
Unsupervised Learning and Expectation Maximization

Shuiwang Ji
Department of Computer Science & Engineering

Texas A&M University

Based on Pattern Recognition and Machine Learning and
Learning from Data

1 / 53

https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/
https://amlbook.com/

Outline

k-means clustering

Parzen window density estimation

Gaussian mixture models

Mixture models and expectation maximization

2 / 53

Supervised Learning versus Unsupervised Learning

Supervised Learning: Modeling a mapping from X to Y

Unsupervised Learning: Modeling of X , including clustering, density
estimation, etc.

3 / 53

k-means Clustering

The goal of k-means clustering is to partition the input data points
x1, . . . , xN into k sets S1, . . . ,Sk and select centers µ1, . . . ,µk for
each cluster.

The centers are representative of the data if every data point in
cluster Sj is close to its corresponding center µj .

For cluster Sj with center µj , define the squared error measure Ej to
quantify the quality of the cluster,

Ej =
∑

xn∈Sj

‖xn − µj‖2

The error Ej measures how well the center µj approximates the points
in Sj .

4 / 53

k-means Clustering

The k-means error function sums this cluster error over all clusters,

Ein (S1, . . . ,Sk ;µ1, . . . ,µk) =
k∑

j=1

Ej =
N∑

n=1

‖xn − µ (xn)‖2

where µ (xn) is the center of the cluster to which xn belongs.

We seek the partition S1, . . . ,Sk and centers µ1, . . . ,µk that
minimize the k-means error.

5 / 53

Computations of k-means Clustering

Minimizing the k-means error is an NP-hard problem.

However, if we fix a partition, then the optimal centers are easy to
obtain.

Similarly, if we fix the centers, then the optimal partition is easy to
obtain.

This suggests a very simple iterative algorithm which is known as
Lloyd’s algorithm.

1 Initialize µj .
2 Construct Sj to be all points closest to µj .
3 Update each µj to equal the centroid of Sj .
4 Repeat steps 2 and 3 until Ein stops decreasing.

6 / 53

Example of k-means

(a)

−2 0 2

−2

0

2 (b)

−2 0 2

−2

0

2 (c)

−2 0 2

−2

0

2

(d)

−2 0 2

−2

0

2 (e)

−2 0 2

−2

0

2 (f)

−2 0 2

−2

0

2

(g)

−2 0 2

−2

0

2 (h)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

7 / 53

Discussions

Lloyd’s algorithm falls into a class of algorithms known as E-M
(expectation-maximization) algorithms.

It minimizes a complex error function by separating the variables to
be optimized into two sets.

If one set is known, then it is easy to optimize the other set, which is
the basis for an iterative algorithm, such as with Lloyd’s algorithm.

8 / 53

Probability Density Estimation

The probability density of x is a generalization of clustering to a finer
representation. Clusters can be thought of as regions of high
probability.

The basic task in probability density estimation is to estimate:
For a given x, how likely it is that you would generate inputs similar
to x.

To answer this question we need to look at what fraction of the
inputs in the data are similar to x.

9 / 53

Parzen Window Density Estimation

The most common density estimation technique is the Parzen window.

The normalized Gaussian kernel is

φ(z) =
1

(2π)d/2
e−

1
2
z2

One can verify that P̂(x) = φ(‖x‖) is a probability density

For any r > 0,

P̂(x) =
1

rd
· φ
(
‖x‖
r

)
is also a density (r is the width of the bump).

10 / 53

Parzen Window Density Estimation

In Parzen window, you have a bump with weight 1
N on each data

point, and P̂(x) is a sum of the bumps:

P̂(x) =
1

Nrd

N∑
i=1

φ

(
‖x− xi‖

r

)
.

Since each bump integrates to 1 , the scaling by 1
N ensures that P̂(x)

integrates to 1.

