CLIFFORD CORRESPONDENCE FOR FINITE DIMENSIONAL
HOPF ALGEBRAS

S. J. WITHERSPOON

ABSTRACT. Let B#,H be a crossed product algebra over an algebraically closed
field, with H a finite dimensional Hopf algebra. We give an explicit equivalence
between the category of finite dimensional B#, H-modules whose restriction to B is
a direct sum of copies of a stable irreducible B-module, and the category of modules
for a twisted product of H with the field. This describes all finite dimensional
irreducible B#, H-modules containing a stable irreducible B-submodule, and thus
generalizes the classical stable Clifford correspondence for groups. In case H is
cocommutative, we extend this correspondence to the nonstable case.

1. INTRODUCTION

One of the main results of classical Clifford theory is the Clifford correspondence,
which explicitly describes a relationship between modules for a group and modules for
a normal subgroup [4]. The Clifford correspondence has been generalized in various
ways in [1, 5, 6, 8, 9, 12, 13]. In particular, Rieffel gives in [9] a generalization of the
Clifford correspondence to some classes of ring extensions. When H is a Hopf algebra
with bijective antipode, Schneider in [12] and van Oystaeyen and Zhang in [13] give
a stable Clifford correspondence for a faithfully flat H-Galois extension (equivalently,
an H-Galois extension with total integral). In this note, we prove a more explicit
version of the stable Clifford correspondence, reminiscent of Clifford’s original result,
under stronger hypotheses. Further application of Schneider’s results [12] shows that
our formula also holds under his more general hypotheses. We then use results of
Schneider in [10] to further extend this Clifford correspondence to the nonstable case
when H is cocommutative.

Specifically, let k be an algebraically closed field, H a finite dimensional Hopf
algebra over k, and A = B#,H a crossed product algebra of a k-algebra B with H.
In particular if A is a finite dimensional Hopf algebra with a normal Hopf subalgebra,
B, then A is such a crossed product with H = A/ABT [11]. Let T be a finite
dimensional irreducible left B-module, and E = Ends(A ®p T)?, where A @5 T is
the induced A-module.
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First suppose T is A-stable [10], as defined in Section 2. Then E is isomorphic to a
twisted product k#,H = k,[H], analogous to the twisted group algebra appearing in
the classical Clifford correspondence. In Theorem 2.2 we give the explicit structure
of an A-module to the vector space T ®, U for any E-module U; we also point
out that this structure may be shown to hold more generally using our ideas and
work of Schneider [12]. In Theorem 3.1, we show that our construction provides an
equivalence between the category of finite dimensional F-modules and the category
of finite dimensional A-modules whose restriction to B is isomorphic to a direct sum
of copies of T'. Alternatively, this theorem follows from [12, Remark 5.8 (2)] or [13,
Theorem 5.4]. In Lemma 3.2, we show that if V' is a finite dimensional irreducible
A-module whose restriction to B contains an irreducible A-stable submodule 7', then
V' is semisimple on restriction to B; this generalizes a result of Clifford in the stable
case. In Corollary 3.3 we show that every finite dimensional irreducible A-module
containing 7" as a B-submodule has the form 7" ®, U for some irreducible E-module
U; this generalizes the stable Clifford correspondence for groups.

We next consider the general case in which T is not necessarily A-stable, and
we assume that H is cocommutative to obtain a Clifford correspondence. In this
case H is also pointed as k is algebraically closed, and so the stabilizer Hy of T
in H (defined in Section 3) is a Hopf subalgebra of H [10]. Letting S = B#,Hg,
and using the results of [10] and Section 2, we obtain in Theorem 3.4 a one-to-
one correspondence between finite dimensional irreducible S-modules containing 7'
as a B-submodule and finite dimensional irreducible A-modules containing T as a
B-submodule. This correspondence is given by induction of modules from S to A.
Further combining this correspondence with the results of Section 2, we obtain in
Corollary 3.5 a generalization of the full Clifford correspondence for groups in the
cocommutative case, given as a one-to-one correspondence of irreducible modules.

Throughout, all our modules (and module categories) will be left and finite dimen-
sional. The field £ is always assumed to be algebraically closed, and ® = ®y.

The author would like to thank S. Montgomery for helpful conversations, and H.-J.
Schneider for suggested improvements to this note.

