results with different link functions)

Beetles were treated with various concentrations of insecticide for 5 hrs. The
fitted models using x = dose as a predictor were:

logit(π̂(x)) = −59.183 + 33.398x (black)

probit(π̂(x)) = −33.917 + 19.148x (blue)

cloglog(π̂(x)) = −36.895 + 20.534x (red)

The observed proportions and the fitted models appear in the following graph:
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Linear Approximation Interpretation

Suppose that the success probability of a binary outcome Y follows a logistic
model in terms of the predictor X , that means

π(x) =
exp(α+ βx)

1 + exp(α+ βx)
.

The parameter β determines the rate of increase or decrease of the S-shaped
curve. The slope represents the rate of change in π(x) per unit change in x . This
can be found by taking the derivative:

π′(x) =
dπ(x)

dx
= βπ(x)(1− π(x))

π(x) .5 .4 or .6 .3 or .7 .2 or .8 .1 or .9
π′(x) .25β .24β .21β .16β .09β

This result shows that the rate of change (π′(x)) is the same at two tails. For

instance the rate of change (π(x)) is the same if π(x) is 0.1 or 0.9, similarly it is

the same for π(x) 0.2 or 0.8, etc. This property is referred to as symmetry

property of the link function.
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Note that the marginal effect for a continuous predictor x is measured via π′(x)
(measures the rate of change of the mean response for a unit change in the
predictor). So, from the above table we see that the marginal effect of the
predictor is the same if the success probability is 0.2 or 0.8, 0.3 or 0.7, 0.1 or 0.9,
etc.
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The steepest slope occurs at π(x) = 0.5 or x = −α/β. This value is known
as the median effective level and is denoted by EL50

In the beetle mortality example from Chapter 3,
logit(π̂(x)) = −58.936 + 33.255x . Thus, EL50 = 1.772 and the
corresponding slope or the marginal effect of dose when π(x) = 0.5 is
0.5× 0.5× 33.255 = 8.313.

In the horseshoe crab example, logit(π̂(x)) = −12.35 + 0.497x . Thus,
EL50 = 24.84 and the slope is 0.124.
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Odds ratio interpretation

logit{π(x)} = log

{
π(x)

1− π(x)

}
= α+ βx . (1)

For an increase of 1 unit in x , the logit increases by β.
The odds for the logistic regression model when X = x is given by

π(x)

1− π(x)
= exp(α+ βx) = eα(eβ)x .

Consider two values x1 and x2 of the explanatory variable. The odds ratio
comparing x2 to x1 is

θ21 = OR(x2 : x1) =
odds(x2)

odds(x1)
= eβ(x2−x1)

Let x1 = x and x2 = x + 1, then θ21 = eβ{(x+1)−x} = eβ .

For a unit increase in x , the odds is increased by a factor of eβ . If β > 0,

exp(β) > 1 otherwise exp(β) < 1.
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In the horseshoe crab example, the odds for a female to have a satellite are

multiplied by a factor of e0.497 = 1.644 for each centimeter increase in carapace

width. The code is given in the next slide.
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Code

a=read.csv("agresti_crab.csv")

head(a)

color spine width satell weight y dark

1 2 3 28.3 8 3.05 1 1

2 3 3 22.5 0 1.55 0 1

3 1 1 26.0 9 2.30 1 1

4 3 3 24.8 0 2.10 0 1

5 3 3 26.0 4 2.60 1 1

6 2 3 23.8 0 2.10 0 1

glm(y~width, family=binomial, data=a)

Call: glm(formula = y ~ width, family = binomial, data = a)

Coefficients:

(Intercept) width

-12.3508 0.4972

Degrees of Freedom: 172 Total (i.e. Null); 171 Residual

Null Deviance: 225.8

Residual Deviance: 194.5 AIC: 198.5
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Logistic regression and retrospective studies

Logistic regression can also be applied in situations where the explanatory variable
X rather than the response variable Y is random. This is a typical scenario in of
some retrospective sampling designs such as case-control studies.
In a case-control study, a random sample of subjects is drawn who we know are
controls Y = 0, and another random sample of subjects is drawn who we know
are cases Y = 1. For each of the sampled subjects, we record the explanatory
variable X . If the distribution of X differs between the cases and controls, there is
evidence of an association between X and Y . When X is binary, we are able to
estimate the odds-ratio between X and Y in Chapter 2. We will develop logit
models for matched case-control studies in Chapter 8.

For more general distributions of X , we can use logistic regression to estimate the

effect (association/regression parameter) of X using parameters that refer to

odds and odds ratios. However, the estimated intercept term from case-control

data is not useful to estimate α of (1) because the estimate is confounded with

the relative number of Y = 1 and Y = 0 in the population..
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Logistic Regression and the Normal Distribution

When Y is a binary response and X is a predictor with a discrete distribution, one
can use the Bayes theorem to show that

π(x)

1− π(x)
=

pr(Y = 1|X = x)

pr(Y = 0|X = x)
=

pr(X = x |Y = 1)P(Y = 1)

pr(X = x |Y = 0)P(Y = 0)
.

