
Attention, Transformers, and Large Language Models

Shuiwang Ji, Xiner Li, Shurui Gui
Department of Computer Science & Engineering

Texas A&M University

1 / 41

These slides are based on Chapter 12 of
Deep Learning: Foundations and Concepts

2 / 41

https://www.bishopbook.com/

Example

I swam across the river to get to the other bank.
I walked across the road to get cash from the bank.

Appropriate interpretation of ’bank’ relies on other words from the
rest of the sequence

The particular locations that should receive more attention depend on
the input sequence itself

In a standard neural network, the weights are fixed once the network
is trained

Attention uses weights whose values depend on the specific input data

I swam across the river to get to the other bank

I swam across the river to get to the other bank

3 / 41

Transformer processing

The input data to a transformer is a set of vectors {xn} of dimensionality
D, where n = 1, . . . ,N

Combine the data vectors into a matrix X of dimensions N × D in
which the nth row comprises the token vector xTn , and where
n = 1, . . . ,N labels the rows
A Transformer takes a data matrix as input and creates a transformed
matrix X̃ of the same dimensionality as the output
We can write this function in the form

X̃ = TransformerLayer [X]

X

N
(to

ke
ns

)

D (features)

xT
n

4 / 41

Attention coefficients

Map input tokens x1, . . . , xN to y1, . . . , yN
The value of yn should depend on all the vectors x1, . . . , xN
Dependence should be stronger for important inputs
Define each output vector yn to be a linear combination of x1, . . . , xN :

yn =
N∑

m=1

anmxm

where

anm ⩾ 0, and
N∑

m=1

anm = 1.

Commonly used coefficients

anm =
exp

(
xTn xm

)∑N
i=1 exp (x

T
n xi)

, an = Softmax


xTn x1
xTn x2
...

xTn xN


We have a different set of coefficients for each output vector yn

5 / 41

Attention in general (cross attention)

Use of query, key, and value vectors as rows of matrices Q,K,V

<latexit sha1_base64="uC2b18u8+ZyCSje/Sph6XyQH0/I=">AAAB+3icbVDLSsNAFJ3UV62vWJduBlvBVUnE17LoxmUF+4CmlMl00g6dTMLMjbSE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89fiy4Bsf5tgpr6xubW8Xt0s7u3v6BfVhu6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vbHdzO//cSU5pF8hGnMeiEZSh5wSsBIfbvsAZuAH6RVLwIeMl3N+nbFqTlz4FXi5qSCcjT69pc3iGgSMglUEK27rhNDLyUKOBUsK3mJZjGhYzJkXUMlMWt66fz2DJ8aZYCDSJmSgOfq74mUhFpPQ990hgRGetmbif953QSCm17KZZwAk3SxKEgEhgjPgsADrhgFMTWEUMXNrZiOiCIUTFwlE4K7/PIqaZ3X3Kva5cNFpX6bx1FEx+gEnSEXXaM6ukcN1EQUTdAzekVvVma9WO/Wx6K1YOUzR+gPrM8fG2uUfw==</latexit>⌦

<latexit sha1_base64="uC2b18u8+ZyCSje/Sph6XyQH0/I=">AAAB+3icbVDLSsNAFJ3UV62vWJduBlvBVUnE17LoxmUF+4CmlMl00g6dTMLMjbSE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89fiy4Bsf5tgpr6xubW8Xt0s7u3v6BfVhu6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vbHdzO//cSU5pF8hGnMeiEZSh5wSsBIfbvsAZuAH6RVLwIeMl3N+nbFqTlz4FXi5qSCcjT69pc3iGgSMglUEK27rhNDLyUKOBUsK3mJZjGhYzJkXUMlMWt66fz2DJ8aZYCDSJmSgOfq74mUhFpPQ990hgRGetmbif953QSCm17KZZwAk3SxKEgEhgjPgsADrhgFMTWEUMXNrZiOiCIUTFwlE4K7/PIqaZ3X3Kva5cNFpX6bx1FEx+gEnSEXXaM6ukcN1EQUTdAzekVvVma9WO/Wx6K1YOUzR+gPrM8fG2uUfw==</latexit>⌦