2. CONSTRUCTION OF A-MODULES FROM A STABLE IRREDUCIBLE B-MODULE

Let H be a finite dimensional Hopf algebra over k with comultiplication A : H —
H ® H, counit ¢ : H — k, and antipode S : H — H. We will use the summation
notation A(h) = > hy ® hy for the coproduct (7, 1.4.2]. Let A = B#,H be a crossed
product algebra of a k-algebra B with H. That is, there is a convolution-invertible
k-linear map 0 : H ® H — B, and a k-linear map H ® B — B denoted h® b+ h-b,
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satisfying
-1
h-(£-b) = o(hy, ly)(haly - b)o " (hs, l3),

>, )
> [ o(ty,my)o(hy, loma) = Y o(hy. fr)o(hals,m),
o(h,1) = o(1,h) = e(h)l,

he(be)=> (hy-b)(ha-c) , h-1 = eh)l, 1:b = b,

for all A,¢,m € H and b,c € B. In particular, H measures B and o is a 2-cocycle.
The crossed product algebra, denoted B#,H, is the vector space B ® H, with the
element b ® h denoted b#h, and multiplication

(b#h) (c#0) = b(ha - ¢)o(ha, 1)#hsl,

forall b,c € B and h, ¢ € H. This is an associative algebra with identity, and is a right
H-comodule algebra via b#h +— > (b#h1)®hs [7, §7]. We will also use the summation
notation for comodules, > ap ® a; = > (b#h1) ® hy where a = b#h € B#,H

Let T" be a finite dimensional irreducible left B-module with p : B — End (7))
expressing the action of B on T. Assume that T is A-stable, that is, there is a left
B-linear and right H-colinear isomorphism

@A@BT;T(@H,

where A ®p T is the A-module induced from 7" (with A acting as multiplication on
the left factor) [10, p. 207]. Here the B-module and H-comodule structures of AQpT
and T'® H are given by

bla®pt) :=ba®pt and a®Btr—>Zao®Bt®a1,
b(t®@h) =0t®@h and t®h—t® A(h),

foralla € A, b€ B, h € H, and t € T. This generalizes the standard definition of
a stable module in group representation theory, in which a module is stable if it is
isomorphic to all its conjugate modules. We may assume that &(1 @pt) =t ® 1 for
all t € T [10, p. 208].

We point out that in case the measuring of B by H is trivial (that is h-b = e(h)b
for all h € H and b € B), so that A = B,[H] is a twisted product, then every
B-module is A-stable. The map ® is given simply by ®((b#h) @5 t) = p(b)(t) ® h,
which is well-defined as b#1 commutes with 1#h in this case. In general ® will be
more complicated.

Let

E = Ends(A®p T)” and E' := Endy(T)”

Then E = Homp(T,A®p T) [2, Proposition 2.8.3], and by Schur’s Lemma, £’ = k.
By [10, Theorem 3.6], £ =2 E’ C E is an H-crossed product, with right H-colinear
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and convolution invertible map J : H — F defined by
Jh)(1®pt) :=V(t®h),

where U = &1 : T ® H = A®pT. Note that under our hypotheses, J is bijective.
Also note that any measuring of the field £ by H is necessarily trivial, so E is in fact
isomorphic to a twisted product k,[H| = k#.,H. By [7, 7.25], a : H® H — k is
given by

(2.1) a(h,€) = J(h)J(t:) T (haty)

for all h,¢ € H, where J~! is the convolution inverse of J (denoted J' in [10]).
Let v: H — A = B#,H be given by (h) = 1#h. Then v has convolution inverse
vt given by v71(h) = > 07 (Sha, h3)#Shy [7, Proposition 7.2.7]. Let

q:=(id®e)od: ArpT — T.
We claim that

(2.2) TR @pt) = 7 (h) ®s q(v(he) @5 1).

This may be checked directly by calculations similar to that in [10, pp. 211 212], or
by using the formula J='(h)(1®pt) = > 7i(h) @p q(l;(h) @), where 7;(h), {;(h) are
determined by the equation 1 ® h = > r;(h)l;(h)o ® ¢;(h); in A® H [10, pp. 209
and 211]. Here > 47 (h1)y(h2)o @ v(ha)1 = >y Hh1)y(h2) @ hs = 1 @ h, and so
>ori(h) @ Li(h) = 32 () @ v(ha).

Let §: H — Endg(T) be defined by

B(h)(t) == q(v(h) @p ).

In the lemma below, we give some formulas involving the maps 3, J, and J~!. Note
that part (ii) of the lemma generalizes the fact that in case H is a group algebra kG,
for g € G, B(g) is an isomorphism between 7" and its conjugate module g - 7T'.

Lemma 2.1. Let h,/ € H,be B, andt € T.