We can take the logarithm of the corresponding result for a continuous predictor
and obtain

log

(
π(x)

1− π(x)

)
= log

(
pr(Y = 1)

pr(Y = 0)

)
+ log

(
f (x |Y = 1)

f (x |Y = 0)

)
.
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Suppose next that the conditional distribution of X given Y = i is N(µi , σ
2
i ),

i = 0, 1. Then substituting the normal density into the above expression yields

log

(
π(x)

1− π(x)

)
= β0+β1x+β2x

2 where β1 =
µ1

σ2
1

− µ0

σ2
0

and β2 =
1

2

(
1

σ2
0

− 1

σ2
1

)
.

When σ2
1 = σ2

0 , the log-odds is a linear function of x (i.e.,
logit{π(x)} = β0 + β1x)

When σ2
1 ̸= σ2

0 , the log-odds is a quadratic function of x (i.e.,
logit{π(x)} = β0 + β1x + β2x

2)
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Multiple Logistic Regression

We consider logistic regression models with one or more explanatory variables.

Binary response: Y

k predictors: x = (x1, . . . , xk)

Quantity to estimate: π(x) = P(Y = 1|x1, . . . , xk)
The logistic regression model is

logit(π(x)) = log

(
π(x)

1− π(x)

)
= β0 + β1x1 + · · ·+ βkxk .

The parameter βj reflects the effect of a unit change in xj on the log-odds
that Y = 1, keeping the other xi s constant.

Here, eβj is the multiplicative effect on the odds that Y = 1 of a one-unit
increase in xj , keeping the other xi s constant:

logit(π(x1 + 1, x2, . . . , xk))− logit(π(x1, x2, . . . , xk))

= β0 + β1(x1 + 1) + · · ·+ βkxk − (β0 + β1x1 + · · ·+ βkxk)

= β1
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Estimation of Parameters

Suppose that we have n independent observations, (xi1, . . . , xik ,Yi ), i = 1, . . . , n.

Yi =binary response for i th observation

xi = (xi1, . . . , xik) = the values of the k explanatory variables

When there are ni observations at a fixed xi value, the number of successes Yi

forms a sufficient statistic and has a Binomial (ni , πi ) distribution where

πi = π(xi ) =
exp(β0 + β1xi1 + · · ·+ βkxik)

1 + exp(β0 + β1xi1 + · · ·+ βkxik)
.
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Suppose that there are N distinct settings of x . The responses (Y1, . . . ,YN) are
independent binomial random variables with joint likelihood equal to

L(β0, β1, . . . , βk) =
N∏
i=1

(
ni
yi

)
πyi
i (1− πi )

ni−yi .

The log-likelihood is

ℓ(β) = log{L(β)} =
n∑

i=1

[log

(
ni
yi

)
+ yi log(πi ) + (n − yi )log(1− πi )]

=
∑
i

yiβ0 +
k∑

j=1

(∑
i

yixij

)
βj

−
∑
i

ni log

1 + exp

β0 +
k∑

j=1

βjxij

+
∑
i

log

(
ni
yi

)
.

We wish to estimate β0, β1, . . . , βk using maximum likelihood.
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Setting the scores equal to zero gives us the estimating equations:

U1(β) =
∂ℓ(β)

∂β0
=

N∑
i=1

yi −
N∑
i=1

niπi = 0

Uj(β) =
∂ℓ(β)

∂βj
=

N∑
i=1

xijyi −
N∑
i=1

nixijπi = 0

j = 1, . . . , k

There are k + 1 equations in k + 1 unknowns. These equations are solved

numerically by the iteratively weighted least square (IWLS) method .
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To obtain the asymptotic variances and covariances of the estimators, we obtain
Fisher’s information matrix:

∑N
i=1 niπi (1− πi )

∑N
i=1 nixi1πi (1− πi ) · · ·

∑N
i=1 nixikπi (1− πi )∑N

i=1 nixi1πi (1− πi )
∑N

i=1 nix
2
i1πi (1− πi ) · · ·

∑N
i=1 nixi1xikπi (1− πi )

...
...

. . .
...∑N

i=1 nixikπi (1− πi )
∑N

i=1 nixi1xikπi (1− πi ) · · ·
∑N

i=1 nix
2
ikπi (1− πi )


The asymptotic variance-covariance matrix of (β̂0, β̂1. . . . , β̂k) is the inverse of the
information matrix. The estimated asymptotic variances of the estimators v̂ar(β̂j)

are the diagonal entries of this matrix. The asymptotic standard error of β̂j is
given by

ŜE (β̂j) =

√
v̂ar(β̂j).
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Overall Test for the Model

We consider testing the overall significance of the k regression coefficients in the
logistic regression model. The hypotheses of interest are

H0 : β1 = · · · = βk = 0 versus Ha : At least one βj ̸= 0, j = 1, . . . , k

We typically use the likelihood ratio statistic:

G 2 = QL = −2 log

{
L(β̃0)

L(β̂0, β̂1, . . . , β̂k)

}
= 2(ℓFull − ℓReduced)

Here β̃0 is the MLE of β0 under the null hypothesis that the model with intercept
only holds. When H0 is true,

G 2 d→ χ2
k as n → ∞.