11 / 53

Gaussian Mixture Model

12 / 53

Gaussian Distributions

Gaussian distribution, or normal distribution, is a widely used model
for the distribution of continuous variables
Gaussian distribution in 1-dimensional space

N (x |µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(1)

where µ is the mean, and σ2 is the variance
Gaussian distribution in d-dimensional space

N (x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2)

where µ is a d-dimensional mean vector, Σ is a d × d covariance
matrix, and |Σ| is the determinant of Σ

N (x|µ, σ2)

x

2σ

µ

13 / 53

Maximum Likelihood for the Gaussian

Given a data set X = (x1, · · · , xn)T in which the observations xn are
assumed to be drawn independently from a multivariate Gaussian
distribution, we can estimate the parameters of the distribution by
maximum likelihood

The log likelihood function is given by

ln p(X|µ,Σ) = −nd

2
ln(2π)− n

2
ln |Σ| − 1

2

n∑
i=1

(xn − µ)TΣ−1(xn − µ)

Taking the derivative of the log likelihood with respect to µ and Σ
and setting to zero, we obtain

µML =
1

n

n∑
i=1

xi (3)

ΣML =
1

n

n∑
i=1

(xi − µML)(xi − µML)T (4)

14 / 53

Modeling of Complex Distributions

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

15 / 53

Gaussian Mixture Model (GMM)

Just as the RBF-network is the parametric version of the
nonparametric RBF, the Gaussian mixture model (GMM) is the
parametric version of the Parzen window density estimate.

In Parzen window, you have a bump with weight 1
N on each data

point, and P̂(x) is a sum of the bumps:

P̂(x) =
1

Nrd

N∑
i=1

φ

(
‖x− xi‖

r

)
.

The Parzen window estimate places a Gaussian bump at every data
point; the GMM places just k bumps at centers µ1, . . . ,µk .

The Gaussian kernel is the most commonly used and easiest to handle.

16 / 53

Sampling

There are k Gaussian distributions, with respective means µ1, . . . ,µk

and covariance matrices Σ1, . . . ,Σk .

To generate a data point x, first pick a Gaussian j ∈ {1, . . . , k}
according to probabilities {w1, . . . ,wk}, where wj > 0 and∑k

j=1 wj = 1.

After selecting Gaussian j , x is generated according to a Gaussian
distribution with parameters µj ,Σj .

The probability density of x given that you picked Gaussian j is

P(x | j) = N (x;µj ,Σj) =
1

(2π)d/2 |Σj |1/2
e−

1
2 (x−µj)

T
Σ−1

j (x−µj).

By the law of total probability, the unconditional probability density
for x is

P(x) =
k∑

j=1

P(x | j)P[j] =
k∑

j=1

wjN (x;µj ,Σj)

17 / 53

Example

Each of the k Gaussian bumps represents a cluster of the data. The
probability density puts a bump (Gaussian) of total probability
(weight) wj at the center µj ; Σj determines the shape of the bump.

The Gaussians are illustrated by a contour of constant probability.
The different shapes of the clusters are controlled by the covariances
Σj .

18 / 53

Parameter Estimation

The parameters of the model need to be learned from the actual data.

These parameters are the mixture weights wj , the centers µj and the
covariance matrices Σj .

To determine the unknown parameters in the GMM, we will minimize
an in-sample error called the likelihood.

Our criterion for choosing is that, for the chosen density estimate P̂,
the data should have a high probability of being generated.

Since the data points are independent, the probability (density) for
the data x1, . . . , xN if the data were generated according to P̂(x) is

P̂ (x1, . . . , xN) =
N∏

n=1

P̂ (xn) =
N∏

n=1

 k∑
j=1

wjN (xn;µj ,Σj)



19 / 53

Maximum Likelihood

This is the likelihood of a particular GMM specified by parameters
{wj ,µjΣj}.
The method of maximum likelihood selects the parameters which
maximize P̂ (x1, . . . , xN), or equivalently which minimize
− ln P̂ (x1, . . . , xN).