(i) JTHh) (1 ®p 1) = Zv’l(hl) ®p B(hs)(t) and
L@p B(h)(1) = 32 J 7 (ha)(v(h1) ®p 1).

(i) B(h)p(b) = >_ p(ha - b)B(ha).

(lll) J( ) ( ) Z (hl,gl)J(hggg) and J~ (Z) ( ) ZCV (hg,gg)g]_l(hlgl).
(iv) B(R)B(E) = 3 o™ (hs, 3)p(0(ha, £1))B(hat2).

(v) J(Sh) = 3" alhe, Shs)J = (h).

Proof. (i) The first equation follows from the definition of 8 and formula (2.2) for
J~1. The second follows from the first, as J~!(hg) is A-linear, and v and ! are
convolution inverses.
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(i) By part (i),

1®p Bh)pd)(t) = Y J ' (ha)(v(h1) ®5 p(b)(t))
— ZJ ((1#h1)(b#1) @p t)
- ZJ b)#ha) ®@p 1)

- Z((hl-b)# )J H(hs)(y(he) @5 1)
= > ((h-b)#1) (1 @5 B(ha)(t))
= Y 1®@pp(h-b)B(ha)(1).

Therefore B(h)p(b) = > p(hy - b)B(hs).
(iii) Convolve both sides of the defining relation (2.1) for a with J(h{¢) to obtain

the first equation. For the second equation, convolve both sides of (2.1) with J~1(h),
J7H(0), and a7t (h,0).
(iv) By part (i),

Lop 8RB = D I (ha)(v(ln) @5 B()(1))
= Y y(h)J ()1 @5 BL)(1L))
= D ()T he) (I () (1 (0) ®p 1))
= > )y () () (k) (1 @5 1),

as J7!(hy) and J7!({;) are A-maps and the multiplication in F is opposite that of
endomorphisms. Now,

Y)Y (6) = (1) (1#0) =Y o (b, b)F#hatls =Y (a(hr, &) #1)y(hals).
Using this and parts (iii) and (i), the above expression becomes
L®p B(h)B()(t) = Z (@ (hay La)a (hy, €)#1) T (hals) (y(halz) @p 1)
= Y (a7 (s ts)o(he, (1) #1) (1 @5 B(hala) (1))
= Y 1®pa(hs, ls)p(o(h, (1)) B(halo)(t).

Therefore B(R)A(E) = 3 o~ (hs, £s)p(o(hr, (1)) Bl hals).
(v) First note that J(1) is the identity map on AQp T as ®(1 ®pt) =t® 1 for all
t € T. By part (iii) then, we have

> J(h1)J(Sha) = Y a(hy, Shy)J(haShs)
= Y a(hy, Shy) -idas,r -
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By convolving with J=!(h), we obtain J(Sh) = > a(hy, Sh3)J = (hy). O

Next we will use these relations to give T®U the structure of an A-module whenever
U is an E-module. On the other hand, if V' is an A-module, we will give the obvious
E-module structure to the vector space Homg(7T, V) = Homa(A @5 T, V).

Theorem 2.2. Let T be an irreducible A-stable B-module and £ = End (A®pT)P
(i) Let U be a left E-module. Then T @ U is an A-module where

a-(t®u) ::Zq(a0®3t)®J(a1)-u

Further, the restriction of T ® U to B is isomorphic to a direct sum of copies
of T.

(ii) Let V' be an A-module. Then the space Homp(T,V) = Homy(A @ T, V) is
a left E-module where f-g:=go f.

Proof. (i) First we note that, for a = b#h, the definitions of # and p, and the fact
that ¢ is B-linear imply

ZQ(GO ®pt) @ J(ar) - u= Zp(b)ﬁ(hl)(t) ® J(hg) - u
We will use this formula to show that
(ad) - (t@u)=a-(d - (t@u))

forall a,a’ € A, t € T, and u € U. Letting a = b#h and a’ = c#{, the left hand side
is