We reject H0 for large values of QL.
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Tests for a sets of coefficients

We can use methods for comparing nested models to test whether a set of
coefficients all equal zero. We consider testing the significance of the m(< k)
regression coefficients in the logistic regression model. The hypotheses of interest
are

H0 : βi1 = · · · = βim = 0 versus Ha : At least one βij ̸= 0

We typically use the likelihood ratio statistic:

G 2 = QL = 2(ℓFull − ℓReduced) = Deviance(Reduced)− Deviance(Full)

where the full model contains all k predictors and the reduced model has k −m
predictors. When H0 is true,

G 2 d→ χ2
m as n → ∞.

We reject H0 for large values of QL.
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Tests on Individual Coefficients

To help determine which explanatory variables are useful, it is convenient to
examine the Wald test statistics for the individual coefficients. To determine
whether xj is useful in the model given that the other k − 1 explanatory variables
are in the model, we will test the hypotheses:

H0 : βj = 0 versus Ha : βj ̸= 0

The Wald statistic is given by

Z =
β̂j

ŜE (β̂j)
.

We reject H0 for large values of |Z |. Alternatively, we may use the LR statistic for

testing these hypotheses.
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Confidence Intervals for Coefficients

Confidence intervals for coefficients in multiple logistic regression are formed in
essentially the same way as they were for a single explanatory variable.
A 100(1− α)% Wald confidence interval for βj is given by

β̂j ± Zα/2ŜE (β̂j)
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Confidence Intervals for the Logit and for the Probability
of a Success

We next consider forming a confidence interval for the logit (linear predictor) at a
given value of x :

g(x) = logit(π(x)) = β0 + β1x1 + · · ·+ βkxk .

The estimated logit is given by

ĝ(x) = logit(π̂(x)) = β̂0 + β̂1x1 + · · ·+ β̂kxk .

This has estimated asymptotic variance

v̂ar(ĝ(x)) =
k∑

j=0

x2j v̂ar(β̂j) +
k∑

j=0

k∑
ℓ=j+1

2xjxℓĉov(β̂j , β̂ℓ).

In the above formula, x0 = 1.
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A 100(1− α)% confidence interval for logit(π(x))

ĝ(x)± Zα/2ŜE (ĝ(x))

where ŜE (ĝ(x)) =
√

v̂ar(ĝ(x))
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Since

π(x) =
eg(x)

1 + eg(x)
=

1

1 + e−g(x)
,

we can find a 100(1− α)% confidence interval for π(x) by substituting the
endpoints of the confidence interval for the logit into this formula.
In the case of one predictor x = x0, the confidence interval for the logit is

β̂0 + β̂1x0 ± Zα/2ŜE (β̂0 + β̂1x0).
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The estimated asymptotic standard error is

ŜE (β̂0 + β̂1x0) =

√
v̂ar(β̂0 + β̂1x0) =

√
v̂ar(β̂0) + x20 v̂ar(β̂1) + 2x0ĉov(β̂0, β̂1)

Since

π(x0) = pr(Y = 1|X = x0) =
eβ0+β1x0

1 + eβ0+β1x0
=

1

1 + e−(β0+β1x0)
.

We substitute the endpoints of the confidence interval for the logit into the above

formula to obtain a confidence interval for π(x0).
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The fitted value π̂(x0) is analogous to a particular point on the line in simple
linear regression. This is the estimated mean response for individuals with
covariate x0. In our case, π̂(x0) is an estimate of the proportion of all
individuals with covariate x0 that result in a success. Any particular
individual is either a success or a failure.

An alternative method of estimating π(x0) is to compute the sample
proportion of successes among all individuals with covariate x0. When the
logistic model truly holds, the model-based estimate can be considerably
better than the sample proportion. Instead using just a few observations, the
model uses all the data to estimate π(x0).
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Examples

Beetles were treated with various concentrations of insecticide for 5 hrs. The data
appear in the following table:

Dose xi Number of Number Proportion

(log10CS2mgl−1) insects, ni killed, Yi killed, yi
ni

1.6907 59 6 .1017
1.7242 60 13 .2167
1.7552 62 18 .2903
1.7842 56 28 .5000
1.8113 63 52 .8254
1.8369 59 53 .8983
1.8610 62 61 .9839
1.8839 60 59 .9833
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The fitted logit model using proc logistic is:

logit(π̂(x)) = −59.1834 + 33.3984x

The observed proportions and the estimated proportion from the fitted model are

Dose Obs Est

1.6907 0.102 0.062
1.7242 0.217 0.168
1.7552 0.290 0.363
1.7842 0.500 0.600
1.8113 0.825 0.788
1.8369 0.898 0.897
1.8610 0.984 0.951
1.8839 0.983 0.977
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Beetles mortality example

Test for H0 : β1 = 0. The three tests strongly reject H0.

95% confidence interval for β1:

33.3984± 1.96× 2.8392 = 33.3984± 5.5648

Confidence interval for logit(π(x0)) Let x0 = 1.8113. The estimated logit is
−59.18 + 33.40× 1.8113 = 1.3111.

