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Loglinear Models for Contingency Tables

In Chapter 3, we looked briefly at the Poisson regression model with the log link,

log(µ) = α+ βx .

We extended this to a multiple regression model (multiple covariates) for Poisson data
with the log link:

log(µ) = α+ β1x1 + · · ·+ βkxk .

This formulation is useful for developing models that are expressed using multiplicative
relationships. After exponentiating the above expression, we obtain

µ = eα × eβ1x1 × · · · × eβk xk .

The effects of the explanatory variables appear in the product form.
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Loglinear Models for Two-Way Tables

Consider an I × J contingency table where we classify n subjects on two categorical
responses, X and Y . Letting πij = P(X = i ,Y = j) denote the probability of the (i , j)
cell, we say that the rows and columns are independent if for all (i , j)

πij = πi+ × π+j ,

where πi+ = P(X = i) =
∑J

j=1 πij and π+j = P(Y = j) =
∑I

i=1 πij .
We can rewrite this in terms of the expected values. That means, under independence,
the expected count for cell (i , j) is

µij = nπij = nπi+ × π+j .

If we take the logarithm, we obtain

log(µij) = log(n) + log(πi+) + log(π+j).

Loglinear formulas are based on the cell means {µij} and are useful for Poisson

modelling of cell counts.
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Independence Model

We express the loglinear model for independence:

log(µij) = λ+ λX
i + λY

j ,

where λ depends on the sample size, λX
i is the additive effect of row i , and λY

j is an
additive effect of column j .
The log-linear model does not distinguish between response and explanatory
classification of variables. The model treats all variables jointly as responses, counting
the number of responses at each combination.
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The null hypothesis of independence in the I × J contingency table is

H0 : πij = πi+π+j , i = 1, . . . , I , j = 1, . . . , J.

This hypothesis is equivalent to the loglinear model holding. The fitted values under
independence are

µ̂ij = nπ̂i+π̂+j = n × ni+
n

× n+j

n
=

ni+n+j

n
.

The chi-squared tests using X 2 and G 2 for goodness-of-fit of this model are equivalent

to tests of independence for a 2× 2 table.
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Interpretation of Parameters for 2× 2 Tables

When there are two rows and two columns, a constraint such as λX
1 + λX

2 = 0 and
λY
1 + λY

2 = 0 must be placed on the parameters to make the model identifiable.
Another possible constraint is setting λX = 0 for one category of X , and λY = 0
for one category of Y . This implies that the λ parameters are not unique and that
the interpretation will depend on the constraint.

However, the differences of coefficients will provide information on the odds that
does not depend of the constraint.

Consider the odds of falling in the first column (Y = 1) relative to the second
column (Y = 2) for the first row (X = 1):

pr(Y = 1|X = 1)

pr(Y = 2|X = 1)
=

π11/π1+

π12/π1+
=

µ11

µ12
.
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The log-odds or logit is

log

(
µ11

µ12

)
= log(µ11)− log(µ12) = (λ+ λX

1 + λY
1 )− (λ+ λX

1 + λY
2 ) = λY

1 − λY
2 .

The odds and log-odds are the same for both rows under independence. Similarly, the

odds or log-odds for the first row would be the same for both columns. The log-odds and

hence the differences remain the same for the different parameterizations of the model.
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Example: Several thousand children are diagnosed with a certain variety of leukemia

each year in the United States. A standard criterion for considering a child with

leukemia to be in remission is if doctors cannot see any cancerous cells in the bone

marrow when looking through a microscope. A genetic fingerprinting technique (PCR)

can detect a much smaller amount of cancer cells. Investigators examined 178 children

who appeared to be in remission using the standard criterion. Using the PCR test,

traces of cancer were found in 75 of the children. The children were followed for 3 years,

and the number of children in both groups suffering relapse was recorded:
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Followup Status

PCR Status Relapse No Relapse Total

Traces of Cancer 30 45 75
Cancer Free 8 95 103

Total 38 140 178
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The null hypothesis is H0: The two variables PCR test (X ) and relapse (Y ) are
independent, and the alternative hypothesis is Ha: The two variables PCR test and
relapse are dependent

Observed frequency Fitted value under H0 Log fitted value

30 45 16.01 58.99 2.7732 4.0774
8 95 21.99 81.01 3.0906 4.3946

Parameter Set 1 Set 2 Set 3

λ 4.3946 2.7733 3.5839
λX
1 -0.3172 0 -0.1586

λX
2 0 0.3172 0.1586

λY
1 -1.3041 0 -0.6520

λY
2 0 1.3041 0.6520

Constriant

Set 1: λX
1 = 0, λY

1 = 0

Set 2: λX
2 = 0, λY

2 = 0

Set 3: λX
1 + λX

2 = 0, λY
1 + λY

2 = 0
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Code

mydata=array(c(30, 8, 45, 95), dim=c(2, 2), dimnames=list(PCR

=c("traces", "No traces"), relapse=c("Yes", "No")))

mydata

relapse

PCR Yes No

traces 30 45

No traces 8 95

mydata2=as.data.frame(as.table(mydata))

mydata2

PCR relapse Freq

1 traces Yes 30

2 No traces Yes 8

3 traces No 45

4 No traces No 95
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Fitting of model Set 2

Code

summary(glm(Freq~PCR+relapse, data=mydata2, family=poisson))