Thus, we may minimize the in-sample error:

Ein (wj ,µj ,Σj) = − ln P̂ (x1, . . . , xN)

= −
N∑

n=1

ln

 k∑
j=1

wjN (xn;µj ,Σj)

 .

Even for the friendly Gaussian mixture model, the summation inside
the logarithm makes it very difficult to minimize the in-sample error.

Need the Expectation Maximization (E-M) algorithm.

20 / 53

Expectation Maximization

EM is based on the notion of a latent (hidden, unmeasured, missing)
piece of data that would make the optimization much easier.

In the context of the Gaussian Mixture Model, suppose we knew
which data points came from bump 1 , bump 2, . . ., bump k . The
problem would suddenly become much easier, because we can
estimate the center and covariance matrix of each bump using the
data from that bump alone; further we can estimate the probabilities
wj by the fraction of data points in bump j .

Unfortunately we do not know which data came from which bump, so
we start with a guess, and iteratively improve this guess. The general
algorithm is

1 Start with estimates for the bump membership of each xn.
2 Estimates of wj ,µj ,Σj given the bump memberships.
3 Update the bump memberships given wj ,µj ,Σj ; iterate to step 2 until

convergence.

21 / 53

Soft Assignment

The bump memberships need not be all or nothing. Specifically, at
iteration t, let γnj(t) ≥ 0 be the ’fraction’ of data point xn that

belongs to bump j , with
∑k

j=1 γnj = 1 (the entire point is allocated
among all the bumps); you can view γnj as the probability that xn was
generated by bump j .

The ’number’ of data points belonging to bump j is given by

Nj =
N∑

n=1

γnj .

22 / 53

If Soft Assignments are Known: Maximization Step

The γnj are the hidden variables that we do not know, but if we did
know the γnj , then we could compute estimates of wj ,µj ,Σj :

wj =
Nj

N
;

µj =
1

Nj

N∑
n=1

γnjxn;

Σj =
1

Nj

N∑
n=1

γnjxnxTn − µjµ
T
j .

Intuitively, the weights are the fraction of data belonging to bump j ;

The means are the average data point belonging to bump j where we
take into account that only a fraction of a data point may belong to a
bump;

The covariance matrix is the weighted covariance of the data
belonging to the bump.

23 / 53

Expectation Step

Once we have these new estimates of the parameters, we can update
the bump memberships γnj .

To get γnj(t + 1), we compute the probability that data point xn
came from bump j given the parameters wj ,µj ,Σj .

We want
γnj(t + 1) = P [j | xn]

By an application of Bayes rule,

P [j | xn] =
P (xn | j)P[j]

P (xn)
=
N (xn;µj ,Σj) · wj

P (xn)
.

We won’t have to compute P (xn) in the denominator because it is
independent of j and can be fixed by the normalization condition∑k

j=1 γnj = 1.

We thus arrive at the update for the bump memberships,

γnj(t + 1) =
wjN (xn;µj ,Σj)∑k
`=1 w`N (xn;µ`,Σ`)

24 / 53

Illustration of EM Algorithm

One standard-deviation contours for the two Gaussian components
are shown as blue and red circles

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

25 / 53

Sampling from GMM

We can use the technique of ancestral sampling to generate random
samples distributed according to the Gaussian mixture model

Procedure of sampling

First generate a value for z, denoted as ẑ, from the marginal
distribution p(z)
Then generate a value for x from the conditional distribution p(x|ẑ)

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1 (c)

0 0.5 1

0

0.5

1

p(z)p(x|z) p(x) Color with γ(znk)

26 / 53

Discussions

The E-M algorithm is a remarkable example of a learning algorithm
that ’bootstraps’ itself to a solution.

The algorithm starts by guessing some values for unknown quantities
that you would like to know.

The guess is probably quite wrong, but nevertheless the algorithm
makes inferences based on the incorrect guess.

