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Abstract. In a previous paper we constructed rank and support variety theories
for “quantum elementary abelian groups,” that is, tensor products of copies of Taft
algebras. In this paper we use both variety theories to classify the thick tensor ideals
in the stable module category, and to prove a tensor product property for the support
varieties.

1. Introduction

This paper is a sequel to our study of rank and support varieties for “quantum elemen-
tary abelian groups” [22]. These are arguably the simplest examples of finite dimensional
non-commutative non-cocommutative Hopf algebras. They come up in many different
contexts and have several incarnations. For the purposes of this paper, let ` ≥ 2 be an
integer and define A to be a semi-direct (or smash) product of a truncated polynomial
algebra with an abelian group,

A := k[X1, . . . , Xn]/(X`
1, . . . , X

`
n) o (Z/`Z)×n,

where the characteristic of k is either zero or relatively prime to ` (details in Section 2).
The algebra A also has the following alternative descriptions.

◦ A is a Borel subalgebra of the small quantum group uq(sl
⊕n
2 ), where q is a

primitive `th root of unity.
◦ A is the bosonization of a Nichols algebra B(V ) where V is the braided vector

space of diagonal type with braiding matrix (qij), where qij is 1 if i = j, q if
i > j, and q−1 if i < j.
◦ A is the tensor product of n copies of the Taft algebra of dimension `2.

In [22] we developed the theory of rank and support varieties for finitely generated A-
modules. The support varieties were defined classically via the actions of a cohomology
ring on the Ext-algebras for A-modules M . To define rank variety, we considered “quan-
tum” cyclic shifted subgroups of A. The main theorem was an adaptation of the result
of Avrunin and Scott [1] for elementary abelian p-groups to our quantum setting, stating
that there is a homeomorphism between the rank and support varieties. In this paper we
prove two standard results in the theory of varieties for which this Avrunin-Scott type
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theorem is essential: the classification of tensor ideals in the stable module category of
A and the tensor product property for varieties of finitely generated A-modules. The
proofs of the following two theorems are in Sections 4 and 5, respectively.

Theorem 1.1 (Tensor product theorem). Let M , N be finitely generated A-modules.
Then VA(M ⊗N) = VA(M) ∩ VA(N), where VA(M) denotes the support variety of M .

Theorem 1.2 (Classification of tensor ideals). There is an inclusion-preserving bijec-
tion between thick tensor ideals of stmodA and subsets of Proj H∗(A, k) closed under
specialization.

A refined version of Theorem 1.2 is Theorem 5.5.
Our algebras present themselves as the very first examples of non-commutative, non-

cocommutative Hopf algebras for which the tensor product theorem is known. Examples
of non-commutative non-cocommutative Hopf algebras for which the classification of
thick tensor ideals is known are also scarce, although such a classification was recently
given by Benson and the second author [8] using completely different methods for some
Hopf algebras constructed from finite groups.

Due to difficulties that arise in working with a non-symmetric tensor product, there
remain unanswered questions. We still do not know whether infinite dimensional mod-
ules satisfy the tensor product property for their varieties, even though we prove it for
finite dimensional modules using a combination of homological and representation the-
oretic arguments. The original solution of the classification problem for finite groups
(or finite group schemes) involved Rickard idempotent modules, the representation theo-
retic interpretation of the Bousfield localization technique in topology (see [4] and [13]).
Without the tensor product theorem for infinite dimensional modules, we cannot ap-
ply Rickard idempotents to classify thick tensor ideals of stmodA. Instead, we employ
ideas from the recent paper [11] of Carlson and Iyengar to circumvent the use of infinite
dimensional modules and give a very simple proof of the classification.

The paper is organized as follows. In Section 2 we introduce notation and briefly recall
definitions and basic properties of rank and cohomological support varieties for quantum
elementary abelian groups. Most of the material in that section comes from [22]. In
Section 3 we collect several elementary facts about A-modules which culminate in the
equality of VA(M) and VA(M#), where M# is an A-module dual to M . Even though the
facts proven in that section might feel very familiar to the reader, one should be cautious
when working with non-symmetric monoidal module categories in view of the recent
results of Benson and the second author: There are examples in [8] of various anomalies
in the behavior of support varieties for modules in such categories. In particular, it is
shown that the varieties of M and its dual need not coincide in general. Motivated by
these examples, we take extra care with proofs of “elementary” facts in Section 3.

In Section 4 we prove Theorem 1.1, the tensor product property. This proof naturally
splits into two parts. We first prove the “easy” inclusion VA(M ⊗N) ⊂ VA(M)∩VA(M)
using exclusively the fact that the varieties of M and M# coincide. The second part
of this section is occupied by the proof of the other inclusion which uses the structural
properties of A in an essential way. Finally, in the last section we classify the thick
tensor ideals of stmodA.
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Throughout this paper, k will denote an algebraically closed field containing a prim-
itive `th root of unity q; in particular, ` is not divisible by the characteristic of k. All
tensor products and dimensions will be over k, and all modules are finitely generated
left modules, unless otherwise indicated.