Call:

glm(formula = Freq ~ PCR + relapse, family = poisson, data = mydata2)

Deviance Residuals:

1 2 3 4

3.114 -3.435 -1.902 1.512

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.7733 0.1845 15.033 < 2e-16 ***

PCRNo traces 0.3172 0.1518 2.090 0.0366 *

relapseNo 1.3041 0.1829 7.129 1.01e-12 ***

---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 93.985 on 3 degrees of freedom

Residual deviance: 27.400 on 1 degrees of freedom

AIC: 54.625

Number of Fisher Scoring iterations: 5
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Fitting of model Set 3

Code

contrasts(mydata2$PCR) <- contr.sum(2, contrasts=TRUE)

contrasts(mydata2$relapse) <- contr.sum(2, contrasts=TRUE)

summary(glm(Freq~PCR+relapse, data=mydata2, family=poisson))

Call:

glm(formula = Freq ~ PCR + relapse, family = poisson, data = mydata2)

Deviance Residuals:

1 2 3 4

3.114 -3.435 -1.902 1.512

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.58394 0.09223 38.857 < 2e-16 ***

PCR1 -0.15862 0.07590 -2.090 0.0366 *

relapse1 -0.65203 0.09146 -7.129 1.01e-12 ***

---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 93.985 on 3 degrees of freedom

Residual deviance: 27.400 on 1 degrees of freedom

AIC: 54.625

Number of Fisher Scoring iterations: 5
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The Saturated Model

Observe that by definition µij = nπij , so

log(µij) = log(n) + log(πi+) + log(π+j) + log

(
πij

πi+π+j

)
.

Clearly, λ = log(n), λX
i = log(πi+), λ

Y
j = log(π+j), and

λXY
ij = log

(
πij

πi+π+j

)
is an association term that represents the departure from independence of X and Y .
Thus, the general model is

log(µij) = λ+ λX
i + λY

j + λXY
ij .

Note that under the independence assumption, πij = πi+π+j , so λXY
ij = log(1) = 0. Thus

λXY
ij is an interaction term that reflects that the effect of one factor can change

depending on the level of the other factor (i.e., a lack of independence).
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The Saturated Model

We need to eliminate redundant parameters by placing constraints on λXY
ij . A common

set of constraints is

λ11 + λ12 = λ21 + λ22 = λ11 + λ21 = λ12 + λ22 = 0.
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Alternatively, we could also set the last term in each row and in each column equal to
zero:

λ12 = λ21 = λ22 = 0.

Without further restriction on the λXY
ij terms, the model is saturated in that it fits the

I × J table perfectly. On the other hand, the independence model satisfies all λXY
ij = 0.
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The association terms are related to the log-odds ratio for a 2× 2 table:

log(θ) = log
(

µ11µ22
µ12µ21

)
= log(µ11) + log(µ22)− log(µ12)− log(µ21)
= (λ+ λX

1 + λY
1 + λXY

11 ) + (λ+ λX
2 + λY

2 + λXY
22 )

−(λ+ λX
1 + λY

2 + λXY
12 )− (λ+ λX

2 + λY
1 + λXY

21 )
= λXY

11 + λXY
22 − λXY

12 − λXY
21 .

It is seen that under the independence assumption that means when

λXY
11 = λXY

22 = λXY
12 = λXY

21 = 0, log(θ) = 0, resulting in unit odds ratio.
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Example: Saturated Loglinear Model for Leukemia Data

Equivalent Association Parameter Estimates

Association Parameter Set 1 Set 2 Set 3

λXY
11 2.0690 0 0.5172

λXY
12 0 0 -0.5172

λXY
21 0 0 -0.5172

λXY
22 0 2.0690 0.5172

We verify that

log(θ̂) = λ̂XY
11 + λ̂XY

22 − λ̂XY
12 − λ̂XY

21 = 2.0690 = log

(
30× 95

8× 45

)
= log(7.9167)
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Independence Model

The saturated model contains the following nonredundant terms:

1 λ (intercept) term

(I − 1) λX
i (main effect of X ) terms

(J − 1) λY
j (main effect of Y ) terms

(I − 1)(J − 1) λXY
ij (two-factor interactions of X and Y ) terms
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Independence Model

This results in 1 + (I − 1) + (J − 1) + (I − 1)(J − 1) = IJ nonredundant terms in
the saturated model. The model has as many parameters as the number of cells of
the I × J table based on Poisson observations and so it gives perfect fit to the
data. Here the error degrees of freedom is zero.

The saturated model is an example of a hierarchical model, because it includes all
lower order terms of the variables that are contained in the higher order terms of
the model.

The significance and practical interpretation of lower order terms depends on how
the variables are coded. If one uses a hierarchical model, the results for the higher
order terms remain the same no matter how the variables are coded.

The interpretation of lower order terms depends on the coding of the higher order
terms. Consequently, we typically limit our interpretation to that of the highest
order terms in a hierarchical model.
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Loglinear models for three-way tables

Loglinear models for three-way tables can incorporate different independence and
association patterns for the categorical variables X , Y , and Z .