These inferences are used to slightly improve the guess.

The guess and inferences slightly improve each other in this way until
at the end you have bootstrapped yourself to a decent guess at the
unknowns, as well as a good inference based on those unknowns.

27 / 53

Example

28 / 53

Comparison of K-means and GMM

EM algorithm makes a soft assignment based on the posterior
probabilities

K-means gives a hard assignment of data points to clusters

K-means algorithm can be considered as a particular limit of EM for
Gaussian mixtures

29 / 53

Comparison of K-means and GMM

Consider a Gaussian mixture model in which the covariance matrices
of the mixture components are given by εI , i.e., Σk = εI , where ε ∈ R
is a fixed constant, and it need not to be estimated

Each component is given by

p(x|µk ,Σk) =
1

(2π)d/2ε1/2
exp

{
− 1

2ε
‖xn − µk‖2

}
(5)

The posterior probability of zk given observation xn is

γ(znk) =
πk exp(−‖xn − µk‖2/2ε)∑
j πj exp(−‖xn − µj‖2/2ε)

(6)

Suppose j = arg mink‖xn − µk‖2, if ε→ 0 and πk 6= 0 for all k , then

γ(znk) →

{
1 if j = k

0 otherwise
(7)

30 / 53

Comparison of K-means and GMM

(7) implies that γ(znk)→ rnk when ε→ 0

For parameter {µk}, the formula in EM is

µk =
1

Nk

N∑
n=1

γ(znk)xn →
∑

n rnkxn∑
n rnk

(8)

For parameter {πk}, the formula in EM is

πk =
Nk

N
→
∑N

n=1 rnk
N

(9)

It means that the limit of the EM algorithm for this particular
Gaussian mixture is the exact K-means

31 / 53

Mixture Models in General

32 / 53

Mixture Models

Let Pk (x; θk) be a density for k = 1, . . . ,K , where θk are the
parameters specifying Pk . We will refer to each Pk as a bump.

In the GMM setting, all the Pk are Gaussians, and θk = {µk ,Σk}
A mixture model is a weighted sum of these K bumps,

P(x; Θ) =
K∑

k=1

wkPk (x; θk) ,

where the weights satisfy wk ≥ 0 and
∑K

k=1 wk = 1 and we have
collected all the parameters into a single grand parameter,
Θ = {w1, . . . ,wK ; θ1, . . . , θK}
Intuitively, to generate a random point x, you first pick a bump
according to the probabilities w1, . . . ,wK . Suppose you pick bump k .
You then generate a random point from the bump density Pk

33 / 53

Parameter Estimation

Given data X = x1, . . . , xN generated independently, we wish to
estimate the parameters of the mixture which maximize the
log-likelihood,

lnP(X | Θ) = ln
N∏

n=1

P (xn | Θ)

= ln
N∏

n=1

(
K∑

k=1

wkPk (xn; θk)

)

=
N∑

n=1

ln

(
K∑

k=1

wkP (xn | θk)

)
Note that X is known and fixed. What is not known is which
particular bump was used to generate data point xn
Denote by jn ∈ {1, . . . ,K} the bump that generated xn (we say xn is
a ’member’ of bump jn). Collect all bump memberships into a set
J = {j1, . . . , jN}.

34 / 53

Complete and Incomplete Data

If we knew which data belonged to which bump, we can estimate
each bump density’s parameters separately, using only the data
belonging to that bump.

We call (X , J) the complete data. If we know the complete data, we
can easily optimize the log-likelihood.

We call X the incomplete data. Though X is all we can measure, it is
still called the ’incomplete’ data because it does not contain enough
information to easily determine the optimal parameters Θ∗ which
minimize Ein (Θ).

35 / 53

Likelihood of Complete Data

To get the likelihood of the complete data, we need the joint
probability P [xn, jn | Θ]. Using Bayes’ theorem,

P [xn, jn | Θ] = P [jn | Θ]P [xn | jn,Θ]

= wjnPjn (xn; θjn) .