6 / 41

General attention in matrix form

The attention computes

Y = Softmax
[
QKT

]
V

where Softmax [L] takes the exponential of every element of L and
then normalizes each row independently to sum to one

Whereas standard networks multiply activations by fixed weights, here
the activations are multiplied by the data-dependent attention
coefficients

7 / 41

Self-attention without parameters

We can use data matrix X as Q,K,V, along with the output matrix
Y, whose rows are given by ym, so that

Y = Softmax
[
XXT

]
X

where Softmax [L] takes the exponential of every element of L and
then normalizes each row independently to sum to one

This process is called self-attention because we are using the same
sequence to determine the queries, keys, and values

The transformation is fixed and has no capacity to learn

8 / 41

Self-attention with parameters

Define
Q = XW(q) ∈ RN×Dk

K = XW(k) ∈ RN×Dk

V = XW(v) ∈ RN×Dv

Dv governs the dimensionality of the output vectors

Setting Dv = D will facilitate the inclusion of residual connections
<latexit sha1_base64="uC2b18u8+ZyCSje/Sph6XyQH0/I=">AAAB+3icbVDLSsNAFJ3UV62vWJduBlvBVUnE17LoxmUF+4CmlMl00g6dTMLMjbSE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89fiy4Bsf5tgpr6xubW8Xt0s7u3v6BfVhu6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vbHdzO//cSU5pF8hGnMeiEZSh5wSsBIfbvsAZuAH6RVLwIeMl3N+nbFqTlz4FXi5qSCcjT69pc3iGgSMglUEK27rhNDLyUKOBUsK3mJZjGhYzJkXUMlMWt66fz2DJ8aZYCDSJmSgOfq74mUhFpPQ990hgRGetmbif953QSCm17KZZwAk3SxKEgEhgjPgsADrhgFMTWEUMXNrZiOiCIUTFwlE4K7/PIqaZ3X3Kva5cNFpX6bx1FEx+gEnSEXXaM6ukcN1EQUTdAzekVvVma9WO/Wx6K1YOUzR+gPrM8fG2uUfw==</latexit>⌦

<latexit sha1_base64="uC2b18u8+ZyCSje/Sph6XyQH0/I=">AAAB+3icbVDLSsNAFJ3UV62vWJduBlvBVUnE17LoxmUF+4CmlMl00g6dTMLMjbSE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89fiy4Bsf5tgpr6xubW8Xt0s7u3v6BfVhu6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vbHdzO//cSU5pF8hGnMeiEZSh5wSsBIfbvsAZuAH6RVLwIeMl3N+nbFqTlz4FXi5qSCcjT69pc3iGgSMglUEK27rhNDLyUKOBUsK3mJZjGhYzJkXUMlMWt66fz2DJ8aZYCDSJmSgOfq74mUhFpPQ990hgRGetmbif953QSCm17KZZwAk3SxKEgEhgjPgsADrhgFMTWEUMXNrZiOiCIUTFwlE4K7/PIqaZ3X3Kva5cNFpX6bx1FEx+gEnSEXXaM6ukcN1EQUTdAzekVvVma9WO/Wx6K1YOUzR+gPrM8fG2uUfw==</latexit>⌦