The expected cell frequencies in the I × J ×K table are denoted by {µijk}, and the
observed cell frequencies are denoted by {nijk}.
The saturated model is denoted by (XYZ) and has the form

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk + λXYZ
ijk .
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The model is made identifiable by imposing constraints on the parameters such as∑
i λ

X
i =

∑
i λ

XY
ij =

∑
i λ

XZ
ik =

∑
i λ

XYZ
ijk = 0,∑

j λ
Y
j =

∑
j λ

XY
ij =

∑
j λ

YZ
jk =

∑
j λ

XYZ
ijk = 0,∑

k λ
Z
k =

∑
k λ

XZ
ik =

∑
k λ

YZ
jk =

∑
k λ

XYZ
ijk = 0.

Models that include subsets of terms from the saturated model represent different forms

of independence and association in the table. We will use only hierarchical models where

the presence of a higher-order term in the model implies that all the lower order terms

are present.
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Loglinear Models and Independence Structure

Terms such as λXY
ij are used to indicate partial association between two variables. The

terms included in the model will determine the nature of the association in the model.

The homogeneous association model has the form

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk .

This model includes terms permitting X-Y, X-Z, and Y-Z associations. We denote
this model (XY ,XZ ,YZ).

If we omit one of the two-factor terms, we allow for conditional independence
between two of the variables. Consider the model of the form

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXZ

ik + λYZ
jk .

This model includes terms permitting X-Z and Y-Z associations. Thus, X and Y
are conditionally independent, controlling for Z . For 2× 2× K tables, this model
corresponds to the hypothesis tested using the Cochran-Mantel-Haenszel statistic
in Chapters 2 and 4. This model is denoted by (XZ ,YZ).
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If we include only one two-factor term, we obtain the model

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij .

This model is denoted by (XY ,Z). In this model, X and Z are marginally
independent as are Y and Z .

The model where X , Y , and Z are mutually independent is denoted by (X ,Y ,Z)
and has the form

log(µijk) = λ+ λX
i + λY

j + λZ
k .

If there is no term involving a particular variable, then the marginal probability for
that variable is uniform. For instance, X and Y are marginally independent of Z
and Z is uniform in the model

log(µijk) = λ+ λX
i + λY

j + λXY
ij .
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Interpreting model parameters

Consider the saturated model:

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk + λXYZ
ijk .

The three-factor term pertains to a three-factor interaction. This term permits the odds
ratio between any two variables to vary across levels of the third factor. If we omit this
term, we obtain the homogeneous association model:

log(µijk) = λ+ λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λYZ

jk .

The two-factor terms are partial association terms and relate to the conditional odds
ratios. For a 2× 2× K table, consider any of the models that contain the X-Y term.
The conditional odds ratio for X and Y given Z is

θXY (k) =
µ11kµ22k

µ12kµ21k
.
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For the homogeneous association model, we take the logarithm of the odds ratio and
obtain

log(θXY (k)) = log(µ11k) + log(µ22k)− log(µ12k)− log(µ21k)
= λ+ λX

1 + λY
1 + λZ

k + λXY
11 + λXZ

1k + λYZ
1k

+λ+ λX
2 + λY

2 + λZ
k + λXY

22 + λXZ
2k + λYZ

2k

−(λ+ λX
1 + λY

2 + λZ
k + λXY

12 + λXZ
1k + λYZ

2k

+λ+ λX
2 + λY

1 + λZ
k + λXY

21 + λXZ
2k + λYZ

1k )
= λXY

11 + λXY
22 − λXY

12 − λXY
21 .

The right-hand side does not depend on k, so the odds-ratio is the same at each level of

Z . Similarly, the X-Z odds ratio is the same at each level of Y , and the Y-Z odds ratio

is the same at each level of X .
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Job satisfaction example

The following table gives the three-way cross-classification of quality of management
(M), supervisor’s job satisfaction (S), and worker’s job satisfaction (W) for a random
sample of 715 workers selected from Danish industry. Since all three variables are
response variables, we use loglinear models to investigate the patterns of association
among the three variables.

Quality Supervisor’s Worker’s Job Satisfaction
of Management Job Satisfaction Low High

Bad Low 103 87 190
High 32 42 74

Good Low 59 109 168
High 78 205 283
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The following models were fit to the data:

the saturated model (MSW)

the homogeneous association model (MS,MW,SW)

the best model with two interactions (MS,MW)

the best model with one interaction (MS,W)

the complete independence model (M,S,W)
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We compare the fitted values to the observed data for several loglinear models. The
saturated model (MSW ) provides the observed data. 1 ≡ MSW, 2 ≡ (MS,MW,SW),
3 ≡ (MS,MW), 4 ≡(MS,W), 5 ≡ (M,S,W)

Fitted Values for Loglinear Models
Quality Superv. Worker’s Loglinear Model
of Mgmt Job Sat. Job Sat. 1 2 3 4 5

Bad Low Low 103 102.3 97.2 72.3 50.3
Low High 87 87.7 92.8 117.7 81.9
High Low 32 32.7 37.8 28.2 50.1
High High 42 41.3 36.2 45.8 81.7

Good Low Low 59 59.7 51.0 63.9 85.9
Low High 109 108.3 117.0 104.1 139.9
High Low 78 77.3 86.0 107.7 85.7
High High 205 205.7 197.0 175.3 139.5
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The saturated model (MSW ) fits the data exactly.

