Math 171 Exam 1
 February 7, 2007
 S. Witherspoon

Name

There are 5 questions, for a total of 100 points. Point values are written beside each question. Calculators may be used only for basic arithmetic operations. Show your work for full credit.

1. (a) [7 points] Find a unit vector that has the same direction as $\langle 1,-2\rangle$.
(b) [7] Determine whether the following vectors parallel, perpendicular, or neither:

$$
2 \mathbf{i}-3 \mathbf{j}, \quad 6 \mathbf{i}+4 \mathbf{j}
$$

(c) [7] Given the vector equation $\mathbf{r}(t)=\left\langle 1-t, 2 t^{2}+1\right\rangle$, find the corresponding Cartesian equation (i.e. involving only x and y).
2. (a) [5] State the definition of limit, that is $\lim _{x \rightarrow a} f(x)=L$ means
(b) [14] Prove $\lim _{x \rightarrow-2}(1-4 x)=9$ using the definition of limit.
3. Find the following limits. (You need not give proofs.)
(a) $[10] \lim _{x \rightarrow 1}\left(4-\frac{8 x}{x+1}\right)$
(b) [10] $\lim _{x \rightarrow \frac{1}{2}} \frac{2-4 x}{\sqrt{2 x}-1}$
3. (continued)
(c) $[10] \lim _{x \rightarrow \infty} \frac{1-2 x+3 x^{2}}{1-\sqrt{2 x^{4}+1}}$
4. [10] Use the Squeeze Theorem to find $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{1}{x}\right)$. Justify your answer.
5. (a) [5] State the definition of continuity at a number a, that is, a function f is continuous at a means
(b) [5] Sketch the graph of $f(x)=\left\{\begin{aligned} & x^{2}-1, \\ & 1, \text { if } x \leq 0 \\ & 2-x, \\ & \text { if } 0<x \leq 1 \\ & \text { if } x>1\end{aligned}\right.$
(c) [5] Let f be the function from part (b). Is f continuous at 0 ? Explain why or why not.
(d) [5] Let f be the function from part (b). Is f continuous at 1? Explain why or why not.