<latexit sha1_base64="uC2b18u8+ZyCSje/Sph6XyQH0/I=">AAAB+3icbVDLSsNAFJ3UV62vWJduBlvBVUnE17LoxmUF+4CmlMl00g6dTMLMjbSE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89fiy4Bsf5tgpr6xubW8Xt0s7u3v6BfVhu6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vbHdzO//cSU5pF8hGnMeiEZSh5wSsBIfbvsAZuAH6RVLwIeMl3N+nbFqTlz4FXi5qSCcjT69pc3iGgSMglUEK27rhNDLyUKOBUsK3mJZjGhYzJkXUMlMWt66fz2DJ8aZYCDSJmSgOfq74mUhFpPQ990hgRGetmbif953QSCm17KZZwAk3SxKEgEhgjPgsADrhgFMTWEUMXNrZiOiCIUTFwlE4K7/PIqaZ3X3Kva5cNFpX6bx1FEx+gEnSEXXaM6ukcN1EQUTdAzekVvVma9WO/Wx6K1YOUzR+gPrM8fG2uUfw==</latexit>⌦

<latexit sha1_base64="uC2b18u8+ZyCSje/Sph6XyQH0/I=">AAAB+3icbVDLSsNAFJ3UV62vWJduBlvBVUnE17LoxmUF+4CmlMl00g6dTMLMjbSE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89fiy4Bsf5tgpr6xubW8Xt0s7u3v6BfVhu6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vbHdzO//cSU5pF8hGnMeiEZSh5wSsBIfbvsAZuAH6RVLwIeMl3N+nbFqTlz4FXi5qSCcjT69pc3iGgSMglUEK27rhNDLyUKOBUsK3mJZjGhYzJkXUMlMWt66fz2DJ8aZYCDSJmSgOfq74mUhFpPQ990hgRGetmbif953QSCm17KZZwAk3SxKEgEhgjPgsADrhgFMTWEUMXNrZiOiCIUTFwlE4K7/PIqaZ3X3Kva5cNFpX6bx1FEx+gEnSEXXaM6ukcN1EQUTdAzekVvVma9WO/Wx6K1YOUzR+gPrM8fG2uUfw==</latexit>⌦

<latexit sha1_base64="uC2b18u8+ZyCSje/Sph6XyQH0/I=">AAAB+3icbVDLSsNAFJ3UV62vWJduBlvBVUnE17LoxmUF+4CmlMl00g6dTMLMjbSE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89fiy4Bsf5tgpr6xubW8Xt0s7u3v6BfVhu6ShRlDVpJCLV8YlmgkvWBA6CdWLFSOgL1vbHdzO//cSU5pF8hGnMeiEZSh5wSsBIfbvsAZuAH6RVLwIeMl3N+nbFqTlz4FXi5qSCcjT69pc3iGgSMglUEK27rhNDLyUKOBUsK3mJZjGhYzJkXUMlMWt66fz2DJ8aZYCDSJmSgOfq74mUhFpPQ990hgRGetmbif953QSCm17KZZwAk3SxKEgEhgjPgsADrhgFMTWEUMXNrZiOiCIUTFwlE4K7/PIqaZ3X3Kva5cNFpX6bx1FEx+gEnSEXXaM6ukcN1EQUTdAzekVvVma9WO/Wx6K1YOUzR+gPrM8fG2uUfw==</latexit>⌦

<latexit sha1_base64="tyrnaWKwBgrwfAeHyLtldbLo+Qc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaND44kXjxilEcCK5kdGpgwO7vOzJqQDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPR9dRvPqHSPJL3ZhyjH9KB5H3OqLHSXfPhsVssuWV3BrJMvIyUIEOtW/zq9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUJOrNIj/UjZkobM1N8TKQ21HoeB7QypGepFbyr+57UT06/4KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNs7J3Wb64PS9VK1kceTiCYzgFD66gCjdQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBOSONvg==</latexit>

W q

<latexit sha1_base64="kNdIjvEjiIgSsPeU7dPVUZd+WfA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hV3xkWPAi8eI5gHJGmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6wHHC/YgOlAgFo2il+9bjqFcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophlU/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTTPK95V5fLuolyr5nEU4BhO4Aw8uIYa3EIdGsBgAM/wCm+OdF6cd+dj3rri5DNH8AfO5w8wC424</latexit>