The homogeneous association model (MS ,MW ,SW ) has fitted values close to the
observed frequencies.

As the models become simpler, their fit appears worse.
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We also form a table of the estimated odds ratios that correspond to the various models
fit in the above table. Consider, for instance, the model (MS ,MW ). To compute the
odds ratio for the M-S conditional association, we use the fitted odds ratio for either of
the two levels of W :

97.2× 86.0

37.8× 51.0
=

92.8× 197.0

117.0× 36.2
= 4.33.

The marginal odds ratio is found from the fitted M-S marginal table:

(97.2 + 92.8)× (86.0 + 197.0)

(37.8 + 36.2)× (51.0 + 117.0)
= 4.33.
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Estimated Odds Ratios for Loglinear Models

Conditional Association Marginal Association
Model M-S M-W S-W M-S M-W S-W

(M,S,W) 1 1 1 1 1 1
(MS,W) 4.33 1 1 4.33 1 1
(MS,MW) 4.33 2.40 1 4.33 2.40 1.33

(MS,MW,SW) 4.04 2.11 1.47 4.33 2.40 1.86
(MSW)Level 1 4.26 2.19 1.55 4.33 2.40 1.86
(MSW)Level 2 3.90 2.00 1.42
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Inference for Loglinear Models

We can use methods developed for generalized linear models to carry out statistical

inference for loglinear models. A good-fitting loglinear model provides information about

the nature of association among categorical response variables.
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Chi-Squared Goodness-of-Fit Tests

We can test the goodness of fit (lack of fit) of a loglinear model for a three-way
contingency table by comparing the cell fitted values to the observed counts. The
likelihood-ratio (G 2) and Pearson chi-squared statistics (X 2) are

G 2 = 2
∑

nijk log

(
nijk
µ̂ijk

)
, X 2 =

∑ (nijk − µ̂ijk)
2

µ̂ijk
.

The degrees of freedom (df) equal the number of cell counts minus the number of

nonredundant parameters in the model. The saturated model has zero d.f.
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The following table presents the results of testing the goodness of fit of several loglinear
models for the worker satisfaction data.

The best fitting model (other than the saturated model) is the homogeneous
association model (MS ,MW , SW ).

All simpler models except (MS ,MW ) have very poor fit to the data.

Goodness-of-Fit Tests for Loglinear Models

Model G 2 X 2 df p-value

(M,S,W) 118.0 128.09 4 0.000
(MS,W) 35.60 35.62 3 0.000
(MS,MW) 5.39 5.41 2 0.068
(MS,SW) 71.90 70.88 2 0.000
(MW,SW) 19.71 19.88 2 0.000

(MS,MW,SW) 0.06 0.06 1 0.799
(MSW) 0.0 0.0 0 −−
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A Dissimilarity Index

When the sample size is large, often small effects can be statistically significant but not
of much practical importance. In loglinear models, it is useful to use a measure of
closeness of the model fit to the sample data that is not affected by sample size.
Suppose that a table has cell counts ni (= nπi ) and fitted values µ̂i (= nπ̂i ). We define
the dissimilarity index as

D =
1

2n

∑
|ni − µ̂i |,

where n is the total frequency. We have 0 ≤ D ≤ 1 where D represents the proportion

of cases that must move to other cells to obtain a perfect fit. A very small value of D

indicates a good fit for the model.
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Example: The following table presents the dissimilarity index for some of the models fit
to the worker satisfaction data.

Model D

(M,S,W) 0.17244
(MS,MW) 0.03862
(MS,SW) 0.07335

(MS,MW,SW) 0.00412
(MSW) 0.00000
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Loglinear Residuals

The residuals are useful for examining the quality of fit for a model. Often they will
show how a model fits poorly and highlight cells that exhibit lack of fit.
We can use the adjusted residuals for the Poisson regression model:

ra,ijk =
(nijk − µ̂ijk)√
µ̂ijk(1− hijk)

where hijk is the leverage of the observation in the (i , j , k) cell. The standard normal
distribution serves as a guide to the size of the adjusted residuals.

We look at the adjusted residuals for the fit of the model (MS ,MW ) of conditional

independence of S and W at each level of M and also for the poorly fitting model

(MS , SW ) of conditional independence of M and W at each level of S .
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µ̂ ≡ fitted count, ra ≡ adjusted residual

Adjusted Residuals for Loglinear Models
(MS,MW,SW) (MS,MW) (MS,SW)

Quality Superv. Worker Obs.
of Mgm Job Sat. Job Sat. Count µ̂ ra µ̂ ra µ̂ ra
Bad Low Low 103 102.3 .255 97.2 1.601 86.0 3.62

Low High 87 87.7 -.255 92.8 -1.601 104.0 -3.62
High Low 32 32.7 -.255 37.8 -1.601 22.8 -2.60
High High 42 41.3 .255 36.2 1.601 51.2 2.60

Good Low Low 59 59.7 -.255 51.0 1.687 76.0 3.62
Low High 109 108.3 .255 117.0 -1.687 92.0 3.62
High Low 78 77.3 .255 86.0 -1.687 87.2 -2.60
High High 205 205.7 -.255 197.0 1.687 195.8 2.60
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Notice the small adjusted residuals for the (MS ,MW , SW ) model. Since the
residual df = 1, there is one nonredundant residual. We notice that
X 2 = 0.065 = 0.2552, the square of any of the residuals.