2. Recollections

2.1. Varieties for modules of a quantum elementary abelian group. We recall
some notation and results from [22]. Let n be a positive integer, let G be the abelian
group (Z/`Z)×n with generators {g1, . . . , gn}, and let R = k[X1, . . . , Xn]/(X`

1, . . . , X
`
n)

be a truncated polynomial ring. We let G act on R via the formula

gi ·Xj = qδijXj

where δij is the Kronecker delta. We set

A := RoG,

the semi-direct product taken with respect to the action defined above. That is, A is a
free left R-module with basis G and multiplication determined by (rg)(sh) = r(g · s)gh
for all r, s ∈ R, g, h ∈ G. In addition, A has a Hopf algebra structure defined as follows:

∆(Xi) = Xi ⊗ 1 + gi ⊗Xi, ∆(gi) = gi ⊗ gi,

ε(Xi) = 0, ε(gi) = 1, S(Xi) = −g−1
i Xi, S(gi) = −g−1

i .

For a ∈ A, we use the Sweedler notation ∆(a) =
∑
a1 ⊗ a2. For two A-modules M , N ,

the tensor product M ⊗N is equipped with an A-module structure via the formula

a · (m⊗m′) =
∑

a1m⊗ a2m
′

for all a ∈ A, m ∈M , m′ ∈ N . The A-module structure on a module dual to M , denoted
M# = Homk(M,k), is defined by

(a · f)(m) = f(S(a)m)

for all a ∈ A, f ∈ M#, m ∈ M . Equivalently, since S2 is an inner automorphism (it is
conjugation by g−1

1 · · · g−1
n ), we may define the action by (a · f)(m) = f(S−1(a)m).

Let {Y1, . . . , Yn} be non-commuting variables, and set

Rq =
k〈Y1, . . . , Yn〉

(YjYi − qYiYj , Y `
i )

where the commutator relations YjYi − qYiYj are taken for all i, j, 1 ≤ i < j ≤ n. The

group G acts on Rq via the same formula as before: gi · Yj = qδijYj , and, hence, we can
form a semi-direct product Rq oG. There is an algebra isomorphism

Rq oG
∼−→ RoG = A

given by

Yi 7→ Xig1g2 . . . gi−1, gi 7→ gi.

For λ = [λ1 : . . . : λn] ∈ Pn−1 we define an embedding of algebras

τλ : k[t]/(t`)→ A via t 7→ λ1Y1 + λ2Y2 + . . .+ λnYn.
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Let 〈τλ(t)〉 ⊂ A denote the subalgebra generated by τλ(t). We define the action of G on

Pn−1 by
gi · [λ1 : . . . : λn] := [λ1 : . . . : λi−1 : qλi : λi+1 : . . . : λn].

For an A-module M , the restriction M↓〈τλ(t)〉 of M to 〈τλ(t)〉 is projective if and only

if M↓〈τg·λ(t)〉 is projective for any g ∈ G (see [22, Lemma 2.5(ii)]). We define the rank

variety of M , a closed subset of Pn−1, denoted VA(M), as follows:

Definition 2.1. [22, Defn. 3.2]

VA(M) := {λ ∈ Pn−1 |M↓〈τλ(t)〉 is not projective }/G.
Rank varieties have all the standard properties one expects (see [22, Section 3]).

For an R-module M , we set

VR(M) := VA(M↑A),

where M↑A = indARM = A ⊗R M is the (tensor) induced module. In this paper we
follow standard conventions in finite group theory, referring to the left adjoint functor to
restriction as induction, and the right adjoint, coindARM = HomR(A,M), as coinduction.

Recall that the cohomology of the quantum elementary abelian group A is

(2.2) H∗(A, k) = Ext∗A(k, k) ' k[y1, . . . , yn],

where deg yi = 2. For an A-module M , denote by IA(M) the annihilator of Ext∗A(M,M)
under the (left) action of H∗(A, k) by the cup product (equivalently, under the action
given by tensoring an extension in Ext∗A(k, k) with M on the right followed by Yoneda
composition).

Definition 2.3. The cohomological support variety of M , V c
A(M), is the closed subset

of Pn−1 ' Proj H∗(A, k) defined by the homogeneous ideal IA(M), where Proj H∗(A, k)
denotes the space of homogeneous prime ideals of H∗(A, k) other than the ideal of all
elements of positive degree.

We define a map Ψ̃ : Pn−1 → Pn−1 as Ψ̃([λ1 : . . . : λn]) := [λ`1 : . . . : λ`n] and note that
it factors through Pn−1/G. The resulting map is denoted by Ψ:

Pn−1

zz

Ψ̃

##
Pn−1/G

Ψ // Pn−1

Since we have VA = VA(k) = Pn−1/G and V c
A = Proj H∗(A, k) ' Pn−1, we get the map

Ψ : VA → V c
A

induced by raising each coordinate of the equivalence class of λ ∈ VA to the `th power.
The main theorem of [22] states that Ψ(VA(M)) = V c

A(M). Since Ψ is a homeomorphism,
we identify the cohomological support variety V c

A(M) and rank variety VA(M) via the
map Ψ.