ŜE =
√

25.529 + 1.81132(8.0613) + 2(1.8113)(−14.341)

=
√
0.02517 = 0.159

The 95% confidence interval for the logit is

1.311± 1.96(0.159) = 1.311± .311 or (1.000, 1.622)

The 95% confidence interval for π(1.8113) is(
e1

1 + e1
,

e1.622

1 + e1.622

)
= (0.731, 0.835)
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We can also find the 95% confidence interval for π(1.8113) based on the 63
insects that received this dose:

52

63
± 1.96

√
52
63 (1−

52
63 )

63
= 0.825± 0.094 or (0.731, 0.919)

Notice how this interval is wider than the one based on the logistic regression

model.
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The following table presents the confidence intervals for π(x0) for all the observed
values of the covariate:

Dose xi Number of Number Proportion Predicted Lower Upper
insects, ni killed, Yi killed, yi

ni
Bound Bound

1.6907 59 6 .1017 .062 .037 .103
1.7242 60 13 .2167 .168 .120 .231
1.7552 62 18 .2903 .363 .300 .431
1.7842 56 28 .5000 .600 .538 .659
1.8113 63 52 .8254 .788 .731 .835
1.8369 59 53 .8983 .897 .853 .929
1.8610 62 61 .9839 .951 .920 .970
1.8839 60 59 0.9833 .977 .957 .988
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Example: Beetle Mortality Data On the output, we also fit a quadratic logistic
regression function to the beetle mortality data. We use this to illustrate the
comparison of models using the deviances.
The fitted linear and quadratic regressions are in the following graph:
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Code

n=c(59, 60, 62, 56, 63, 59, 62, 60)

obs.y=c(6, 13, 18, 28, 52, 53, 61, 59)

obs.x=c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113, 1.8369, 1.8610, 1.8839)

myx=obs.x-mean(obs.x)

myx2=myx*myx

out=glm(obs.y/n~obs.x, family=binomial(link=logit), weight=n)

out2=glm(obs.y/n~myx+myx2, family=binomial(link=logit), weight=n)

plot(obs.x, obs.y/n, type="b", ylim=c(0, 1), axes=F, ylab="", xlab="")

par(new=T)

plot(obs.x, fitted.values(out), type="l", ylim=c(0, 1), lwd=2, axes=F,

ylab="", xlab="")

par(new=T)

plot(obs.x, fitted.values(out2), type="l", ylim=c(0, 1), lwd=2,

col="blue", ylab="", xlab="Dose")
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Logit Models for Qualitative Predictors

We have looked at logistic regression models for quantitative predictors. Similar
to ordinary regression, we can have qualitative explanatory variables.

Dummy Variables in Logit Models: As in ordinary regression, dummy variables
are used to incorporate qualitative variables into the model.

Investigators examined a sample of 178 children who appeared to be in remission

from leukemia using the standard criterion after undergoing chemotherapy. A new

test (PCR) detected traces of cancer in 75 of these children. During 3 years of

followup, 30 of these children suffered a relapse. Of the 103 children who did not

show traces of cancer, 8 suffered a relapse.
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Relapse (Y )
Group (X ) Yes No Total
Traces of Cancer 30 45 75
Cancer Free 8 95 103
Total 38 140 178

Here Y = 1 if “yes” and Y = 0 if “no”. Also, X = 1 if “traces” and X = 0 if

“cancer free”.
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The logistic regression model is given by

logit(π(x)) = α+ βx

We can obtain a table for the values of the logistic regression model:

Response(Y )
Explanatory
Variable (X ) y = 1 y = 0 Total

x = 1 π1 =
eα+β

1+eα+β 1− π1 =
1

1+eα+β 1

x = 0 π0 =
eα

1+eα 1− π0 =
1

1+eα 1
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The odds-ratio for a 2× 2 table can be expressed by

OR =
π1/(1− π1)

π0/(1− π0)
=

(
eα+β

1+eα+β

)
/
(

1
1+eα+β

)
(

eα

1+eα

)
/
(

1
1+eα

) = eβ .
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Inference for a Dichotomous Covariate

Data: (xi ,Yi ), i = 1, . . . , n

The response Yi equals 1 if “yes” and 0 if “no”.

The explanatory variable xi equals 1 if Group 1 or 0 if Group 0.
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We summarize the data in the following 2× 2 table:

Response(Y )
Explanatory
Variable (X ) y = 1 (yes) y = 0 (no) Total
x = 1 n11 n12 n1+
x = 0 n21 n22 n2+
Total n+1 n+2 n

n+1 =
∑n

i=1 Yi = Total # of yes responses

n11 =
∑n

i=1 xiYi = Total # of yes responses in group 1

n21 =
∑n

i=1(1− xi )Yi = Total # of yes responses in group 2

Scott Crawford (TAMU) Contingency table September 10, 2024 48 / 95



Setting the likelihood equations equal to zero yields:

eα̂+β̂

1 + eα̂+β̂
=

n11
n1+

= π̂1

eα̂

1 + eα̂
=

n21
n2+

= π̂0

We solve to obtain the mle for (α, β):

α̂ = log

(
n21
n22

)

β̂ = log

(
n11/n12
n21/n22

)
= log

(
n11n22
n12n21

)
α̂ is the log-odds of a “yes” for X = 0 (Reference Group)

β̂ is the log odds-ratio of a “yes” for X = 1 relative to X = 0
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Score Test for H0 : β = 0
The score statistic for testing H0 : β = 0 is Pearson’s Chi-squared Statistic for
Independence in a 2× 2 table. Under H0 this has approximately a χ2

1 distribution.
Confidence Intervals for α and β
Using the information matrix, one can show that

var(β̂) = n2+
n21(n2+−n21)

+ n1+
n11(n1+−n11)

= 1
n11

+ 1
n1+−n11

+ 1
n21

+ 1
n2+−n21

var(α̂) = n2+
n21(n2+−n21)
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A 100(1− α)% confidence interval for β is given by

β̂ ± Zα/2ŜE (β̂)

where ŜE (β̂) =
√

v̂ar(β̂)
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Confidence Interval for the Odds Ratio

Recall that the odds ratio for X = 1 relative to X = 0 is eβ .