The adjusted residuals are larger for the (MS ,MW ) model. Here there are df = 2
and two nonredundant residuals. The goodness-of-fit statistic is
X 2 = 5.41 = 1.6012 + 1.6872.

The adjusted residuals for the (MS ,SW ) indicate definite problems with fit of this
model. The goodness-of-fit statistic is X 2 = 19.88 = 3.622 + 2.602.
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Tests about Partial Associations

We can conduct tests for partial associations by comparing different loglinear models.
For instance, in the homogeneous association model (MS ,MW , SW ), the null
hypothesis of no partial association between worker satisfaction and supervisor
satisfaction corresponds to the λSW term equals zero. We can test this by comparing
the (MS ,MW , SW ) model to the (MS ,MW ) using the likelihood ratio test.
Recall that we can form the likelihood ratio statistic for comparing nested models by
taking the differences of their deviances:

G 2 = −2(L0 − L1).

We use the χ2 critical value with degrees of freedom equalling the difference in the

degrees of freedom for the two models.
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Thus, the test statistic for testing λSW = 0 in the model (MS ,MW , SW ) is the

difference

G 2[(MS ,MW )|(MS ,MW ,SW )] = G 2(MS ,MW )− G 2(MS ,MW ,SW )
= 5.39− 0.06 = 5.33,

with df = 2− 1. The p-value equals 0.021. We thus reject the null hypothesis of no
partial association at level 0.05 and conclude that the (MS ,MW , SW ) is the better
model.
For this example, if we look at the other models with no partial association between two
of the variables, the results of the corresponding likelihood ratio test are even stronger.
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For 2× 2× K tables, the test statistic G 2[(XZ ,YZ)|(XY ,XZ ,YZ)] for partial
association is directly comparable to the Cochran-Mantel-Haenszel test. If the
sample sizes in the 2× 2 tables are reasonably large, the CMH statistic and the
likelihood ratio statistic of conditional independence given homogeneous
association will be similar. Both are compared to a χ2

K−1 critical value.

Similarly the likelihood ratio test for the fit of the homogeneous association model
is directly comparable to the Breslow-Day statistic.

The sample size can affect inferences in a three-way table. The test is more likely
to detect an effect of a given size as the sample size increases.

For small sample sizes, reality may be more complex than the simplest
model that passes a goodness of fit test.
For large sample sizes, statistically significant effects may be weak and
unimportant.

Confidence intervals are often useful for assessing the importance of results.

Scott Crawford (TAMU) Categorical Data Analysis September 10, 2024 43 / 79



Confidence Intervals for Odds Ratios

We can use computer software to obtain estimates of loglinear model parameters. For
models where the highest-order terms are two-factor interactions, the estimates refer to
conditional log-odds ratios. We use the large-sample normal distributions of the
parameter estimates to form confidence intervals for true log odds ratios and then
exponentiate them to obtain confidence intervals for the odds ratios.

Assume that the (MS ,MW ,SW ) model holds for the worker satisfaction example. We

will estimate the conditional odds ratio between worker satisfaction and supervisor

satisfaction.

Scott Crawford (TAMU) Categorical Data Analysis September 10, 2024 44 / 79



From the output, λ̂SW
11 = 0.3847 with SE = 0.1667. Then λ̂SW

12 = λ̂SW
21 = λ̂SW

22 = 0.

The conditional log odds ratio is λSW
11 + λSW

22 − λSW
12 − λSW

21 . Thus, λ̂SW
11 estimates

the conditional log odds ratio.

A 95% confidence interval for the conditional log odds ratio is

0.3847± 1.96× 0.1667 = 0.3847± .3267

and a 95% confidence interval for the conditional odds ratio is

(e.05797, e.7114) = (1.0597, 2.0369)
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The Loglinear-Logit Connection

Loglinear models for contingency tables have all variables as response variables whereas
logit models have a binary response variable which depends on a set of explanatory
variables. To help interpret a loglinear model, it is sometimes useful to construct an
equivalent logit model.
Consider the homogeneous association model:

logµijk = λ+ λX
i + λY

j + λZ
i + λXY

ij + λXZ
ik + λYZ

jk .
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We will suppose that Y is a binary variable and treat it as a response. We let X and Z
be considered as explanatory variables. Let π be the probability that Y = 1. The logit
for Y is

logit(π) = log
(

π
1−π

)
= log

(
P(Y=1|X=i,Z=k)
P(Y=2|X=i,Z=k)

)
= log

(
µi1k
µi2k

)
= log(µi1k)− log(µi2k)

= λ+ λX
i + λY

1 + λZ
i + λXY

i1 + λXZ
ik + λYZ

1k

−(λ+ λX
i + λY

2 + λZ
i + λXY

i2 + λXZ
ik + λYZ

2k )
= (λY

1 − λY
2 ) + (λXY

i1 − λXY
i2 ) + (λYZ

1k − λYZ
2k ).
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For the homogeneous association model, we showed that

logit(π) = (λY
1 − λY

2 ) + (λXY
i1 − λXY

i2 ) + (λYZ
1k − λYZ

2k ).