W k

<latexit sha1_base64="q/ehLGVlNyoV7qfiqCn4jCT5ryA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaND44kXjxilEcCK5kdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD25nfHKHSPJaPZpygH9G+5CFn1Fjpofk06hZLbtmdg6wSLyMlyFDrFr86vZilEUrDBNW67bmJ8SdUGc4ETgudVGNC2ZD2sW2ppBFqfzI/dUrOrNIjYaxsSUPm6u+JCY20HkeB7YyoGehlbyb+57VTE1b8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdm7Ll/dX5aqlSyOPJzAKZyDBzdQhTuoQR0Y9OEZXuHNEc6L8+58LFpzTjZzDH/gfP4AQLeNww==</latexit>

W v

9 / 41

Dot-product scaled attention

Let pi denotes the i-th element of Softmax(a), we have
∂pi
∂aj

= pi (δij − pj): small for inputs of high magnitude

If the elements of the query and key vectors were all independent
random numbers with zero mean and unit variance, then the variance
of the dot product would be Dk

Normalize using the standard deviation

Y = Attention(Q,K,V) ≡ Softmax

[
QKT

√
Dk

]
V

X

W(k)W(q) W(v)

KQ V

mat mul

scale

softmax

mat mul

Y

10 / 41

Multi-head attention

Suppose we have H heads indexed by h = 1, . . . ,H as

Hh = Attention (Qh,Kh,Vh)

Define separate query, key, and value matrices for each head using

Qh = XW
(q)
h

Kh = XW
(k)
h

Vh = XW
(v)
h

The heads are first concatenated into a single matrix, and the result is
then linearly transformed using a matrix W(o) as

Y(X) = Concat [H1, . . . ,HH]W
(o)

Typically Dv is chosen to be equal to D/H so that the resulting
concatenated matrix has dimension N × D

11 / 41

Multi-head attention

N ×HDv

H1 H2
... HH × W(o)

HDv ×D

= Y

N ×D

X

self-attentionself-attention ... self-attention

concat

linear

Y

12 / 41

Transformer layers

Stack multiple self-attention layers on top of each other
Introduce residual connections and require the output dimensionality
to be the same as the input dimensionality, namely N × D
Followed by layer normalization to improves training efficiency

Z = LayerNorm [Y(X) + X]

Sometimes the normalization layer is applied before the multi-head
self-attention as

Z = Y (LayerNorm [X]) + X

X

multi-head
self-attention

add & norm

MLP

add & norm

X̃

Z

13 / 41

MLP in Transformer layers

The output vectors are constrained to lie in the subspace spanned by
the input vectors and this limits the expressive capabilities of the
attention layer

Enhance the flexibility using a standard nonlinear neural network with
D inputs and D outputs

For example, this might consist of a two-layer fully connected network
with ReLU hidden units

This needs to preserve the ability of the transformer to process
sequences of variable length

The same shared network is applied to each of the output vectors,
corresponding to the rows of Z

This neural network layer can be improved by using a residual
connection and layer normalization

14 / 41

Transformer layers

The final output from the transformer layer has the form

X̃ = LayerNorm [MLP[Z] + Z]

Again, we can use a pre-norm as

X̃ = MLP
(
Z′)+ Z, where Z′ = LayerNorm [Z]

In a typical transformer there are multiple such layers stacked on top
of each other

X

multi-head
self-attention

add & norm

MLP

add & norm

X̃

Z

15 / 41

Positional encoding

The transformer has the property that permuting the order of the
input tokens, i.e., the rows of X, results in the same permutation of
the rows of the output matrix X̃ - equivariance

The lack of dependence on token order becomes a major limitation
when we consider sequential data, such as the words in a natural
language
’The food was bad, not good at all.’
’The food was good, not bad at all.’