We recall some standard properties of these varieties that we will need. The relative
support variety V c

A(M,N) for A-modules M , N is defined analogously to V c
A(M) by

using the action of H∗(A, k) on Ext∗A(M,N) via −⊗M followed by Yoneda composition.
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Proposition 2.4. [22, Prop. 4.3] Let M,N,M1,M2,M3 be A-modules.

(i) VA(M ⊕N) = VA(M) ∪ VA(N).
(ii) VA(Ω(M)) = VA(M), where Ω is the Heller shift operator.
(iii) If 0→M1 →M2 →M3 → 0 is a short exact sequence of A-modules, then

VA(Mi) ⊂ VA(Mj) ∪ VA(Ml)

for any {i, j, l} = {1, 2, 3}.
(iv) Let S1, . . . , Sn be representatives of all isomorphism classes of simple A-modules.

Then

VA(M) =
n⋃
i=1

VA(Si,M) =
n⋃
i=1

VA(M,Si).

Remark 2.5. We also claimed the inclusion VA(M ⊗ N) ⊂ VA(M) ∩ VA(N) in [22,
Prop. 4.3]. This statement is true but the proof given was incomplete. In Section 4
we give a different proof of that inclusion as part of the proof of the “Tensor Product
Theorem 1.1” which asserts the equality. As demonstrated with counterexamples in [8],
one must be careful since the inclusion VA(M ⊗N) ⊂ VA(M)∩VA(N) does not hold for
an arbitrary Hopf algebra.

2.2. Thick subcategories. We recall a few basic definitions that we need and refer
the reader to any of the multiple excellent sources on triangulated categories for the
necessary background, such as [17] or [20].

Let T be a triangulated category. A thick subcategory C ⊂ T is a full triangulated
subcategory that is closed under taking direct summands. If, in addition, T is tensor
triangulated (that is, a monoidal triangulated category), then a thick tensor ideal of T
is a thick subcategory C satisfying the property that for any C ∈ C, and any B ∈ T , we
have both B ⊗ C ∈ C and C ⊗B ∈ C.

Remark 2.6. We could modify the above definition of thick tensor ideal to define left and
right tensor ideals. It is the notion of (two-sided) tensor ideal, as defined above, that
naturally arises in the theory here due to the symmetry inherent in the tensor product
property (Theorem 1.1) of varieties.

For a triangulated category T and an object X ∈ T , we denote by ThickT (X) the
thick subcategory generated by X. If T is tensor triangulated, we denote by Thick⊗T (X)
the thick tensor ideal generated by X.

Recall that the stable module category of A, stmodA, is the category where objects
are finitely generated A-modules and morphisms are equivalence classes of morphisms in
mod A, where we say that f : M → N is equivalent to g : M → N if f−g factors through
a projective module. Since A is a finite dimensional Hopf algebra, it is Frobenius ([18]),
and, hence, projective modules coincide with injective modules. Therefore, the category
stmodA is triangulated with exact triangles corresponding to short exact sequences in
mod A and the shift functor given by the inverse Heller operator M 7→ Ω−1M (see, for
example, [15]).
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3. Preliminaries and the variety of M#

In this section, we obtain some needed elementary results about A-modules and their
varieties. Let IrrG denote the set of irreducible characters of G. For χ ∈ IrrG, write Sχ
for the one-dimensional A-module on which xi acts as 0 and gi acts as multiplication by

χ(gi). Note that S#
χ ' Sχ−1 .

Lemma 3.1. Let M be an A-module and χ ∈ IrrG. Then there is an isomorphism of
A-modules,

Sχ ⊗M ⊗ S#
χ 'M.

Proof. The simple modules Sχ form a group, under tensor product, that is generated by

all Sχi , 1 ≤ i ≤ n, where χi(gj) = qδij . Thus it suffices to prove the statement for each
character χi. Define a linear map

φ : Sχi ⊗M ⊗ S#
χi →M

by φ(1⊗m⊗ 1) = g−1
i m for all m ∈ M . A straightforward calculation shows that φ is

A-linear with inverse given by the formula φ−1(m) = 1⊗ gim⊗ 1 for all m ∈M . Hence,
it is an A-module isomorphism. �

As a consequence of the lemma, simple modules commute with all modules under

tensor product: Sχ ⊗M ' Sχ ⊗M ⊗ S#
χ ⊗ Sχ 'M ⊗ Sχ for all χ ∈ IrrG.

Lemma 3.2. Let M be an A-module. Then

(i) M↓R↑A '
⊕

χ∈IrrG(M ⊗ Sχ).

(ii) (M↓R↑A)# '
⊕

χ∈IrrG(M# ⊗ Sχ).

Proof. We will give explicitly two A-module homomorphisms

φ : M↓R↑A →
⊕
χ

(M ⊗ Sχ), ψ :
⊕
χ

(M ⊗ Sχ)→M↓R↑A.

Let g ∈ G, m ∈M , and

φ(g ⊗m) = (χ(g)gm⊗ 1)χ∈IrrG.

For each χ ∈ IrrG, let mχ ∈M , and

ψ((mχ ⊗ 1)χ∈IrrG) =
1

|G|
∑

χ∈IrrG

∑
g∈G

χ(g−1)g ⊗ g−1mχ.

