
Graph Neural Networks

Shuiwang Ji, Xiner Li, Shurui Gui
Department of Computer Science & Engineering

Texas A&M University

1 / 24



These slides are based on Chapter 13 of
Deep Learning: Foundations and Concepts

2 / 24

https://www.bishopbook.com/


Graphs

A graph consists of a set of objects, known as nodes, connected by
edges
Both the nodes and the edges can have data associated with them
For example, in a molecule the nodes and edges are associated with
discrete variables corresponding to the types of atom (carbon,
nitrogen, hydrogen, etc.) and the types of bonds (single bond, double
bond, etc.)
An image is a special instance of graph-structured data in which the
nodes are the pixels and the edges describe which pixels are adjacent
Graph neural networks define an embedding vector for each of the
nodes, usually initialized with the observed node properties, which are
then transformed through a series of learnable layers to create a
learned representation

(a)

(b)

(c)
3 / 24



Graphs

A graph G = (V, E) consists of a set of nodes V, along with a set of
edges E
We index the nodes by n = 1, . . .N, and we write the edge from node
n to node m as (n,m)

If two nodes are linked by an edge they are called neighbours, and the
set of all neighbours of node n is denoted by N (n)

For each node n we can represent the node variables as a
D-dimensional vector xn and we can group these into a data matrix X
of dimensionality N × D in which row n is given by xTn

4 / 24



Adjacency matrix

We first choose an ordering for the nodes. If there are N nodes in the
graph, we can index them using n = 1, . . . ,N

A key consideration is to ensure either equivariance or invariance with
respect to a reordering of the nodes in the graph

The adjacency matrix has dimensions N × N and contains a 1 in
every location n,m for which there is an edge going from node n to
node m, with all other entries being 0

For graphs with undirected edges, the adjacency matrix will be
symmetric

B

A

C

D

E

A B C D E

A

B

C

D

E

C E A D B

C

E

A

D

B

5 / 24



Permutation equivariance

We can express node label permutation mathematically by
introducing the concept of a permutation matrix P

Consider the permutation from (A,B,C ,D,E ) → (C ,E ,A,D,B) ,
the corresponding P is

P =


0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0


When we reorder the nodes, the effect on the node data matrix X is
to permute the rows by pre-multiplication of P as

X̃ = PX

For the adjacency matrix, both the rows and the columns become
permuted as

Ã = PAPT

6 / 24



Permutation equivariance

When applying deep learning to graph-structured data, we need to
assign an ordering to the nodes

However, the specific ordering we choose is arbitrary and so it will be
important to ensure that any global property of the graph does not
depend on this ordering

In other words, the network predictions must be invariant to node
label reordering, so that

y(X̃, Ã) = y(X,A) Invariance

Node predictions: If we reorder the node labelling then the
corresponding predictions should show the same reordering

In other words, node predictions should be equivariant with respect to
node label reordering as

y(X̃, Ã) = Py(X,A) Equivariance

where y(·, ·) is a vector of network outputs, with one element per node
7 / 24



Convolutional filters

An image can be viewed as a specific instance of graph
Consider a convolutional layer using 3× 3 filters as

z
(l+1)
i = f

∑
j

wjz
(l)
j + b


f (·) is a differentiable nonlinear function such as ReLU, and the sum
over j is taken over all nine pixels in a small patch in layer l
It is not equivariant under reordering of the nodes

i

i

l l + 1

i

8 / 24



Convolutional filters

Assume that a single weight parameter wneigh is shared across the
neighbours so that

z
(l+1)
i = f

wneigh

∑
j∈N (i)

z
(l)
j + wself z

(l)
i + b


where node i has its own weight parameter wself

The information from the neighbouring nodes is aggregated through a
simple summation, and this is clearly invariant to any permutation

The operation is applied to every node in a graph, and so if the nodes
are permuted then the resulting computations will be unchanged but
their ordering will be likewise permuted, and hence, this calculation is
equivariant under node reordering

Note that this depends on the parameters wneigh ,wself , and b being
shared across all nodes.