Construct a position encoding vector rn associated with each input
position n and then combine this with the associated input token
embedding xn
An ideal positional encoding should provide a unique representation
for each position, it should be bounded, it should generalize to longer
sequences, and it should have a consistent way to express the number
of steps between any two input vectors irrespective of their absolute
position because the relative position of tokens is often more
important than the absolute position

16 / 41

Natural language and word embedding

Convert the words into a numerical representation that is suitable for
use as the input to a deep neural network

Define a fixed dictionary of words and then introduce vectors of
length equal to the size of the dictionary along with a ’one hot’
representation for each word

The embedding process can be defined by a matrix E of size D × K
where D is the dimensionality of the embedding space and K is the
dimensionality of the dictionary.

For each one-hot encoded input vector xn we can then calculate the
corresponding embedding vector using

vn = Exn

Word embeddings can be viewed as the first layer in a deep neural
network. They can be fixed using some standard pre-trained
embedding matrix, or they can be trained

The embedding layer can be initialized either using random weight
values or using a standard embedding matrix

17 / 41

Language models: Narrow sense

Language models learn the joint distribution p (x1, . . . , xN) of an
ordered sequence of vectors, such as words (or tokens) in a natural
language

We can decompose the distribution into a product of conditional
distributions in the form

p (x1, . . . , xN) =
N∏

n=1

p (xn | x1, . . . , xn−1)

We could represent each term by a table whose entries are estimated
using simple frequency counts

However, the size of these tables grows exponentially with the length
of the sequence

18 / 41

n-gram model and LLMs (Courtesy R. Kambhampati)

We can assume that each of the conditional distributions is
independent of all previous observations except the L most recent
words, L = 1: bi-gram; L = 2: tri-gram; L = n − 1: n-gram
If L = 2, we have

p (x1, . . . , xN) = p (x1) p (x2 | x1)
N∏

n=3

p (xn | xn−1, xn−2)

What if L = 0? p (x1, . . . , xN) =
∏N

n=1 p (xn)
The size of the probability tables grows exponentially in L
A 3,001-gram model (like ChatGPT) learns to predict the next word
given the previous 3,000 words
When |V | = 5k , need 50, 0003,000 conditional distributions, with
many zeros
LLMs compress/approximate this gigantic table with a function
Although LLMs have billions of parameters, they are small compared
to the size of table
LLMs Look at everything we say as a prompt to be completed

19 / 41

Language models: Broad sense

Encoder only: In sentiment analysis, we take a sequence of words as
input and provide a single variable representing the sentiment of the
text. Here a transformer is acting as an ’encoder’ of the sequence

Decoder only: Take a single vector as input and generate a word
sequence as output, for example if we wish to generate a text caption
given an input image. In such cases the transformer functions as a
’decoder’, generating a sequence as output

Encoder-Decoder: In sequence-to-sequence processing tasks, both the
input and the output comprise a sequence of words, for example if our
goal is to translate from one language to another. In this case,
transformers are used in both encoder and decoder roles

20 / 41

Decoder transformers

Focus on a class of models called GPT which stands for generative
pretrained transformer

Use the transformer to construct an autoregressive model in which
the conditional distributions p (xn | x1, . . . , xn−1) are expressed using
a transformer

The model takes as input a sequence consisting of the first n − 1
tokens, and its corresponding output represents the conditional
distribution for token n

Draw a sample from this distribution then we have extended the
sequence to n tokens and this new sequence can be fed back through
the model to give a distribution over token n + 1

21 / 41

Decoder transformers

The GPT model consists of a stack of transformer layers that take
x1, . . . , xN as input and produce x̃1, . . . , x̃N

Each output needs to represent a distribution over the dictionary with
dimensionality K whereas the tokens have a dimensionality of D

Make a linear transformation of each output token using a matrix
W(p) of D × K followed by a softmax as

Y = Softmax
(
X̃W(p)

)
where Y is a matrix whose nth row is yTn , and X̃ is a matrix whose
nth row is x̃Tn
Each softmax output unit has an associated cross-entropy error
function

22 / 41

Decoder transformers: concurrent processing of sequence

I swam across the river to get to the other bank.

