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Abstract

We give conditions on a positive Hölder continuous function K(x) such that every C2 positive solution
u(x) of the conformal scalar curvature equation

∆u+K(x)u
n+2
n−2 = 0

in a punctured neighborhood of the origin in Rn either has a removable singularity at the origin or
satisfies

u(x) = u0(|x|)(1 + O(|x|β)) as |x| → 0+

for some positive singular solution u0(|x|) of

∆u0 +K(0)u
n+2
n−2
0 = 0 in Rn \ {0}

where β ∈ (0, 1) is the Hölder exponent of K.

Mathematics Subject Classification (2000): Primary 35J60, 53C21

1 Introduction

In this paper we study the conformal scalar curvature equation

∆u+K(x)un
∗

= 0 in Bn \ {0}, n ≥ 3, (1.1)

where Bn = {x ∈ Rn : |x| < 1} and n∗ = (n + 2)/(n − 2). Specifically, we give conditions on a Hölder
continuous function K : Bn → (0,∞) such that every C2 positive solution u(x) of (1.1) with a non-removable
singularity at the origin satisfies

u(x) = u0(|x|)(1 +O(|x|β)) as |x| → 0+ (1.2)

for some C2 positive solution u0(|x|) of{
∆u0 +K(0)un

∗

0 = 0 in Rn \ {0}
u0(|x|)→∞ as |x| → 0+ (1.3)



where β ∈ (0, 1) is the Hölder exponent of K. All C2 positive solutions u0(|x|) of (1.3) have been described
by Fowler [6]. We also prove that the convergence rate in (1.2) is optimal.

It is well known that a solution u of (1.1) defines a conformally flat metric gij = u4/(n−2)δij with scalar

curvature 4(n−1)
n−2 K. The work of Schoen and Yau [13, 14, 15] on conformally flat manifolds and the Yamabe

problem has highlighted the importance of studying singular solutions of (1.1) in neighborhoods of their
singular sets. Solutions of (1.1) with an isolated singularity at the origin are worthy of study because they
are the simplest examples of singular solutions.

When K(x) is identically a positive constant in Bn, Caffarelli, Gidas, and Spruck [1] proved that every
C2 positive solution u(x) of (1.1) with a non-removable singularity at the origin satisfies

u(x) = u0(|x|)(1 + o(1)) as |x| → 0+ (1.4)

for some u0(|x|) as above. In particular, (1.4) implies that

u(x) = O(|x|−(n−2)/2) as |x| → 0+. (1.5)

If K : Bn → (0,∞) is a continuous non-constant perturbation of a positive constant it is natural to
conjecture that every C2 positive solution u(x) of (1.1) with a non-removable singularity at the origin should
still satisfy (1.4) or at least satisfy (1.5). However this is not the case. Indeed, Taliaferro and Zhang [19] have
shown that given any C1 function K0 : Bn → (0,∞) and any large continuous function ϕ : (0, 1) → (0,∞)
there exists a continuous function K : Bn → (0,∞) satisfying

|K(x)−K0(x)| ≤ 1

ϕ(|x|)
in Bn \ {0}

(and in fact equal to K0 except on a set of arbitrarily small measure) such that (1.1) has a C2 positive
solution u(x) which does not satisfy

u(x) = O(ϕ(|x|)) as |x| → 0+. (1.6)

Leung [8] showed that when K0(x) ≡ 1 and n ≥ 5, such a function K can be found which is Lipschitz
continuous on Bn.

Chen and Lin in a series of masterful papers [2], [4], and [11] have given conditions on a Hölder continuous
function K such that every C2 positive solution u(x) of (1.1) with a non-removable singularity at the origin
satisfies (1.4). They first prove the a priori bound (1.5) which immediately implies the spherical Harnack
inequality

max
|x|=r

u ≤ C min
|x|=r

u, C independent of r. (1.7)

They then use the Pohozaev identity, which requires them to assume that K is at least C1 in Bn \ {0}, to
conclude that

|x|(n−2)/2u(x) is bounded between positive constants for |x| small and positive. (1.8)

However Chen informed us that their proof in [4] that (1.8) implies (1.4) needs considerably more detail,
an outline of which he e-mailed to us. Using a method very different than his, we prove in Section 2 the
following theorem, which gives conditions under which (1.8) implies the sharper result (1.2).