The logarithm of the odds ratio is simply the logistic regression coefficient β.

The c.i. for β can be exponentiated to form a 100(1− α)% confidence
interval for the odds-ratio:

exp
(
β̂ ± Zα/2ŜE (β̂)

)
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R code for the analysis of the cancer relapse data

Code

x=c(rep(1, 75), rep(0, 103));

y=c(rep(1, 30), rep(0, 45), rep(1, 8), rep(0, 95))

out=glm(y~x, family=binomial)

summary(out)

Call:

glm(formula = y ~ x, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.0108 -0.8586 -0.4021 -0.4021 2.2607

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.4744 0.3681 -6.721 1.80e-11 ***

x 2.0690 0.4371 4.733 2.21e-06 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 184.6 on 177 degrees of freedom

Residual deviance: 157.2 on 176 degrees of freedom

AIC: 161.2

Number of Fisher Scoring iterations: 5
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For this model exp(β) represents the odds ratio of relapse from traces of cancer
to cancer free group. The estimate of this odds ratio is exp(2.069) = 7.92. In
other words, the odds of relapse in the traces of cancer group is 7.92 times that
in the cancer free group.
On the other hand, odds ratio of relapse from the cancer free group to traces of
cancer group is exp(−2.069) = 1/7.92 = 0.126. That means, the odds of relapse
in the cancer free group is approximately 13% that of the group with traces of
cancer.
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Example: Calculations for the cancer relapse data From the output for the
logistic regression model, we obtain

β̂ = 2.0690 and ŜE (β̂) = 0.4371.

We compute a 95% confidence interval for β:

2.0690± (1.96)(0.4371) = 2.0690± 0.8567.

The resulting confidence interval is (1.2123, 2.9257). We can exponentiate the
endpoints to obtain a 95% confidence interval for the odds ratio:

(e1.2123, e2.9257) = (3.361, 18.65)

The 95% confidence interval for α is (which is of less important)

−2.4744± (1.96)(0.3681) = −2.4744± 0.7215 or (−3.196,−1.753).

Noting that π(0) = pr(relapse|cancer free) = 1
1+e−α , we can obtain its estimate

1

1 + exp{−(−2.4744)}
= 0.0776,

and a 95% confidence interval for π(0):(
1

1 + e3.196
,

1

1 + e1.753

)
= (0.0393, 0.148).
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Alternative coding: X = 0 for traces of cancer, X = 1
cancer free

Code

x=c(rep(0, 75), rep(1, 103));

y=c(rep(1, 30), rep(0, 45), rep(1, 8), rep(0, 95))

out=glm(y~x, family=binomial)

Call:

glm(formula = y ~ x, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.0108 -0.8586 -0.4021 -0.4021 2.2607

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4055 0.2357 -1.720 0.0854 .

x -2.0690 0.4371 -4.733 2.21e-06 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 184.6 on 177 degrees of freedom

Residual deviance: 157.2 on 176 degrees of freedom

AIC: 161.2

Number of Fisher Scoring iterations: 5
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For this model exp(β) represents the odds ratio of relapse from cancer free group
to the group with traces of cancer. The estimate of this odds ratio is
exp(−2.069) = 0.126. In other words, the odds of relapse in the cancer free
group is approximately 13% that of the group with traces of cancer.
Let us estimate pr(relapse|cancer free) = 1/{1 + exp(−α− β)}, and the estimate

1

1 + exp{−(−0.4055− 2.069)}
= 0.0776.

Observe that the estimate of this proability is the same for both approaches. The
bottom line is that, not the individual parameter, but the probability estimates
will be identical for any definition of the dummy variable.
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An Alternative Form of Coding

Another coding method is called deviation from the mean coding or effects
coding. This method assigns −1 as the score to the first group and 1 to the
second group. In this case, the log-odds-ratio for Y = 1 from the second to the
first group becomes

log(OR) = logit{π(1)} − logit{π(−1)}
= (α+ β × 1)− (α+ β × (−1)) = 2β

The endpoints of the 100(1− α)% c.i. for the OR are

exp
{
2β̂ ± 2Zα/2ŜE (β̂)

}
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Analysis of the data with an alternative coding (effect
coding)

Code

x.1=x

x.1[x==0]= -1

out.1=glm(y~x.1, family=binomial)

summary(out.1)

Call:

glm(formula = y ~ x.1, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.0108 -0.8586 -0.4021 -0.4021 2.2607

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4400 0.2186 -6.588 4.45e-11 ***

x.1 -1.0345 0.2186 -4.733 2.21e-06 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 184.6 on 177 degrees of freedom

Residual deviance: 157.2 on 176 degrees of freedom

AIC: 161.2

Number of Fisher Scoring iterations: 5
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Polytomous Independent Variables

We now suppose that instead of two categories the independent variable can take
on k > 2 distinct values. We define k − 1 dummy variables to form a logistic
regression model:

x1 = 1 if Category 1, x1 = 0, otherwise

x2 = 1 if Category 2, x2 = 0, otherwise

...

xk−1 = 1 if Category k − 1, xk−1 = 0 otherwise

Note that when the independent variable takes on category k, we set
x1 = · · · = xk−1 = 0.
The resulting logistic regression model is

logit{π(x)} = α+ β1x1 + · · ·+ βk−1xk−1.