It is straightforward to check that φ, ψ are mutually inverse A-module homomorphisms
by applying the orthogonality relations for characters.

The second isomorphism follows immediately by dualizing the first (which reverses
the order of tensor products) and applying Lemma 3.1. �

The following lemma only requires A to be a finite dimensional Hopf algebra for which
the cohomological support varieties are defined and the two notions of dual module (one
using the antipode S and the other using its inverse S−1) coincide. (If the two notions
of dual are different, one must use S for (i) below and S−1 for (ii) below.) Since we work
with left modules, we prefer the action given in (i), however, sometimes we will need to
compare with the action in (ii).
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Lemma 3.3. There are isomorphisms of H∗(A, k)-modules for all A-modules U , V , W :

(i) Ext∗A(U⊗V,W ) ' Ext∗A(U,W ⊗V #), where the action is −⊗U⊗V (respectively
−⊗ U) followed by Yoneda composition.

(ii) Ext∗A(U⊗V,W ) ' Ext∗A(V,U#⊗W ), where the action is U⊗V ⊗− (respectively
V ⊗−) followed by Yoneda composition.

Proof. Let P q be a projective resolution of k as an A-module, so that P q ⊗ U ⊗ V and
U⊗V ⊗P q are projective resolutions of U⊗V , and there are similar projective resolutions
of U and of V . One checks that the isomorphism of (i) is induced by the chain level
isomorphism

φ : HomA(Pi ⊗ U ⊗ V,W )
∼−→ HomA(Pi ⊗ U,W ⊗ V #)

given by φ(f)(x⊗ u) =
∑

j f(x⊗ u⊗ vj)⊗ v∗j , where x ∈ Pi, u ∈ U , and{vj}, {v∗j } are

dual bases for V . Similarly one checks that the isomorphism of (ii) is induced by the
chain level isomorphism

ψ : HomA(U ⊗ V ⊗ Pi,W )
∼−→ HomA(V ⊗ Pi, U# ⊗W )

given by ψ(f)(v ⊗ x) =
∑

j u
∗
j ⊗ f(uj ⊗ v ⊗ x), where v ∈ V , x ∈ Pi, and {uj}, {u∗j} are

dual bases for U . �

Lemma 3.4. Let M be an A-module. Then

V c
A(M↓R↑A) = V c

A(M).

Proof. By Lemma 3.3(i), there is an isomorphism of H∗(A, k)-modules,

(3.5) Ext∗A(M ⊗ Sχ,M ⊗ Sχ) ' Ext∗A(M,M ⊗ Sχ ⊗ S#
χ ) ' Ext∗A(M,M),

with the action of H∗(A, k) given by tensoring on the right (by M ⊗ Sχ, respectively,
by M) followed by Yoneda composition. The isomorphism (3.5) implies that V c

A(M) =
V c
A(M ⊗ Sχ) for each χ ∈ IrrG. Applying Lemma 3.2(i) and Proposition 2.4(i), we thus

have V c
A(M↓R↑A) = ∪χ∈IrrGV

c
A(M ⊗ Sχ) = V c

A(M). �

Since VR(M↓R) = VA(M↓R↑A) by definition, Lemma 3.4 immediately implies the
following.

Corollary 3.6. Let M be an A-module. Then

VR(M↓R) = VA(M).

Theorem 3.7. Let M be an A-module. Then

V c
A(M) = V c

A(M#).

Proof. By Lemma 3.3, there are isomorphisms of H∗(A, k)-modules: Ext∗A(M#, k) '
Ext∗A(k,M##) ' Ext∗A(k,M) and, hence, V c

A(k,M) = V c
A(M#, k).

Now letM be anyA-module, andN = M↓R↑A. By Proposition 2.4(iv) and Lemma 3.2(i),

V c
A(N) =

⋃
χ∈IrrG

V c
A(Sχ, N) =

⋃
χ∈IrrG

V c
A(k,N ⊗ S#

χ ) = V c
A(k,N),

since N ⊗ S#
χ ' N for all χ ∈ IrrG (as N ' ⊕χ∈IrrGM ⊗ Sχ). Similarly we find that

V c
A(N) = V c

A(N, k). It follows, from the previous observation, that V c
A(N) = V c

A(k,N) =
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V c
A(N#, k). By Lemma 3.2(ii), there is an isomorphism N# ⊗ S#

χ ' N# for each

χ ∈ IrrG, and so by a similar argument to the above, we have V c
A(N#) = V c

A(N#, k).

Thus we have shown that V c
A(N) = V c

A(N#).
By the above observations and Lemmas 3.2(ii) and 3.4, we now have

V c
A(M) = V c

A(M↓R↑A) = V c
A((M↓R↑A)#)

= V c
A

 ⊕
χ∈IrrG

(M# ⊗ Sχ)


= V c

A(M#↓R↑A) = V c
A(M#).