Since the data are independent,

P(X , J | Θ) =
N∏

n=1

P [xn, jn | Θ]

=
N∏

n=1

wjnPjn (xn; θjn) .

36 / 53

Likelihood of Complete Data

Let Nk be the number of occurrences of bump k in J, and let Xk be
those data points corresponding to the bump k , so
Xk = {xn ∈ X : jn = k}. We compute the log-likelihood for the
complete data as follows:

lnP(X , J | Θ) =
N∑

n=1

lnwjn +
N∑

n=1

lnPjn (xn; θjn)

=
K∑

k=1

Nk lnwk +
K∑

k=1

∑
xn∈Xk

lnPk (xn; θk)︸ ︷︷ ︸
Lk (Xk ,θk)

=
K∑

k=1

Nk lnwk +
K∑

k=1

Lk (Xk ; θk) .

37 / 53

Likelihood of Complete Data

The wk (in the first term) are separated from the θk (in the second
term)

The second term is the sum of K non-interacting log-likelihoods
Lk (Xk , θk) corresponding to the data belonging to Xk and only
involving bump k ’s parameters θk .

Each log-likelihood Lk can be optimized independently of the others.

For many choices of Pk , Lk (Xk ; θk) can be optimized analytically,
even though the log-likelihood for the incomplete data is intractable

38 / 53

Results

Maximize the first term in complete data log likelihood subject to∑
k wk = 1, and the optimal weights are shown to be

w∗k = Nk/N

For the GMM,

Pk (x;µk ,Σk) =
1

(2π)d/2 |Σk |1/2
exp

(
−1

2
(x− µk)T Σ−1

k (x− µk)

)
.

Maximizing Lk (Xk ;µk ,Σk) gives the optimal parameters:

µ∗k =
1

Nk

∑
xn∈Xk

xn;

Σ∗k =
1

Nk

∑
xn∈Xk

(xn − µk) (xn − µk)T .

µ∗k is the insample mean for the data belonging to bump k

Σ∗k is the in-sample covariance matrix.
39 / 53

When J is not observed

In reality, we do not have access to J, and hence it is called a ’hidden
variable’

One approach is to guess J and maximize the resulting complete
likelihood.

This almost works. Instead of maximizing the complete likelihood for
a single guess, we consider an average of the complete likelihood over
all possible guesses.

Specifically, we treat J as an unknown random variable and maximize
the expected value (with respect to J) of the complete log-likelihood.

This expected value is as easy to minimize as the complete likelihood.

40 / 53

Example

You have two opaque bags.

Bag 1 has red and green balls, with µ1 being the fraction of red balls.
Bag 2 has red and blue balls with µ2 being the fraction of red.

You pick four balls in independent trials as follows.

First pick one of the bags at random, each with probability 1
2 ;

then, pick a ball at random from the bag.

Here is the sample of four balls you got:

The task is to estimate µ1 and µ2.

It would be much easier if we knew which bag each ball came from.

41 / 53

Let’s Try

Half the balls will come from Bag 1 and the other half from Bag 2.

The blue balls come from Bag 2, so the other two should come from
Bag 1: |
Using in-sample estimates, µ̂1 = 1

2 and µ̂2 = 0.

42 / 53

Alternative Reasoning

It seems a little counter-intuitive that we would estimate µ̂2 = 0, for
isn’t there a positive probability that the red ball came from Bag 2?

Here is another way to reason. ’Half’ of each red ball came from Bag
1 and the other ’half’ from Bag 2.

So,

µ̂1 =
1

2
/

(
1 +

1

2

)
=

1

3

µ̂2 =
1

2
/

(
2 +

1

2

)
=

1

5

43 / 53

A More Generalized Case

A proportion p1 of red ball came from Bag 1 and the other
p2 = 1− p1 from Bag 2.