(aa) - (t@u) = Y (b(hy - c)o(ha, &r)#hsls) - (t @ u)
= Y p(b)p(ha - )p(o(ha, £1))B(hsla)(t) @ J(hals) - u
On the other hand, using Lemma 2.1 (ii), (iii), and (iv), a- (¢’ - (t ® u)) is equal to
> (b#h) - (p(c)B(E1) () ® J (L) - u)
b)B(h1)p(c)B(£1)(t) @ J(ha) - (J (L) - w)
)p(hy - €)B(h2) B(41)(t) @ (J (h3)J ({2)) - u
)p(ha - ) (ha, ls)p(o (ha, 1)) B(Rsls) (t) @ a(hs, £s)J (hels) - u
)n(

as a and a~! are convolution inverses with values in k. (As U is an E-module, we

have e - (f -u) = (ef) -u for all e, f € E,u € U, even though as endomorphisms,
e and f multiply in the opposite order.) Comparison of the two calculations shows
that (ad’) - (t @ u) =a- (a’ - (t ®@u)). It may be checked that 14 acts as the identity
on T'® U. Therefore this formula gives T'® U the structure of an A-module.
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Restricting T'® U to B, we have (b#1) - (t®@u) = p(b)B(1)t ® J(1) - u = p(b)t @ u.
Therefore the restricted module (T'® U) | g is isomorphic to T¢" where n = dimy, U.
(ii) This is clear given that multiplication in E is opposite that of the endomor-
phisms. O

We remark that results of Schneider [12] may be used to show that the formula in
part (i) of the theorem holds more generally (Schneider’s results are stated in terms of
right modules, but we translate here into left modules): Let H be a Hopf algebra with
bijective antipode, B C A a right faithfully flat H-Galois extension, T" an irreducible
A-stable B-module, E' = Endg(T)?, and other notation as in this section. As in
[12, Remark 5.8 (2)], the map T ®p E — A®p T given by t @ f — f(1 ®pt) is a
right E-module isomorphism. It may be checked that (id ®J) o ® is the inverse of
this map. It follows that T'®p U = (A®p T) @g U for all E-modules U. This may
be used to give T ®p U an A-module structure, via the standard A-module action
on (A®pT)®g U by multiplication on the left-most factor. The resulting A-module
structure on T ®p U is given by a formula precisely as in Theorem 2.2 (i).

3. THE CLIFFORD CORRESPONDENCE

In this section we give a stable Clifford correspondence in the general case, and a
nonstable Clifford correspondence in case H is cocommutative. We start with the
same assumptions and notation as in Section 2. In particular, 7" is a finite dimensional
irreducible A-stable B-module, and F = End (A ®p T).

Let F' be the functor defined as follows, from the category of finite dimensional
E-modules to the category of finite dimensional A-modules whose restriction to B is
isomorphic to a direct sum of copies of 7. If U is an E-module, let F(U) =T @ U
with A-module structure as in Theorem 2.2 (i). If f: U — V is an E-linear map,
let F'(f) = idr®f. Let G be the functor defined as follows, from the category of
finite dimensional A-modules whose restriction to B is isomorphic to a direct sum of
copies of T', to the category of finite dimensional E-modules. If V' is an A-module, let
G(V) = Homp(T,V) with E-module structure as in Theorem 2.2 (ii). If f: U — V
is an A-linear map, let G(f) = f. where f.(¢) = f o ¢ for any ¢ € Homp(T,U). In
the next theorem, we show that F and G provide a category equivalence.

Theorem 3.1. Let T be a finite dimensional irreducible A-stable B-module, and
E = Ends(A ®@p T). The category of finite dimensional E-modules is equivalent
to the category of finite dimensional A-modules whose restriction to B is isomorphic
to a direct sum of copies of T'. The equivalence is given by sending an E-module U
to T @ U, and an A-module V' to Hompg(T, V'), with module structures as given in
Theorem 2.2.

Proof. Let M be an A-module such that M | = 7" where M | g denotes the module
M restricted to B. Define 1y : T ® Homp(T, M) — M by ny(t @ ¢) = ¢(t). As
M | = T®" we have Homp (T, M) = k%™. Tt follows from this and the definition of
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Ny that ny, is surjective. Therefore ny, is bijective, as these modules have the same
k-dimension.

We show that 7, is A-linear. The isomorphism Hompg(7, M) = Homa(A®RpT, M)
allows us to identify ¢ € Homp (7, M) with ¢ € Homu(A®pT, M) by ¢(1@5t) = ¢(t)
for all t € T'. Then by Theorem 2.2 and Lemma 2.1 (i), we have

a (b#R) - (@ @) = Y mar (p )(t) @ J(hs) - @)
_ Z(J(hg)-¢)( @p p(b)B(h1)(t))
= Y ¢oJ(hy) (1®p p(b)B(h1)(t))

= Y o ((b#1)J( (1 ®p B(h1)(t)))
= 3 6 ((#1) I (hs) (I (he) (4 () @ 1))
— Yo (1) J(hs))(v(h1)®3t))

= ¢((b#h) @pt)
= (b#h) - (1 ®@pt)
= (b#h) - nu(t @ ),

forallbe B,he H,t €T, and ¢ € Homy(A®@p T, M) = Hompg(T, M). Therefore
Ny is A-linear. We have already seen that 7, is bijective, and so for each M,
1 is an isomorphism of A-modules. Further, it is straightforward to check that
fony =nno FG(f) whenever f: M — N is A-linear.