This parameterization treats Category k as a reference category.
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Implication of Model: We can form a table of the logits corresponding to the
different categories:

Category Logit
1 α+ β1

2 α+ β2

...
...

k − 1 α+ βk−1

k α

The odds ratio for comparing category j to the reference category k is

OR = eβj .

We can form Wald confidence intervals for the βjs and then exponentiate the
endpoints to obtain the confidence intervals for the odds ratios.
The odds ratio for comparing category j to j ′ is

OR = eβj−βj′ .
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Remark: When the categories are ordinal, one can use scores in fitting a linear

logistic regression model. To test for an effect due to categories, one can test

H0 : β1 = 0. An alternative analysis to test for a linear trend for category

probabilities uses the Cochran-Armitage statistic. These approaches yield

equivalent results with the score statistic from logistic regression being equivalent

to the Cochran-Armitage statistic.
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Models with Two Qualitative Predictors

Suppose that there are two qualitative predictors, X and Z , each with two levels.
We then have a 2× 2× 2 table. The data are

(Xi , yi , zi ), i = 1, . . . , n

Yi = 1 if yes, = 0 if no

xi = 1 if Group 1, = 0 if Group 0

zi = 1 if Layer 1, = 0 if Layer 0

We will consider two logistic regression models, a main effects model and a model
with interaction.
Define the following probabilities:

π00 = P(Y = 1|X = 0,Z = 0)
π10 = P(Y = 1|X = 1,Z = 0)
π01 = P(Y = 1|X = 0,Z = 1)
π11 = P(Y = 1|X = 1,Z = 1)
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Main Effects Model: logit(π(x , z)) = α+ β1x + β2z
logit(π00) α
logit(π10) α+ β1

logit(π01) α+ β2

logit(π11) α+ β1 + β2

α = log
(

π00

1−π00

)
log odds of reference

β1 = logit(π10)− logit(π00) = log
(

odds10
odds00

)
= logθXY |Z=0

= logit(π11)− logit(π01) = log
(

odds11
odds01

)
= logθXY |Z=1

β2 = logit(π01)− logit(π00) = log
(

odds01
odds00

)
= logθZY |X=0

= logit(π11)− logit(π10) = log
(

odds11
odds10

)
= logθZY |X=1
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Notes:

1 This main effects model assumes that the XY association is homogeneous
across levels of Z and that the ZY association is homogeneous across levels
of X .

2 In the main effects model, H0 : β1 = 0 is equivalent to H0 : X and Y are
conditionally independent controlling for Z .
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Interaction Model: logit(π(x , z)) = α+ β1x + β2z + β3(x × z)
This model adds an interaction term x ∗ z to the main effects model.
logit(π00) α
logit(π10) α+ β1

logit(π01) α+ β2

logit(π11) α+ β1 + β2 + β3
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α = log
(

π00

1−π00

)
= log odds of the reference

β1 = logit(π10)− logit(π00) = log
(

odds10
odds00

)
= logθXY |Z=0

β1 + β3 = logit(π11)− logit(π01) = log
(

odds11
odds01

)
= logθXY |Z=1

β2 = logit(π01)− logit(π00) = log
(

odds01
odds00

)
= logθZY |X=0

β2 + β3 = logit(π11)− logit(π10) = log
(

odds11
odds10

)
= logθZY |X=1
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This model does not assume that the XY association is homogeneous across
levels of Z and that the ZY association is homogeneous across levels of X .

We test homogeneity of association across layers by testing H0 : β3 = 0.
That means we check if X -Y association is homogeneous across the levels
of Z , or Z -Y association is homogeneous across the levels of X .

Scott Crawford (TAMU) Contingency table September 10, 2024 68 / 95



ANOVA-Type Representation of Factors

We have used k − 1 dummy variables to model a factor with k levels in logistic
regression. An alternative representation of factors in logistic regression resembles
ANOVA models:

logit(π(x)) = α+ βX
i + βZ

k , i = i , . . . , I , k = 1, . . . ,K .

The parameters {βX
i } and {βZ

k } represent the effects of X and Z . A test of
conditional independence between X and Y conditional on Z corresponds to

H0 : β
X
1 = βX

2 = · · · = βX
I .

This parameterization includes one redundant parameter for each effect. There
are several ways of defining parameters to account for the redundancies:

Set the last parameter β̂X
I equal to zero.

Set the first parameter β̂X
1 equal to zero.

Set the sum of the parameters equal to zero (effects coding).
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We note that each coding scheme:

The differences βX
1 − βX

2 and βZ
1 − βZ

2 are the same.

The different coding schemes yield the same odds ratios.