�

4. Tensor product property

In this section, we prove that for a quantum elementary abelian group A, the variety
of a tensor product of A-modules is the intersection of their varieties, as stated in
Theorem 1.1. First, in Corollary 4.2, we fix the proof of Proposition 4.3(vi) from [22],
establishing the inclusion V c

A(M ⊗ N) ⊂ V c
A(M) ∩ V c

A(N). Since the proof is entirely
cohomological and applies more generally than for a quantum elementary abelian group,
we stay with the notation V c

A for this part of the proof. The inclusion V c
A(M ⊗ N) ⊂

V c
A(M) is a formal consequence of the definition of the cohomological support variety and

the action of H∗(A, k) on Ext∗A(M,M). The inclusion for the second factor, V c
A(M⊗N) ⊂

V c
A(N), requires more careful consideration since the tensor product is not symmetric.

Our approach is based on Theorem 3.7 stating that V c
A(M) = V c

A(M#) when A is a
quantum elementary abelian group.

The proof of the opposite inclusion VA(M) ∩ VA(N) ⊂ VA(M ⊗ N) uses both the
cohomological and the non-cohomological description of the variety. We observe that
if A is a quantum elementary abelian group, then the tensor product A ⊗ A is again a
quantum elementary abelian group, and we check in Lemma 4.6 that the rank variety
behaves well with respect to restriction along the map induced by the coproduct A →
A⊗A. Using the naturality of the isomorphism between rank and support varieties with
respect to the coproduct as described in (4.5), we deduce the “restriction” property for
the cohomological support varieties V c

A(M). The rest of the proof goes via standard
arguments using the Künneth formula, and employs only the cohomological support.

4.1. The inclusion V c
A(M ⊗N) ⊂ V c

A(M) ∩ V c
A(N). Similarly to Lemma 3.3, the next

two results only require A to be a finite dimensional Hopf algebra for which the coho-
mological support varieties are defined (for example, it suffices to assume that H∗(A, k)
is finitely generated), so we state them in this greater generality.

Recall that we define the action of H∗(A, k) on Ext∗A(M,M) via tensoring an extension
with M on the right followed by Yoneda composition, and then define the varieties
V c
A(M) using that action. In the following theorem we verify that defining the action by
M⊗− followed by Yoneda composition will lead to the same result under the assumption
that V c

A(M) = V c
A(M#).
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Theorem 4.1. Let A be a finite dimensional Hopf algebra for which the cohomological
support varieties are defined and the two notions of dual module (one using the antipode S
and the other using its inverse S−1) coincide. Let M be an A-module for which V c

A(M) =

V c
A(M#). Then the closed subvariety of Proj H∗(A, k), defined by the annihilator ideal of

the action of H∗(A, k) on Ext∗A(M,M) given by M ⊗− followed by Yoneda composition,
coincides with V c

A(M).

Proof. By Lemma 3.3, the action of H∗(A, k) on Ext∗A(M,M) given by M ⊗− followed
by Yoneda composition corresponds to that on Ext∗A(k,M# ⊗ M) given by Yoneda
composition, under the isomorphism Ext∗A(M,M) ' Ext∗A(k,M# ⊗ M). There is a
further isomorphism Ext∗A(k,M# ⊗ M) ' Ext∗A(k,M# ⊗ M##) ' Ext∗A(M#,M#),
under which the action of H∗(A, k) by Yoneda composition on the former corresponds
to that given on the latter by − ⊗M# followed by Yoneda composition. The variety
V c
A(M#) is defined by the annihilator of this action, and since V c

A(M) = V c
A(M#), the

variety V c
A(M) is defined by the annihilator of the first action given above. �

Corollary 4.2. Let A be as in Theorem 4.1. If V c
A(M) = V c

A(M#) for all A-modules
M , then

V c
A(M ⊗N) ⊂ V c

A(M) ∩ V c
A(N)

for all A-modules M,N .

Proof. Since dualizing reverses the order of tensor product,

V c
A(M ⊗N) = V c

A((M ⊗N)#) = V c
A(N# ⊗M#).

By the definition of support variety, V c
A(M⊗N) ⊂ V c

A(M) and V c
A(N#⊗M#) ⊂ V c

A(N#),

and under our hypothesis, V c
A(N#) = V c

A(N). �

Now one inclusion in the tensor product theorem in the special case of a quantum
elementary abelian group is an immediate consequence of Theorem 3.7 and Corollary 4.2.

Corollary 4.3. Let A be a quantum elementary abelian group, and let M , N be two
A-modules. Then V c

A(M ⊗N) ⊂ V c
A(M) ∩ V c

A(N).

4.2. The equality. For the rest of the paper, A again denotes a quantum elementary
abelian group. We choose the following ordered generating set for A⊗A:

X1 ⊗ 1, 1⊗X1, X2 ⊗ 1, 1⊗X2, . . . , Xn ⊗ 1, 1⊗Xn,

g1 ⊗ 1, 1⊗ g1, g2 ⊗ 1, 1⊗ g2, . . . , gn ⊗ 1, 1⊗ gn.
Under this choice, letting τλ(t) ∈ A as defined in Section 2, we find that in A⊗A,

τ(λ1,λ1,...,λn,λn)(t)

= λ1X1⊗1 + λ1g1⊗X1 + λ2X2g1⊗g1 + λ2g1g2⊗X2g1 + · · ·
+λnXng1 · · · gn−1⊗g1 · · · gn−1 + λng1 · · · gn⊗Xng1 · · · gn−1

= ∆(τ(λ1,...,λn)(t)).