Let U be an E-module. Define ny : U — Homg(T, T @ U) by ny(u)(t) =t ® u, for
all t € T and w € U. This defines a B-linear map ny(u) for each u € U, as B acts
trivially on the second factor U in T'® U. Identitying ny(u) € Homp(T, T ® U) with
nu(u) € Homy (A®pT, T®U) where ny (u)(1®pt) = ny(uw)(t), the map ny (u) becomes
A-linear. Clearly 7y is injective. As Homg(T, T ®@ U) = Homp(T,T%") = k®" where
dimy(U) = n, ny must be bijective.

We show that 7y is E-linear. As H is finite dimensional, S is bijective [7, Theorem
2.1.3]. Therefore Lemma 2.1 (v) and the surjectivity of J imply J~': H — E is also
surjective. So it suffices to show that (J7(h) - ny(u)) (1@pt) = ny(J7H(h)-u)(1®p1)
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forall h e H,t € T, and u € U. By Lemma 2.1 (i) and Theorem 2.2, we have
(J7HR) ()1 ®pt) = nu(u )(J_l(h)(l ®pt))
= ) nuu)(y H(h) @5 B(h)(1))
= > v Hh)nw(uw) (1 ®p Bha)(1))
R R USUED
= Z(a‘%sm, hs)#Shy) - (B(ha)(t) @ w)

= Y plo " (Shs, h4)B(Sha)B(hs) (1) ® J(Shy) - u
By Lemma 2.1 (iv), this becomes

> p(o M (Shs, he))a (Sha, ho)p(o (Shy, hr))B(Shshs) () @ J(Shy) - u
Now the factors involving o and ¢! cancel, giving
(TR o)A @pt) = > o™ (Sha, hs)B(Shsha)(t) ® J(Shy) - u
= Y a7 (Shy, hs)t ® J(Shy) - u
> a ! (Shy, hs)a(hy, Sha)t @ J 7 (hy) - u
by Lemma 2.1 (v). By [7, p. 109], we have >_ a™'(Shy, hs)a(hs, Shs) = €(hsy), so now
(J7'(h) o (u) (1ept) = t®@J '(h)-u
= qu(J7H(h) - u)(1®p1).
Therefore ny is E-linear. We have already seen that ny is bijective, and so for each

U, ny is an isomorphism of E-modules. Further, it is straightforward to check that
nyv o f=GF(f)ony whenever f:U — V is E-linear. 0

As pointed out at the end of Section 2, T @ U = (A®p T) @ U. Therefore our
Theorem 3.1 may alternatively be derived from [12, Remark 5.8 (2)] or [13, Theorem
5.4].

We next show that in fact any finite dimensional irreducible A-module containing
T as a B-submodule is isomorphic to a direct sum of copies of T as a B-module.
Thus we may apply the theorem to such an A-module to obtain the stable Clifford
correspondence.

Lemma 3.2. Let V be a finite dimensional irreducible A-module whose restriction

V'l to B contains an irreducible A-stable B-submodule T'. Then V | g is isomorphic
to a direct sum of copies of T'. In particular, V | g is semisimple.

Proof. Consider the map A®p T — V given by a@pt—a-t (asT CV,a-t eV
is defined for all @ € A,t € T'). This is a nonzero A-linear map, surjective as V is
irreducible. As T'is A-stable, (A®p T) |p= T ® H is isomorphic to a direct sum of
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copies of T', and in particular is a semisimple B-module. This and the Krull-Schmidt-
Azumaya Theorem now force V' | 5 to be semisimple and isomorphic to a direct sum
of copies of T" as well. O

This lemma generalizes a special case of the classical Clifford theory result that the
restriction of an irreducible module from a group to a normal subgroup is semisimple.
For a generalization in a different direction, see [10, Corollary 2.2].

The stable Clifford correspondence follows immediately from Theorem 3.1 and
Lemma 3.2.