The different coding schemes yield the same probabilities.

The following table gives the parameter estimates corresponding to different
coding schemes for the Coronary Artery Disease Data:

Definition of Parameters
Parameter Last= 0 First= 0 Sum= 0
Intercept 1.157 −1.175 −0.0090

Gender=Female −1.277 0.000 −0.6385
Gender=Male 0.000 1.277 0.6385
ECG=< 0.1 −1.055 0.000 −0.5272
ECG=≥ 0.1 0.000 1.055 0.5272
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Horseshoe Crab Data Continued

Earlier we used width (x1) as a predictor of the presence of satellites. We now
include color as a second explanatory variable. Color is a surrogate for age with
older crabs tending to be darker.

We can treat color as an ordinal variable by assigning scores to the levels:
(1) Light Medium, (2) Medium, (3) Dark Medium, (4) Dark

We can treat color as a nominal variable.

x2 =

{
1 Lt. Med
0 otherwise

x3 =

{
1 Med
0 otherwise

x4 =

{
1 DkMed
0 otherwise
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Consider the two main effect models:

Ordinal Color (z):
logit(π(x)) = α+ β1x1 + β∗

2 z

Nominal color (x2, x3, x4)

logit(π(x)) = α+ β1x1 + β2x2 + β3x3 + β4x4
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The logits for the two models are in the following table:
Color Ordinal Nominal
Lt Med α+ β1x1 + β∗

2 α+ β1x1 + β2

Med α+ β1x1 + 2β∗
2 α+ β1x1 + β3

Dk Med α+ β1x1 + 3β∗
2 α+ β1x1 + β4

Dk α+ β1x1 + 4β∗
2 α+ β1x1

These models assume no interaction between width and color.

Width has the same effect for all four colors–the slope β1 is the same.

Thus, the shapes of the curves are the same. Any curve can be obtained
from the others by shifting either to the left or to the right.

The curves are “parallel” in that they never cross.
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Models with Interaction or Confounding

In this section we will consider models where interaction or confounding is present.

Multivariable logistic regression models enable us to adjust the model
relating a response variable (CHD) to an explanatory variable (age) for the
presence of other explanatory variables (high blood pressure).

The variables do not interact if their effects on the logit are additive. This
implies that the logits all have the same slope for different levels of the
second explanatory variable.

Epidemiologists use the term confounder to describe a covariate (Z ) that is
associated with both another explanatory variable (X ) and the outcome
variable (Y ).
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We now look at the situation where the possible confounder is qualitative and the
explanatory variable is quantitative.

Model without interaction:

logit(π(x , z)) = α+ β1x + β2z

For the model without interaction, the vertical distance between the logits
represents the log odds ratio for comparing the two groups while controlling
for the width. This distance is the same for all widths.

Model with interaction:

logit(π(x , z)) = α+ β1x + β2z + β3(x × z)

When interaction is present, the distance between the logits depends on
width. The log odds ratio between the groups now depends on the width.
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Estimation of the Odds Ratio

When interaction is present, one cannot estimate the odds ratio comparing two
group by simply exponentiating a coefficient since the OR depends on the value
of the covariate. An approach that can be used in this situation is the following:

Write down the expressions for the logits at the two levels of the risk factor
being compared.

Take the difference, simplify and compute.

Exponentiate the value found in step 2.
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Let Z denote the risk factor, X denote the covariate, and Z ×X their interaction.
Suppose we want the OR at levels z0 and z1 of Z when X = x .

g(x , z) = logit(π(x , z)) = α+ β1x + β2z + β3z ∗ x .

log(OR) = g(x , z1)− g(x , z0)
= α+ β1x + β2z1 + β3z1 ∗ x

−(α+ β1x + β2z0 + β3z0 ∗ x)
= β2(z1 − z0) + β3x(z1 − z0)

OR = exp [β2(z1 − z0) + β3x(z1 − z0)]
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More generally, if we wish to compute an odds ratio comparing two settings of
the predictors, (x1, z1) and (x0, z0), we can apply a similar approach to that on
the previous slide.

Write down the expressions for the logits at the two settings of the
predictors being compared..

Take the difference, simplify and compute.

Exponentiate the value found in step 2.

Let X and Z denote the two predictors and X × Z their interaction. Suppose we

want the OR at levels (x1, z1) and (x0, z0).
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g(x , z) = logit(π(x , z)) = α+ β1x + β2z + β3x ∗ z .

log(OR) = g(x1, z1)− g(x0, z0)
= α+ β1x1 + β2z1 + β3x1z1

−(α+ β1x0 + β2z0 + β3z0 ∗ x0)
= β1(x1 − x0) + β2(z1 − z0) + β3(x1z1 − x0z0)

OR = exp [β1(x1 − x0) + β2(z1 − z0) + β3(x1z1 − x0z0)]
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Summarizing Predictive Power: Classification Tables

A common use for binary regression is classification. One can use a cut-off π0 as
a classification criterion:

If π̂ > π0, predict ŷ = 1.

If π̂ ≤ π0, predict ŷ = 0.

We then form a 2× 2 classification table to summarize the predictive power of
the logistic regression model.