Accordingly we define a map on rank varieties, ∆r : VA → VA⊗A, by

∆r[λ1 : λ2 : · · · : λn] = [λ1 : λ1 : λ2 : λ2 : · · · : λn : λn].
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We denote the map on cohomology induced by the coproduct ∆ : A→ A⊗A by

∆∗ : H∗(A, k)⊗H∗(A, k) ' H∗(A⊗A, k)→ H∗(A, k)

(where the first isomorphism is given by the Künneth theorem), and the corresponding
map on support varieties by

∆∗ : V c
A → V c

A⊗A ' V c
A × V c

A.

This map arises from the cup product on the graded commutative algebra H∗(A, k), and
so is the diagonal map.

Lemma 4.4. The following diagram commutes:

(4.5)

VA
∆r
//

ψA
��

VA⊗A

ψA⊗A
��

V c
A

∆∗ // V c
A⊗A

Proof. This is an immediate consequence of the definitions of the diagonal maps ∆∗ and
of ∆r. (One must order the basis of H2(A⊗A, k) in accordance with the ordering of the
generating set for A⊗A used in the definition of ∆r.) �

Lemma 4.6. Let M be an A ⊗ A-module, considered to be an A-module via ∆ : A →
A⊗A. Then

(i) (∆r)−1VA⊗A(M) = VA(M).
(ii) (∆∗)

−1V c
A⊗A(M) = V c

A(M).

Proof. (i) This follows from the definitions since

τ(λ1,λ1,...,λm,λm)(t) = ∆(τ(λ1,...,λm)(t)).

Thus M↓A⊗Ak〈τ(λ1,λ1,...,λm,λm)(t)〉
is projective if, and only if, M↓Ak〈τ(λ1,...,λm)(t)〉

is projective.

(ii) This follows from (i) and Lemma 4.4, since ψA and ψA⊗A are homeomorphisms.
�

The following result is a straightforward consequence of the Künneth Theorem, valid
for any finite dimensional Hopf algebra A satisfying the hypothesis of Theorem 4.1, that
is the varieties of a module and of its dual are the same.

Lemma 4.7. Let M,N be A-modules. Then

Spec H∗(A, k)/IA(M)× Spec H∗(A, k)/IA(N) ' Spec H∗(A⊗A, k)/IA⊗A(M ⊗N)

Proof. The following diagram induces isomorphisms on varieties, as we explain below.

Ext∗A(k, k)⊗ Ext∗A(k, k)
(M⊗−)⊗(−⊗N) //

'
��

Ext∗A(M,M)⊗ Ext∗A(N,N)

'
��

Ext∗A⊗A(k, k)
M⊗k⊗− ..

−⊗M⊗k
// Ext∗A⊗A(M ⊗ k,M ⊗ k)

−⊗k⊗N // Ext∗A⊗A(M ⊗N,M ⊗N)
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The vertical maps are given by the Künneth Theorem. The variety V c
A(M) × V c

A(N)
is defined by the kernel of the top horizontal map, since M ⊗ − gives rise to the same
variety as −⊗M by Theorem 4.1. The variety V c

A⊗A(M ⊗N) is defined by the kernel of
the bottom horizontal map. The middle horizontal map is part of a commuting diagram
together with the top horizontal map, by definition of the Künneth isomorphisms: These
are simply different ways of viewing the same tensor product of complexes, since k is
the trivial module. Now M ⊗ k ⊗− gives rise to the same variety as −⊗M ⊗ k, again
by Theorem 4.1. Therefore the bottom horizontal map gives rise to the same variety as
the middle horizontal map. �

Proof of Theorem 1.1. It is more convenient to work with affine varieties for this proof.
Since H∗(A, k) is graded, connected, and generated in degree 2, the ideal IA(M) for any
module M is homogeneous, and the field k is algebraically closed, we have

(4.8) V c
A(M) = [Spec H∗(A, k)/IA(M)− {0}] /k∗

where {0} corresponds to the irrelevant ideal H>0(A, k). Hence, it suffices to show that
Spec H∗(A, k)/IA(M ⊗N) = Spec H∗(A, k)/IA(M) ∩ Spec H∗(A, k)/IA(N).

Recall that the map ∆∗ : H∗(A, k) ⊗ H∗(A, k) → H∗(A, k) induces the diagonal map
on Spec. Hence,

∆−1
∗ (Spec H∗(A, k)/IA(M)× Spec H∗(A, k)/IA(N))

= Spec H∗(A, k)/IA(M) ∩ Spec H∗(A, k)/IA(N).

By Lemma 4.6(ii) (which applies to affine varieties thanks to the observation (4.8)),

Spec H∗(A, k)/IA(M ⊗N) = (∆∗)
−1(Spec H∗(A⊗A, k)/IA⊗A(M ⊗N)).

By Lemma 4.7, and a reordering of the basis of H2(A⊗A, k), the latter equals

∆−1
∗ (Spec H∗(A, k)/IA(M)× Spec H∗(A, k)/IA(N)).