Corollary 3.3 (Stable Clifford correspondence). Let T' be a finite dimensional irre-
ducible A-stable B-module, and E = Fnds(A ®p T)?. There is a one-to-one corre-
spondence between isomorphism classes of finite dimensional irreducible FE-modules
and finite dimensional irreducible A-modules containing T as a B-submodule. This
correspondence is given by sending an E-module U to T @y U, with module structure
as given in Theorem 2.2.

For the rest of this section we assume H is cocommutative. Note that as k is
algebraically closed, this implies H is pointed as well [7, p. 76], that is every simple
subcoalgebra of H is one dimensional. Let T be a finite dimensional irreducible
left B-module that is not necessarily A-stable. If C' C H is a subcoalgebra, let
A(C) == AN (A® ), where Ay : A — A® H is the right H-comodule map arising
from the crossed product A = B#,H. As in [10, p. 216], we say that C' stabilizes T’
if

TRC=2AC)®T
as left B-modules and right C-comodules. The stabilizer Hg of T in H is defined by

Hst = ZO,
C

the sum over all subcoalgebras C' C H such that C stabilizes T. By [10, Theorem
4.4], Hg stabilizes T and is a Hopf subalgebra of H. (In case H is not pointed, Hg;
is a subcoalgebra of H, but not necessarily a Hopf subalgebra.) Write ¢ also for the
restricted cocycle o|y,,omH,,, and let

S = A(Hst) = B#UHSt-

Then T is S-stable by definition, so Theorem 3.1 and Corollary 3.3 apply, with S in
place of A.

Theorem 3.4. Let H be cocommutative, A = B#,H, and T a finite dimensional
irreductble B-module. There is a one-lto-one correspondence between isomorphism
classes of finite dimensional irreducible S-modules containing T as a B-submodule,
and finite dimensional irreducible A-modules containing T as a B-submodule. This
correspondence is given by sending an S-module N to A ®g N.
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Proof. Let N be a finite dimensional irreducible S-module containing 7" as a B-
submodule. By Corollary 3.2, N |p is isomorphic to a direct sum of copies of T
By [10, Corollary 5.6 (4)], A ®s N is an irreducible A-module. As A ®s N contains
S ®s N 2 N as an S-submodule, and N |p contains T as a B-submodule, the
irreducible A-module A ®g N contains 1" as a B-submodule.

On the other hand, let M be a finite dimensional irreducible A-module containing
T as a B-submodule. Consider the S-linear map f : S ®p 1" — M |5 defined by
f(s@pt)=s-tforalse S, teT. Let N =Im(f), an S-submodule of M |g. As
T is S-stable, (S®pT) |p=T ® Hg is a direct sum of copies of T. In particular,
(S®pT) | is semisimple, and so its quotient N’ | g is also semisimple, and is a direct
sum of copies of T'. Let N be an irreducible S-submodule of N’. Then N |zC N’ |5
must be a direct sum of copies of 7.

We claim that M =2 A®g N. By [10, Corollary 5.6 (4)], A ®g N is an irreducible
A-module. Consider the nonzero A-linear map A®g N — M given by a @gn +— a-n
foralla € A, n € N. As M and A ®g N are both irreducible, this map is an
isomorphism. By [10, Theorem 5.4 (2) (a)], S®s N = N is isomorphic to the T-socle
of A®g N , that is of M. As N'|p is a direct sum of copies of T" as well, this forces
N = N’, and N is the unique irreducible S-submodule of M | g containing 7. U

We do not know if the correspondence in the theorem arises from a category equiv-
alence, as is true in the stable case (Theorem 3.1) and in case H is a group algebra
8, Theorem 1.3].

Letting ' = Endg(S®p T)%, note that F = End(A®pT)% as End (A®pT) =
Homp(T,A®pT) and S ®@p T is isomorphic to the T-socle of A ®p T' [10, Theorem
5.4 (1) (a)]. The next result follows immediately from Corollary 3.3 and Theorem
3.4.

Corollary 3.5 (Cocommutative Clifford correspondence). Let H be cocommuta-
tive, A = B#,H, and T a finite dimensional irreducible B-module. There is a
one-to-one correspondence between isomorphism classes of finite dimensional irre-
ducible E-modules, and finite dimensional irreducible A-modules containing T as a B-
submodule. This correspondence is given by sending an E-module U to A®gs (T ®U).

As any A-module contains some irreducible B-submodule, it follows from the corol-
lary that any finite dimensional irreducible A-module has the form A ®g (7' ® U) for
some irreducible B-module T" and irreducible E-module U. As E = k,[H] is a twisted
product, E-modules are equivalent to projective representations of H, which may be
studied by the methods of Boca in [3] as H is cocommutative.
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