So,

µ̂1 = p1/ (1 + p1)

µ̂2 = p2/ (2 + p2)

44 / 53

Formally

The red ball is from either Bag 1 or Bag 2.

We can compute the likelihood for each of these two cases:

1
2 (1− µ1)× 1

2 (µ1)× 1
2 (1− µ2)× 1

2 (1− µ2) (Bag 1);
1
2 (1− µ1)× 1

2 (µ2)× 1
2 (1− µ2)× 1

2 (1− µ2) (Bag 2).

The log-likelihood for these two cases:

LLH1 = ln (1− µ1) + ln (µ1) + 2 ln (1− µ2)− 4 ln 2 (Bag 1);
LLH2 = ln (1− µ1) + ln (µ2) + 2 ln (1− µ2)− 4 ln 2 (Bag 2).

45 / 53

Expectation Step 2/2

Compute the expected log-likelihood using p1 and p2 = 1− p1:

p1 × LLH1 + p2 × LLH2

= ln (1− µ1) + p1 ln (µ1) + p2 ln (µ2) + 2 ln (1− µ2)− 4 ln 2.

46 / 53

Maximization Step

Next comes the maximization step. Treating p1, p2 as constants,
maximize the expected log-likelihood with respect to µ1, µ2 and
update µ̂1, µ̂2 to these optimal values as

µ̂1 ←
p1

1 + p1
and µ̂2 ←

p2

2 + p2

47 / 53

Expectation Step 1/2

We have new estimates µ̂1 and µ̂2.

Using Bayes theorem, we can compute updated p1 and p2 as

p1 =
µ̂1

µ̂1 + µ̂2
, p2 =

µ̂2

µ̂1 + µ̂2
.

48 / 53

Expectation Maximization Steps

p1 =
µ̂1

µ̂1 + µ̂2
, p2 =

µ̂2

µ̂1 + µ̂2
.

Altogether, we have

µ̂1 ←
p1

1 + p1
=

µ̂1

2µ̂1 + µ̂2
and µ̂2 ←

p2

2 + p2
=

µ̂2

2µ̂1 + 3µ̂2
.

49 / 53

Numerical Results

The full algorithm just iterates this update process with the new
estimates. Let’s see what happens if we start (arbitrarily) with
estimates µ̂1 = µ̂2 = 1

2 :

Iteration number
0 1 2 3 4 5 6 7 . . . 1000

µ̂1
1
2

1
3 0.38 0.41 0.43 0.45 0.45 0.46 . . . 0.49975

µ̂2
1
2

1
5 0.16 0.13 0.10 0.09 0.07 0.07 . . . 0.0005

If we continued this table, µ̂1 → 1
2 and µ̂2 → 0.

50 / 53

Example Revisited

You have two opaque bags.

Bag 1 has red and green balls, with µ1 being the fraction of red balls.
Bag 2 has red and blue balls with µ2 being the fraction of red.

You pick four balls in independent trials as follows.

First pick one of the bags at random, each with probability 1
2 ;

then, pick a ball at random from the bag.

Here is the sample of four balls you got:

The likelihood of the data is

1

2
(1− µ1)× 1

2
(µ1 + µ2)× 1

2
(1− µ2)× 1

2
(1− µ2) .

The log-likelihood is

ln (1− µ1) + ln (µ1 + µ2) + 2 ln (1− µ2)− 4 ln 2.

For this simple example, we can maximize the log-likelihood and
obtain µ̂1 = 1

2 and µ̂2 = 0

51 / 53

Discussions

It’s miraculous that by maximizing an expected log-likelihood using a
guess for the parameters, we end up converging to the true maximum
likelihood solution.

Why is this useful? Because the maximizations for µ1 and µ2 are
decoupled. We trade a maximization of a complicated likelihood of
the incomplete data for a bunch of simpler maximizations that we
iterate.

52 / 53

THANKS!

53 / 53