Example: We form the classification table for crab data using the logistic

regression model with predictors width, dark using cut-off values, π0 = 0.50

and π0 = 0.642 where 0.642 = 111/173 is the sample proportion of crabs with

satellites.
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Prediction, π0 = 0.64 Prediction, π0 = 0.50
Actual ŷ = 1 ŷ = 0 ŷ = 1 ŷ = 0 Total
y = 1 78 33 97 14 111
y = 0 22 40 34 28 62
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We can use the classification table to estimate the sensitivity and specificity of
the model:

sensitivity = pr(ŷ = 1|y = 1), specificity = pr(ŷ = 0|y = 0)

Another commonly reported measure is the proportion of correct classifications.
This estimates

pr(correct classification) = pr(y = 1, ŷ = 1) + pr(y = 0, ŷ = 0).

Estimates corresponding to the two cut-off values are
π0 Sensitivity Specificity Proportion of Correct Classifications
0.50 97

111 = 0.874 28
62 = 0.452 97+28

173 = 0.723
0.642 78

111 = 0.703 40
62 = 0.645 78+40

173 = 0.682
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Remark: The classification table depends on the value of the cut-off. If one

makes the cut-off larger, the sensitivity will decrease and the specificity will

increase. Also, the results will be sensitive to the relative numbers of times that

y = 1 and y = 0.
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Summarizing Predictive Power: ROC Curves

A receiver operating characteristic (ROC) curve is a plot of sensitivity as a
function of (1− specificity). Thus, the ROC curve summarizes predictive power
for all values of π0. For a given specificity, better predictive power corresponds to
higher sensitivity. A higher ROC curve indicates better predictive power. The area
under the ROC curve is used as a measure of predictive ability and is called the
concordance index.

Example: For the crab data, ROC curves are plotted for the logistic regression

models with width and dark.
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Analysis of the crab data

Code

library(MASS)

library(e1071)

library(caret)

a=read.csv("agresti_crab.csv")

outnew=glm(y~width+dark, family="binomial", data=a)

out2new=predict(outnew)

confusionMatrix(data=as.factor(as.numeric(out2new>0.6)),

reference=as.factor(a$y))

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 43 36

1 19 75
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Analysis of the crab data

Code

Accuracy : 0.6821

95% CI : (0.6071, 0.7507)

No Information Rate : 0.6416

P-Value [Acc > NIR] : 0.15123

Kappa : 0.3482

Mcnemar’s Test P-Value : 0.03097

Sensitivity : 0.6935

Specificity : 0.6757

Pos Pred Value : 0.5443

Neg Pred Value : 0.7979

Prevalence : 0.3584

Detection Rate : 0.2486

Detection Prevalence : 0.4566

Balanced Accuracy : 0.6846

’Positive’ Class : 0

Scott Crawford (TAMU) Contingency table September 10, 2024 87 / 95



Predictive models

The performance of a predictive model judged via sensitivity, specificity,
accuracy.

Accuracy = pr(observed response = predicted response) and it is estimated
by the

the total of the diagonal entries

the total of the confusion matrix

Accuracy can be seen as

accuracy = 1−misclassification probability

= 1− pr(observed response ̸= predicted response).
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Predictive models

Positive predictive value

= pr(observed response = yes|predicted response = yes)

=
TP

TP + FP

Negative predictive value

= pr(observed response = no|predicted response = no)

=
TN

TN + FN
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Analysis of the crab data

Code

library(pROC)

outnew=glm(y~width+dark, family="binomial", data=a)

out2new=predict(outnew, type="response")

roccurve= roc(a$y~out2new)

roccurve$auc

Area under the curve: 0.772

plot(1-roccurve$specificities, roccurve$sensitivities, type="l", lwd=2,

xlab="1-Specificity", ylab="Sensitivity")

abline(a=0, b=1)
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Analysis of the crab data

Based on the maximum of (sensitivity+specificity) you may find the optimal

threshold to define if a subject is 1 or 0.

Code

total.sen.spe= roccurve$specificities+roccurve$sensitivities

roccurve$thresholds[total.sen.spe==max(total.sen.spe)]

[1] 0.6643917

# That means if the predicted value is 0.6643917 or more that

will predicted to be Y=1 otherwise 0.
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Analysis of the crab data

Code

library(pROC)

outw=glm(y~width, family="binomial", data=a)

out2=predict(outw, type="response")

roccurve= roc(a$y~out2)

roccurve$auc

Area under the curve: 0.7424

plot(1-roccurve$specificities, roccurve$sensitivities, type="l", lwd=2,

xlab="1-Specificity", ylab="Sensitivity")

abline(a=0, b=1)
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In this example, the area under the ROC curve is 74%. Mathematically, it is an
estimate of pr(π̂i > π̂j |Yi = 1 and Yj = 0), where π̂i denotes the estimated
success probability for the ith observation. Thus, it is the probability that the
estimated success probability for an observed success is larger than that for an
observed failure. This is also known as the c-statistic, concordance statistic. This
tells us the classification power of the model where a higher value indicates a
better classification (prediction) capability. The area under the ROC curve 0.5
indicates the model does not have a better prediction than mere guessing.
The area under the ROC (concordance index) can be estimated by∑

(i,j):Yi=1,Yj=0 I (π̂i > π̂j)

#{(i , j) : Yi = 1,Yj = 0}
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