Combining with the first equation, we conclude

Spec H∗(A, k)/IA(M ⊗N) = Spec H∗(A, k)/IA(M) ∩ Spec H∗(A, k)/IA(N).

Passing to projective varieties by (4.8), we get the desired property:

V c
A(M ⊗N) = V c

A(M) ∩ V c
A(N).

�

Remark 4.9. One consequence of the theorem involves modules of the form V (λ), defined
in [22, §2] for each λ ∈ Pn−1: It is shown there that the variety of V (λ) is simply {λ}.
Let M be an A-module. Then λ ∈ VA(M) if and only if V (λ)⊗M is not projective. To
see this, note that by Theorem 1.1, since VA(V (λ)) = {λ}, we have λ ∈ VA(M) if and
only if

VA(V (λ)⊗M) = VA(V (λ)) ∩ VA(M) = {λ} 6= ∅,

which happens if and only if V (λ)⊗M is not projective.
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5. Classification of thick tensor ideals of stmodA

The proof of the classification is based on the following general strategy (which can be
traced to [16], see also [21]) used recently in [11]. Let A be any finite dimensional Hopf
algebra such that finitely generated A-modules have a support variety theory, denoted
VA(M), satisfying the usual properties (such as in [22, Prop. 4.3]) plus two additional
hypotheses:

(i) (Realization) For every closed subset V in VA(k), there exists M ∈ mod A such
that VA(M) = V .

(ii) (Thick subcategory lemma) LetM , N be finitely generatedA-modules. If VA(M) ⊂
VA(N), then M ∈ Thick⊗A(N).

In this case, the classification theorem holds. We implement this strategy in the proof
of Theorem 1.2. The realization property for our theory of support varieties holds by
[22, Cor. 4.5], and the “Thick subcategory lemma” is proved below as Proposition 5.4.

The following lemma is straightforward from the definitions (see also [7, Lemma 2.2]).

Lemma 5.1. Let F : A → B be an exact functor between small triangulated cat-
egories A and B, and let X be an object in A. Then for any Y ∈ ThickA(X),
F(Y ) ∈ ThickB(F(X)).

Lemma 5.2. Let M ∈ stmodA. Then Thick⊗A(M) = Thick⊗A(M↓R ↑A).

Proof. By Lemma 3.2, M↓R↑A ' ⊕χ∈IrrG(M ⊗ Sχ). Since M is a direct summand of

M↓R↑A (corresponding to the trivial character of G), M ∈ Thick⊗A(M↓R↑A). Conversely,

since M ⊗ Sχ ∈ Thick⊗A(M) for each χ ∈ IrrG, we find that M↓R↑A ∈ Thick⊗A(M).

Hence, Thick⊗A(M) = Thick⊗A(M↓R ↑A). �

The following proposition is a version of the “thick subcategory lemma” for VR(M).
It is proven in [11] but the definition of a variety used there is different from ours. So
the proof is based on identifying the variety of [11] with VR(M) as defined in this paper.

Proposition 5.3. Let M , N be R-modules. If VR(M) ⊂ VR(N), then

M ∈ ThickR(N).

Proof. The varieties in [11] are the same as we have defined up to projectivization: Let
M be an R-module, and identify it with a chain complex concentrated in degree 0. In
[11], VR(M) is defined to be the support, in Spec k[θ], of Ext∗R(k,M), where k[θ] is the
subalgebra of Ext∗R(k, k) generated in degree 2 by the usual generators. The action
of Ext∗R(k, k) is the Yoneda action. This is the same as the definition in [22], where
the support variety V c

R(M) (with R = Λ in that paper) is the closed subset of V c
R(k)

determined by the annihilator of Ext∗R(k,M) (see [22, Definition 2, p. 587]). Since the
nilpotent generators (in degree 1) are contained in any prime ideal, this is equivalent to
[11, Definition 4.3]. See also the remark on equivalent definitions, [22, p. 587].

The result now follows from [11, Theorem 5.6]. �

Proposition 5.4. Let M,N be A-modules. If VA(M) ⊂ VA(N), then

M ∈ Thick⊗A(N).
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Proof. By Corollary 3.6, the inclusion VA(M) ⊂ VA(N) implies VR(M↓R) ⊂ VR(N↓R).
Therefore, M↓R ∈ ThickR(N↓R) by Proposition 5.3. Since induction (−)↑A :
stmodR → stmodA is exact, we conclude that M↓R↑A ∈ ThickA(N↓R↑A) by
Lemma 5.1. By Lemma 3.2, M is a direct summand of M↓R↑A, and so M ∈
ThickA(M↓R↑A). Finally, ThickA(N↓R↑A) ⊂ Thick⊗A(N↓R↑A) = Thick⊗A(N) by

Lemma 5.2. Putting these together, we conclude that M ∈ Thick⊗A(N). �

Recall that a subset V of a topological space X is called specialization closed if for
any W ⊂ V , the closure of W belongs to V . Equivalently, a specialization closed subset
is a union of closed subsets.

Theorem 5.5. There is an inclusion-preserving one-to-one correspondence{
thick tensor ideals C

in stmodA

}
←→

{
specialization closed subsets V

of VA(k) = Pn−1/G

}
given by maps φ, ψ where

φ(C) =
⋃
M∈C

VA(M) and ψ(V ) = {M : VA(M) ⊂ V }.