9 / 24



Graph convolutional networks

Define a nonlinear transformation that maps the embeddings h
(l)
n in

layer l into corresponding embeddings in layer l + 1

Aggregation: messages are passed to that node from its neighbours

and combined to form a new vector z
(l)
n in a way that is permutation

invariant
z
(l)
n = Aggregate

({
h
(l)
m : m ∈ N (n)

})
.

Update: the aggregated information is combined with local
information from the node itself and used to calculate a revised
embedding vector for that node

h
(l+1)
n = Update

(
h
(l)
n , z

(l)
n

)
The node embeddings are typically initialized using observed node

data so that h
(0)
n = xn

This framework is called a message-passing neural network

10 / 24



Aggregation operators

There are many possible forms for the Aggregate function, but it
must depend only on the set of inputs and not on their ordering

The simplest form is summation:

Aggregate
({

h
(l)
m : m ∈ N (n)

})
=

∑
m∈N (n)

h
(l)
m

Another variation is the average

Aggregate
({

h
(l)
m : m ∈ N (n)

})
=

1

|N (n)|
∑

m∈N (n)

h
(l)
m

Takes account of the number of neighbours for each of the
neighbouring nodes:

Aggregate
({

h
(l)
m : m ∈ N (n)

})
=

∑
m∈N (n)

h
(l)
m√

|N (n)||N (m)|

11 / 24



Aggregation operators with learnable parameters

We can introduce learnable parameters by transforming the
embedding vectors from neighbouring nodes using MLPϕ, before
combining their outputs

So long as the network has a structure and parameter values that are
shared across nodes then this aggregation operator again be
permutation invariant

We can also transform the combined vector with another neural
network MLPθ:

Aggregate
({

h
(l)
m : m ∈ N (n)

})
= MLPθ

 ∑
m∈N (n)

MLPϕ

(
h
(l)
m

)
in which MLPϕ and MLP θ are shared across layer l

Due to the flexibility of MLPs, the transformation represents a
universal approximator for any permutation-invariant function that
maps a set of embeddings to a single embedding

12 / 24



Effective receptive field

As information is processed through successive layers, effective
receptive field is increased

13 / 24



Update operators

A simple form for update would be

Update
(
h
(l)
n , z

(l)
n

)
= f

(
Wself h

(l)
n +Wneigh z

(l)
n + b

)
If we choose sum as the aggregation function and if we share the
same weight matrix as W = Wself = Wneigh , we obtain

h
(l+1)
n = Update

(
h
(l)
n , z

(l)
n

)
= f

W
∑

m∈N (n),n

h
(l)
m + b


In matrix form:

H(l+1) = F
(
AH(l)WT + b

)
where

(
h
(l+1)
n

)T
is the n-th row of H(l+1), and A is the adjacency

matrix

Note W and b are layer-specific, but layer indices are omitted for
simplicity

14 / 24



Graph neural networks

Overall, we can represent a GNN as a sequence of layers that
successively transform the node embeddings

If we group these embeddings into a matrix H whose nth row is the
vector hTn , we can write the successive transformations as

H(1) = F
(
X,A,W(1)

)
H(2) = F

(
H(1),A,W(2)

)
... =

...

H(L) = F
(
H(L−1),A,W(L)

)
Under a node reordering, the transformation is equivariant:

PH(l) = F
(
PH(l−1),PAPT,W(l)

)
As a consequence, the complete network computes an equivariant
transformation

15 / 24



Node classification

A GNN can be viewed as a series of layers each of which transforms a

set of node-embedding vectors
{
h
(l)
n

}
into a new set

{
h
(l+1)
n

}
For node classification, we use an output layer, sometimes called a
readout layer as

yni =
exp

(
wT

i h
(L)
n

)
∑

j exp
(
wT

j h
(L)
n

)
where {wi} is a set of learnable weight vectors and i = 1, . . . ,C
We can then define a loss function as the sum of the cross-entropy
loss across all nodes

L = −
∑

n∈Vtrain

C∑
i=1

tni ln yni

where {tni} are one-hot encoding of target values
Because the weight vectors {wi} are shared across the output nodes,
the outputs are equivariant to node permutation and hence the loss
function is invariant 16 / 24