The model can be trained using a large corpus of unlabeled natural
language by taking a self-supervised approach

Each training sample consists of a sequence of tokens x1, . . . , xn as
input and xn+1 as output

Can achieve much greater efficiency by processing an entire sequence
at once so that each token acts both as a target value for the
sequence of previous tokens and as an input value for subsequent
tokens

We can use ’I swam across’ as an input with a target of ’the’, and
also use ’I swam across the’ as an input sequence with an associated
target of ’river’, and so on

Ensure that the network is not able to ’cheat’ by looking ahead in the
sequence, otherwise, cannot generate

23 / 41

Decoder transformers: causal language modeling

I swam across the river to get to the other bank.

First, we shift the input sequence to the right by one step, so that
input xn corresponds to output yn+1 (predicted prob of xn+1), with
target xn+1

Tokens interact only via attention weights
Second, use causal (masked) attention, in which we set to zero all of
the attention weights that correspond to a token attending to any
later token in the sequence (red) and then normalize the remaining
elements

24 / 41

Decoder transformer architecture

25 / 41

Difference between training and generation/inference

Training: the next token is given, so it is a multi-class prediction
problem using cross-entropy loss

Generation/inference: sample a token based on the computed
probability, and use it as input to the network to compute the
probability of the next token

Challenge: during the learning phase, the model is trained on a
human-generated input sequence, whereas when it is running
generatively, the input sequence is itself generated from the model.
This means that the model can drift away from the distribution of
sequences seen during training

26 / 41

Sampling strategies during generation/inference

The output of a decoder transformer is a probability distribution over
values for the next token

Greedy search: select the token with the highest probability -
deterministic

Simply choosing the highest probability token at each stage is not the
same as selecting the highest probability sequence of tokens - why?

p (y1, . . . , yN) =
N∏

n=1

p (yn | y1, . . . , yn−1)

Beam search: maintain a set of B hypotheses, each consisting of a
sequence of token values up to step n

Feed all these sequences through the network, and for each sequence
we find the B most probable token values, thereby creating B2

possible hypotheses for the extended sequence

This list is then pruned by selecting the most probable B hypotheses
according to the total probability of the extended sequence

27 / 41

Sampling strategies during generation/inference

One problem with approaches such as greedy search and beam search
is that they limit the diversity of potential outputs

Generate successive tokens simply by sampling from the softmax
distribution at each step, or sample from top-K

Introduce a parameter T called temperature into softmax

yi =
exp (ai/T)∑
j exp (aj/T)

T → 0: the probability mass is concentrated on the most probable
state - greedy selection

T = 1: the unmodified softmax distribution

T → ∞, uniform across all states

0 < T < 1: the probability is concentrated towards the higher values

If such approaches are used, there is randomness in generation

28 / 41

Encoder transformers: Masked language modeling

Take sequences as input and produce fixed-length vectors, such as
class labels, as output

An example of such a model is BERT, which stands for bidirectional
encoder representations from transformers

A randomly chosen subset of the tokens, say 15%, are replaced with a
special token denoted ⟨ mask ⟩
The model is trained to predict the missing tokens

I ⟨ mask ⟩ across the river to get to the ⟨ mask ⟩ bank.
The network should predict ’swam’ at output node 2 and ’other’ at
output node 10

Only two of the outputs contribute to the error function and the
other outputs are ignored

BERT is ’bidirectional’, so no need to shift inputs and mask outputs

An encoder model is unable to generate sequences

29 / 41

Encoder transformer architecture

30 / 41

Sequence-to-sequence transformers

Consider the task of translating an English sentence into a Dutch
sentence

We can use a decoder model to generate the token sequence
corresponding to the Dutch output, token by token

The main difference is that this output needs to be conditioned on
the entire input sequence

An encoder transformer can be used to map the input token sequence
into a suitable internal representation, denote by Z

To incorporate Z into the generative process, we use cross attention

The query vectors come from the sequence being generated, in
this case the Dutch output sequence, the key and value vectors
come from the sequence represented by Z