The first term is a constant and does not depend on i or k. The second term depends
on the level i of X . The third term depends on the level k of Z . Thus, the logit can be
written

logit(π) = α+ βX
i + βZ

k .
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When Y is binary, the loglinear model with homogeneous association is equivalent
to the above logit model.

When X is also binary, this logit model and the loglinear model (XY ,XZ ,YZ) have
equal odds ratios between X and Y at each of the K levels of Z . The G 2 or X 2

goodness-of-fit statistics are an alternative way to test for a common odds ratio.

When we derived the logit model corresponding to the (XY ,XZ ,YZ) loglinear
model, the λXZ

ik terms cancelled out. Thus, a similar derivation for the (XY ,YZ)
model would also lead to the same logit model. However, the loglinear model that
has the same fit as the logit model is the one containing a general interaction term
for relationships among the explanatory variables. The logit model does not
describe relationships among the explanatory variables, so it allows a general
interaction pattern.

The following table presents some equivalent loglinear and logit models when Y is
a binary response variable.
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Equivalent Models for Three-Way Tables

Loglinear Logit

(Y ,XZ) α

(XY ,XZ) α+ βX
i

(YZ ,XZ) α+ βZ
k

(XY ,YZ ,XZ) α+ βX
i + βZ

k

(XYZ) α+ βX
i + βZ

k + βXZ
ik

Scott Crawford (TAMU) Categorical Data Analysis September 10, 2024 50 / 79



Association Graphs and Collapsibility

We can represent associations in hierarchical loglinear models by using association
graphs. Each variable in the model is represented by a point (vertex) in the graph. Two
points in the graph are connected if the two variables are partially associated. For
three-dimensional tables, we will draw some of the possible association diagrams.
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The association diagram of a model is helpful for interpreting the association patterns in
the model.
• If two vertices are directly connected by an edge, the model contains the partial
association term between the two variables corresponding to the two vertices.
• For the model (X, Y, Z), there is no partial association term, so there is no edge in the
association graph.
• For the model (X, Y, Z), the mean is log(µxyz

i,j,k) = λ0 + λx
i + λy

j + λz
k . Take any two

variables, say X and Z. For this model, the variables X and Z are marginally
independent. Under this independence model,

µxyz
2+2 = exp(λ0 + λx

2 + λy
2 + λz

2) + exp(λ0 + λx
2 + 0 + λz

2)

= exp(λ0 + λx
2 + λz

2){1 + exp(λy
2)}.
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Similarly, µxyz
1+1 = exp(λ0 + λy

2) + exp(λ0) = exp(λ0){1 + exp(λy
2)},

µxyz
2+1 = exp(λ0 + λx

2 + λy
2) + exp(λ0 + λx

2) = exp(λ0 + λx
2){1 + exp(λy

2)} and
µxyz
1+2 = exp(λ0 + λy

2 + λz
2) + exp(λ0 + λz

2) = exp(λ0 + λz
2){1 + exp(λy

2)}. Using the
above expressions we obtain

µxyz
2+2µ

xyz
1+1

µxyz
1+2µ

xyz
2+1

= 1.

• For this model, any two variables are conditionally independent. For example, X and Z
are conditionally independent of Y. If Y has only two categories, for each category of Y ,
1 and 2,

µxyz
212µ

xyz
111

µxyz
112µ

xyz
211

= 1 and
µxyz
222µ

xyz
121

µxyz
122µ

xyz
221

= 1.

• For the model (XY ,YZ), there are two partial association terms, XY and YZ , so
there are two edges X-Y and Y-Z in the association graph.
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If two vertices are not directly connected by any edge but connected through other
vertices, then the two vertices (variables) are conditionally independent.

For instance, for the model (XZ ,YZ), the variables X and Y are not connected
directly, indicating that they are conditionally independent, given Z .

For the model (XY ,Z), the variable Z is completely disconnected from X and Y ,
indicating that it is unconditionally independent of X and Y .

The model (XY ,XZ ,YZ) has the same diagram as the saturated model (XYZ) so
no independence conditions are implied by its diagram.
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We have seen for many 3-way tables that the association in the partial tables given the

levels of the third variable differ from the marginal association. However, for some

models certain marginal and partial associations are equal. A table is collapsible over a

variable if the conditional associations given that variable is the same as the marginal

association when that variable is ignored. Association diagrams can be used to

determine collapsibility conditions for a table.
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For three-way tables, the X − Y marginal and partial odds are equal if either Z and X
are conditionally independent, or if Z and Y are conditionally independent. These
conditions correspond to the loglinear models (XY ,YZ) and (XY ,XZ). The association
diagrams for these two models are

X—Y—Z and Y—X—Z ,

but not the model (XZ ,YZ) with graph X—Z—Y .
In terms of the association diagram, the model is not collapsible over Z if Z is
connected between X and Y in the diagram.
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Example: In the worker satisfaction data, consider the model (MS ,MW ) with
association diagram

S—M—W .

The three-way table is collapsible over S or W , but not over M. This is shown by the

following excerpt from slide 15:
Estimated Odds Ratios for Loglinear Models

Conditional Association Marginal Association
Model M − S M −W S −W M − S M −W S −W

(MS,MW) 4.33 2.40 1 4.33 2.40 1.33
(MS,MW,SW) 4.04 2.11 1.47 4.33 2.40 1.86
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Four-way Contingency Tables

The methods that we developed for three-way tables extend naturally to higher order
tables. We will use hierarchical models as before. We interpret interaction effects as
reflecting differences in lower order effects at difference of control levels.
Sometimes association diagrams will help in the interpretation of a model. They are
constructed in the same way as for three-way tables. Terms that involve three effects
will be represented by three-way connections. The interpretation is similar to that for
three-way tables.