Node classification

Three types of nodes:

1 Training nodes Vtrain : labelled and included in the message-passing
operations and are also used to compute the loss function in training

2 Transductive nodes Vtrans : unlabelled and do not contribute to the
loss function in training. However, they still participate in the
message passing operations during both training and inference, and
their labels may be predicted as part of the inference process

3 Inductive nodes Vinduct : not used to compute the loss function, and
neither these nodes nor their associated edges participate in
message-passing during the training phase. However, they do
participate in message-passing during the inference phase and their
labels are predicted as the outcome of inference

Inductive (supervised) learning: no transductive nodes, and hence the
test nodes (and their associated edges) are not available during the
training phase

Transductive (semi-supervised) learning: There are transductive nodes

17 / 24



Edge classification

A common form of edge classification task is edge completion in
which the goal is to determine whether an edge should be present
between two nodes.

Given a set of node embeddings, the dot product between pairs of
embeddings can be used to define a probability p(n,m) for the
presence of an edge between nodes n and m by using the logistic
sigmoid function:

p(n,m) = σ
(
hTn hm

)

18 / 24



Graph classification

The goal is to predict the properties of new graphs given a training
set of labelled graphs G1, . . . ,GN

Combine the final-layer embedding vectors in a way that does not
depend on the arbitrary node ordering

The simplest approach is to take the sum of the node-embedding
vectors:

y = f

(∑
n∈V

h
(L)
n

)
f may contain learnable parameters such as a linear transformation or
a neural network

Graph-level predictions correspond to an inductive task since there
must be separate sets of graphs for training and for inference

19 / 24



Graph attention networks

The incoming messages are weighted by attention coefficients Anm as

z
(l)
n = Aggregate

({
h
(l)
m : m ∈ N (n)

})
=

∑
m∈N (n)

Anmh
(l)
m

where the attention coefficients satisfy

Anm ⩾ 0∑
m∈N (n)

Anm = 1

Some neighbouring nodes will be more important than others in
determining the best update in a way that depends on the data itself

20 / 24



Graph attention networks

There are multiple ways to construct the attention coefficients:

A bilinear form:

Anm =
exp

(
hTnWhm

)∑
m′∈N (n) exp (h

T
nWhm′)

where W is a D × D matrix of learnable parameters

Use a neural network to combine the embedding vectors from the
nodes at each end of the edge:

Anm =
exp {MLP (hn,hm)}∑

m′∈N (n) exp {MLP (hn,hm′)}

where the MLP is shared across all the nodes and has a single
continuous output variable whose value is invariant if the input
vectors are exchanged

21 / 24



Edge embeddings

Some networks have data associated with the edges

In addition to the node embeddings given by h
(l)
n , we introduce edge

embeddings e
(l)
nm

We can define general message-passing equations as

e
(l+1)
nm = Update edge

(
e
(l)
nm,h

(l)
n ,h

(l)
m

)
z
(l+1)
n = Aggregate node

({
e
(l+1)
nm : m ∈ N (n)

})
h
(l+1)
n = Update node

(
h
(l)
n , z

(l+1)
n

)
The learned edge embeddings e

(L)
nm from the final layer can be used

directly to make predictions associated with the edges

22 / 24



General message-passing equations

We can also maintain and update an embedding vector g(l) that
relates to the graph as a whole
We can define general message-passing equations as

e
(l+1)
nm = Update edge

(
e
(l)
nm,h

(l)
n ,h

(l)
m , g(l)

)
z
(l+1)
n = Aggregatenode

({
e
(l+1)
nm : m ∈ N (n)

})
h
(l+1)
n = Update node

(
h
(l)
n , z

(l+1)
n , g(l)

)
g(l+1) = Update graph

(
g(l),

{
h
(l+1)
n : n ∈ V

}
,
{
e
(l+1)
nm : (n,m) ∈ E

})

n

hn

m

hm

G g

enm

n

hn

m

G g

e

e

e

enm

h

h

h

h

h

h

G g

ee

ee

e

e

e

23 / 24



THANKS!

24 / 24


	Introduction