Proof. First note that these maps have images as expected: If C is a thick tensor ideal,
then by definition φ(C) is specialization closed, since VA(M) is closed for eachM . If V is a
specialization closed subset, then by the properties of support varieties (Proposition 2.4),
ψ(V ) is a thick tensor ideal.

We wish to show that φ, ψ are inverse maps. We first show that φ ◦ ψ(V ) = V . By
definition,

φ ◦ ψ(V ) =
⋃

M∈ψ(V )

VA(M),

where the union is taken over all M for which VA(M) ⊂ V . Hence, φ ◦ ψ(V ) ⊂ V . For
the other containment, note that any point x in V is contained in a closed set in V ,
which is realized as the variety of some module M (see [22, Corollary 4.5]). Thus, M is
in ψ(V ) by definition, and, therefore, x ∈ φ ◦ ψ(V ).

It remains to establish the equality ψ◦φ(C) = C. The easy part of this is C ⊂ ψ◦φ(C),
which follows from the definitions. So we only need to show the inclusion

ψ ◦ φ(C) ⊂ C

for any thick tensor ideal C in stmodA. LetN ∈ ψ◦φ(C), that is, VA(N) ⊂
⋃
M∈C VA(M).

Since H∗(A, k) is Noetherian, there exist finitely many Mi ∈ C such that

VA(N) ⊂
n⋃
i=1

VA(Mi)

(see [21, Lemma 1.3]). Hence, VA(N) ⊂ VA(M1 ⊕M2 ⊕ · · · ⊕Mn). By Proposition 5.4,
N ∈ Thick⊗A(M1 ⊕M2 ⊕ . . . ⊕Mn). Since M1 ⊕M2 ⊕ · · · ⊕Mn ∈ C and C is a thick
tensor ideal, this implies N ∈ C. �
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Remark 5.6. As an immediate corollary to the classification, there is a one-to-one cor-
respondence

{ thick tensor ideals in stmodA } ←→ { thick subcategories in stmodR }.

We briefly discuss the situation for the quantum complete intersection algebra Rq. We
note that Rq is a Frobenius algebra, which follows from the fact that RqoG ' A (see also
[12, Cor. 5.8]). We consider the stable module category stmodRq. For an Rq-module
M , and g ∈ G, denote by gM the Rq-module which is the “twist” of M by g: gM = M
as a vector space, and the action is given by Yi(m) := (g−1 ·Yi)m = χi(g

−1)Yim. (Recall
that χi(gj) = qδij .) Sending M to gM induces an action of G on stmodRq. We say that
a subcategory C of stmodRq is G-stable if M ∈ C implies gM ∈ C for all g ∈ G.

For an Rq-module M , we define

VRq(M) := VA(M↑A).

Corollary 5.7. There is an inclusion-preserving one-to-one correspondence{
G-stable thick subcategories

in stmodRq

}
←→

{
specialization closed subsets

of Pn−1/G

}
induced by the maps φ, ψ defined as in Theorem 5.5 with VA replaced by VRq .

Proof. The proof is very similar to the proof of Theorem 5.5. We discuss two points
where differences occur.

First, for any Rq-module M , we have M↑A ' (gM)↑A, and, therefore, VRq(M) =

VRq(
gM) for any g ∈ G. The definition of ψ now implies that for V ⊂ Pn−1/G a subset

closed under specialization, ψ(V ) is a G-stable thick subcategory of stmodRq.
As in the proof of Theorem 5.5, it now suffices to show that for any G-stable thick

subcategory C ⊂ stmodRq, we have ψ(φ(C)) ⊂ C. Let M be an Rq-module such that
VRq(M) ⊂ φ(C). By the Noetherian argument as in the proof of Theorem 5.5 and the def-

inition of the variety VRq(−), there is a module N ∈ C such that VA(M↑A) ⊂ VA(N↑A),

which implies that M↑A ∈ Thick⊗A(N↑A) by Proposition 5.4. Since the Sχ’s are all

simple A-modules up to isomorphism, we have Thick⊗A(N↑A) = ThickA(⊕χ(N↑A⊗Sχ)).

This implies that M↑A↓Rq ∈ ThickRq(⊕χ(N↑A ⊗Sχ)↓Rq), however (N↑A ⊗Sχ)↓Rq '
⊕g∈GgN . Since N ∈ C and C is G-stable, we conclude that M↑A↓Rq ∈ C. Therefore,

M ∈ C since M is a direct summand of M↑A↓Rq . �

Remark 5.8. Do there exist non-G-stable thick subcategories in stmodRq? Or do N ,
gN always generate the same thick subcategory of stmodRq, for any N? In general, one
does not expect this, however in this case, N and gN have the same variety, and in case
q = 1, it is true. This is related to a question that Benson and Green asked in [6]: The
parameters were a bit different, but in our case their question would translate as follows.
Do there exist modules M , N , neither of which is free on restriction to the subalgebra
generated by Y1, and for which ExtnRq(M,N) = 0 for all n > 0?
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