Two terms are independent if they are not connected at all in the diagram.

They are conditionally independent given a set of other variables is they are
connected only through a path that passes through that set of variables.

In some cases, several models for four-dimensional tables will have the same association

diagram. Thus, these models have the same interpretation in terms of marginal and

conditional independence.
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Example: Association Diagram for the Models (WXY ,WZ) and (WX ,WY ,WZ ,XY )

The variables X and Y are jointly modeled since they are connected to each other.
They are both connected to W , but not to Z . We could view the four-dimensional table
as a three-way table with factors X × Y , W , and Z , where X × Y is conditionally
independent of Z given W .

Is the four-way table collapsible with respect to Z?
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Example–Stillbirth and Premature Birth among Australians

Stillbirth is the death of a fetus at any time after the twentieth week of pregnancy. A
premature birth is the live birth of a child from the twentieth until the thirty-seventh
week of pregnancy. The following variables were recorded in a study of stillbirth in the
Australian state of Queensland:

Birth status(B)–stillbirth or live birth

Gender(G)–male or female

Gestational age(A)–≤ 24, 25− 28, 29− 32, 33− 36, 37− 41 weeks

Race(R)–Aborigine or white

Various loglinear models were fit to the data to ascertain the complexity of the needed
model.

Model df G2 p-value AIC
(A,B,R,G) 32 6848.9 <0.001 6864.9
(AB,AR,AG ,BR,BG ,RG) 17 48.5 <0.001 94.5
(ABR,ABG ,BRG ,ARG) 4 3.2 0.52 76.5
(ABR,ABG ,ARG) 5 3.6 0.61 73.6
(ABR,ARG ,BG) 9 7.1 0.63 69.2
(ARG ,AB,BR,BG) 13 16.4 0.23 70.4
(ARG ,AB,BG) 14 19.0 0.17 71.0
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Graphical Models

Graphical models are a subclass of loglinear models that have interpretations in terms of

conditional independence. These models are determined by their two-factor interactions.

Define a clique to be a maximal subset of points such that all are connected. A

graphical model includes the highest order interaction of all the variables within a clique.

For instance, if the XY , YZ , XZ are all in the model, the XYZ interaction must be

included in the graphical model.
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In this figure, the association diagram represents the models (XW ,WYZ) and
(XW ,WY ,YZ ,WZ). The graphical model corresponding to this graph must contain
WYZ , and thus, (XW ,WYZ) is the graphical model corresponding to this graph.
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In this figure, the association diagram represents the models
(XWZ ,WYZ), (XWZ ,WY ,YZ), (WYZ ,XW ,XZ), and (XW ,XZ ,WY ,XZ ,YZ). The
graphical model corresponding to this graph must contain XWZ and WYZ . Thus, the
graphical model is (XWZ ,WYZ) 1.

1Graphical Models with R by Søren Højsgaard, David Edwards, and Steffen Lauritzen.
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A Loglinear Model for Linear-by-Linear Association

Loglinear models provide a convenient method for modeling linear dependence in
contingency tables. We assign scores {ui} to the I rows and {vj} to the J columns. To
show the ordering, we let u1 ≤ u2 ≤ · · · ≤ uI and v1 ≤ v2 ≤ · · · ≤ vJ . A one-parameter
model for association in a two-way table with ordered row and column categories is the
model for linear-by-linear (or L× L) association:

log(µij) = λ+ λX
i + λY

j + βuivj .
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This is a special case of the saturated model where λXY
ij = βuivj .

The rows and columns are independent when β = 0.

When β ̸= 0, the deviation of log(µij) from independence is given by βuivj .

For a fixed level of X , the deviation is linear in the Y scores.

When β > 0, the association is positive and the greatest deviation occurs in upper
left and lower right corners in the table.

When β < 0, the association is negative and the greatest deviation occurs in upper
right and lower left corners in the table.
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A useful interpretation for the parameter β is obtained by looking at the odds ratios of
partial 2× 2 tables formed from rows r < s and columns c < d :

log

(
µrcµsd

µrdµsc

)
= β(us − ur )(vd − vc).
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For adjacent rows and columns with indices one apart, the log odds ratio equals β.
This is called uniform association.

This log odds ratio is larger when

(i) |β| is larger
(ii) the rows (r , s) and columns (c , d) are farther apart.
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We can test the null hypothesis of independence H0 : β = 0 versus an alternative of
linear-by-linear association by forming the likelihood ratio statistic

G 2 = G 2(I )− G 2(L× L)

which has under H0 a chi-squared distribution with one d.f. When linear-by-linear
association is present, this test is more powerful than the general test of independence
for a I × J table.
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Next consider the dataset on the mental health status of a sample of 1660 young New
York residents in midtown Manhattan classified by their parents’ socioeconomic status
(SES). It is given in Srole et al. (1978, p. 289) 2.