The model can be trained using paired input and output sentences

31 / 41

Comparison of self and cross attention

X

multi-head
self-attention

add & norm

MLP

add & norm

X̃

Z

32 / 41

Sequence to sequence transformer architecture

33 / 41

Large language models: Pretraining

The number of compute operations required to train a
state-of-the-art machine learning model has grown exponentially since
about 2012 with a doubling time of around 3.4 months

Increasing the size of the training data set, along with increase in
model parameters, leads to improvements in performance

The impressive increase in performance of the GPT series of models
through successive generations has come primarily from an increase in
scale

LLMs are trained by self-supervised learning on very large data sets of
text

A decoder transformer can be trained on token sequences in which
each token acts as a labelled target example

This ’self-labelling’ hugely expands the quantity of training data
available and therefore allows exploitation of deep neural networks
having large numbers of parameters

34 / 41

Large language models: fine tuning

This use of self-supervised learning led to a paradigm shift in which a
large model is first pre-trained using unlabelled data and then
subsequently fine-tuned using supervised learning based on a much
smaller set of labelled data

A model with broad capabilities that can be subsequently fine-tuned
for specific tasks is called a foundation model

Can freeze parts of parameters while updating others during
fine-tuning

Low-rank adaptation or LoRA: changes in the model parameters
during fine-tuning lie on a manifold whose dimensionality is much
smaller than the total number of learnable parameters in the model

LoRA freezes the original model and adding additional learnable
matrices into each layer of the transformer in the form of low-rank
products

35 / 41

Large language models: fine tuning with LoRA

Consider a weight matrix W0 having dimension D × D, we introduce
a parallel set of weights defined by the product of two matrices A and
B with dimensions D × R and R × D, respectively
This layer then generates an output XW0 + XAB
The number of parameters in AB is 2RD compared to the D2 in W0

If R ≪ D then the number of parameters that need to be adapted
during fine-tuning is much smaller
Once the fine-tuning is complete, the additional weights can be added
to the original weight matrices to give a new weight matrix

Ŵ = W0 + AB

During inference there is no additional computational overhead

× W0

D ×D

A

D ×R

× B

R×D

×

+

XW0

+

XAB

N ×D

X

N ×D

36 / 41

Large language models: Emerging properties

As language models have become larger and more powerful, the need
for fine-tuning has diminished, with generative language models now
able to solve a broad range of tasks simply through text-based
interaction

For example, if a text string

English: the cat sat on the mat. French:

is given as the input sequence, an autoregressive language model can
generate subsequent tokens representing the French translation

The model was not trained specifically to do translation but has
learned to do so as a result of being trained on a vast corpus of data
that includes multiple languages - Emerging properties

37 / 41

Large language models: RLHF

To improve the user experience and the quality of the generated
outputs, techniques have been developed for fine-tuning large
language models through human evaluation of generated output,
using methods such as reinforcement learning through human
feedback or RLHF

Such techniques have helped to create large language models with
impressively easy-to-use conversational interfaces, most notably the
system from OpenAI called ChatGPT

38 / 41

Large language models: Prompting

The sequence of input tokens given by the user is called a prompt
By using different prompts, the same trained neural network may be
capable of solving a broad range of tasks
The performance of the model now depends on the form of the
prompt, leading to a new field called prompt engineering
This allows the model to solve new tasks simply by providing some
examples within the prompt, without needing to adapt the parameters
of the model. This is an example of few-shot learning1

1
https://thegradient.pub/in-context-learning-in-context/

39 / 41

 https://thegradient.pub/in-context-learning-in-context/

Interested in learning more?

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu,
Richard Socher, Xavier Amatriain, Jianfeng Gao: Large Language Models:
A Survey
https://arxiv.org/abs/2402.06196

40 / 41

https://arxiv.org/abs/2402.06196

THANKS!

41 / 41

	Introduction