2Srole, L., Langner, T. S., Michael, S. T., Kirkpatrick, P., Opler, M. K., and Rennie,
T. A. C. (1978). Mental Health in the Metropolis: The Midtown Manhattan Study.
New York: NYU Press.
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Let’s consider the mental impairement data

Code

mydata=array(c(64, 57, 57, 72, 36, 21, 94, 94, 105, 141, 97, 71, 58,

54, 65, 77, 54, 54, 46, 40, 60, 94, 78, 71), dim=c(6, 4),

dimnames=list(SES=c(1:6), Mental_impairement=c("Well", "Mild",

"Moderate", "Impaired")))

> mydata

Mental_impairement

SES Well Mild Moderate Impaired

1 64 94 58 46

2 57 94 54 40

3 57 105 65 60

4 72 141 77 94

5 36 97 54 78

6 21 71 54 71

mydata2=as.data.frame(as.table(mydata))
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Let’s consider the mental impairement data

Code

out.ind=glm(Freq~as.factor(SES)+Mental_impairement,poisson,data=mydata2)

mu=rep(1:6, 4)

nu=rep(1:4, each=6)

# Linear by linear fit

out.linbylin=glm(Freq~as.factor(SES)+Mental_impairement+mu:nu,poisson,

data=mydata2)

summary(out.ind)

summary(out.linbylin)
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Further Models for Association

The linear-by-linear association model uses one degree of freedom to express the

dependence relation. It also supposes that there are prespecified row and column scores.

We now consider some models for association that are more flexible than the model for

linear-by-linear association (also called uniform association).
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Row Effects Model

We consider the situation where the rows are unordered, but the columns have scores
v1 ≤ v2 ≤ · · · ≤ vJ . We replace the ordered terms {βui} in βuivj term of the
linear-by-linear association model by the unordered terms {µi} to obtain

log(µij) = λ+ λX
i + λY

j + µivj .

We need constraints on the parameters such as λX
I = λY

J = µI = 0. This model adds

I − 1 degrees of freedom to the independence model so that the degrees of freedom for

this model are (I − 1)(J − 1)− (I − 1) = (I − 1)(J − 2). The row effects model treats

the rows as nominal and the columns as ordinal with known scores.
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We can interpret the parameters by looking at the odds ratios of partial 2× 2 tables
formed from rows r < s and columns c < d :

log

(
µrcµsd

µrdµsc

)
= (µs − µr )(vd − vc).

The log odds ratio is proportional to the distance between the columns with the
constant of proportionality being µs − µr . If we consider rows s = i + 1 and r = i and
assume that the scores for the columns are equally spaced one unit apart, the local log
odds ratio equals µi+1 − µi . Since this depends on i , the local log odds ratios are not
constant as in the uniform association model and depend on the row.
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Revisit the mental impairement data

Code

# Row effects model

out.roweffect=glm(Freq~as.factor(SES)+Mental_impairement+

as.factor(SES):nu, poisson,data=mydata2)

summary(out.roweffect)
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Column Effects Model

We consider the situation where the columns are unordered, but the rows have scores
u1 ≤ u2 ≤ · · · ≤ uI . We replace the ordered terms {βvj} in the βuivj term of the
linear-by-linear association model by the unordered terms {νi} to obtain

log(µij) = λ+ λX
i + λY

j + uiνj .

We need constraints on the parameters such as λX
I = λY

J = νJ = 0. This model adds
J − 1 degrees of freedom to the independence model so that the degrees of freedom for
this model are (I − 1)(J − 1)− (J − 1) = (I − 2)(J − 1). The column effects model
treats the columns as nominal and the rows as ordinal with known scores.

We can interpret the model using the local odds ratio in a manner analogous to that for

the row effect model. If we consider columns c = j + 1 and d = j and assume that the

scores for the rows are equally spaced one unit apart, the local log odds ratio equals

νj+1 − νj . Since this depends on i , the local log odds ratios are not constant as in the

uniform association model and depend on the column.
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Row and Column Effects Model

A generalization of both the row effects model and the column effects model that allows
for both row effects and column effects in the local odds ratio is row and column effects
model. We consider the situation where the rows are ordered with scores
u1 ≤ u2 ≤ · · · ≤ uI , and the columns have scores v1 ≤ v2 ≤ · · · ≤ vJ . We replace the
ordered terms {βuivj} in the linear-by-linear association model by {µivj + νjui} to obtain

log(µij) = λ+ λX
i + λY

j + µivj + νjui .

We need constraints on the parameters such as λX
I = λY

J = µI = νJ = 0. This model

adds I − 1 + J − 1 degrees of freedom to the independence model so that the degrees of

freedom for this model are (I − 2)(J − 2). The row effects model treats both the rows

and the columns as ordinal with known scores.
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We can interpret the model using the local odds ratio in a manner analogous to that for

the row effects and column effects model. If we consider rows s = i + 1 and r = i and

columns c = j +1 and d = j and columns and assumes the the scores are equally spaced

one unit apart, the local log odds ratio equals µi+1 − µi + νj+1 − νj . Since this depends

on i , the local log odds ratios are not constant as in the uniform association model and

depend on both the row and the column.
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These provide a hierarchy of increasingly complex models ranging from the
independence model up to the saturated model. We can use the deviances to form
likelihood ratio statistics to compare nested models.
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