Theorem 1. Let n ≥ 3 be an integer and let u : Bn \ {0} → R be a C2 positive function satisfying

−∆u(x)

u(x)n∗
= 1 +O(|x|β) as |x| → 0+ (1.9)

for some constant β ∈ (0, 1). If u satisfies (1.8), then u satisfies (1.2) for some C2 positive radial solution
u0(|x|) of

∆u0 + un
∗

0 = 0 in Rn \ {0}. (1.10)
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When u is a C2 positive solution of −∆u/un
∗ ≡ 1 in Bn \ {0} with a non-removable singularity at the

origin, an asymptotic estimate even sharper than (1.2) was given by Korevaar, Mazzeo, Pacard, and Schoen
[7].

Theorem 1 is optimal in two ways. First, the rate of convergence in (1.2) is optimal because

u0(|x|) :=

(
n− 2

2|x|

)n−2
2

and u(x) := u0(|x|)(1 + |x|β)

are C2 positive solutions of (1.10) and (1.9) respectively.
And second, the upper bound of 1 on β in Theorem 1 is optimal because Korevaar, Mazzeo, Pacard, and

Schoen [7] give an explicit formula for a C2 positive solution u(x) of ∆u + un
∗

= 0 in Bn \ {0} satisfying
(1.8) such that, for each β > 1 and each C2 positive solution u0(|x|) of (1.10), u does not satisfy (1.2).

Theorem 1, because of the weakness of condition (1.9), should be useful to others, who having proved (1.8)
by whatever method, will then be able to use Theorem 1 to immediately obtain the more precise asymptotic
behavior (1.2). For example, by using Theorem 1, the conclusion (1.4) of Chen and Lin’s Theorems A and
B below can be immediately sharpened to (1.2) where β ∈ (0, 1) is any Hölder exponent for the function K
in those theorems. For another example, we use Theorem 1 in our proof of Theorem 2 below.

Before we state Theorem 2, we introduce a notation Cα(Ω), α > 0, as follows:

Definition 1.1. 1. If α is a positive integer, then Cα(Ω) is the usual Hölder space Cα(Ω).

2. If α > [α], then Cα(Ω) is the set of all functions f ∈ C [α](Ω) such that

|∇[α]f(x)−∇[α]f(y)| ≤ c(|x− y|)|x− y|α−[α], x, y ∈ Ω,

for some nonnegative continuous function c(·) satisfying c(0) = 0.

Note that Cα is only slightly stronger than Cα and is weaker than Cα+ε for each ε > 0.

Our assumption on K, in Theorem 2 below, is as follows:

Hypothesis H: K is a positive function in Cα(Bn) where α = (n− 2)/2. Also, if n ≥ 6, then

|∇jK(x)| ≤ c(|x|)|∇K(x)|
α−j
α−1 , 2 ≤ j ≤ [α], x ∈ Bn (1.11)

for some nonnegative continuous function c(·) satisfying c(0) = 0.

We now state

Theorem 2. Suppose u is a C2 positive solution of (1.1) where K satisfies Hypothesis H. Then either u has
a removable singularity at the origin or there exists a C2 positive radial solution u0(|x|) of (1.3) such that u
satisfies (1.2) for each β ∈ (0, 1) ∩ (0, α].

Our assumptions on K are very simple for low dimensions. In fact, when n = 3 we only assume that
K ∈ C 1

2 , when n = 4 that K ∈ C1, and when n = 5 that K ∈ C 3
2 . The assumptions on higher derivatives of

K only start when n ≥ 6.
Also, Theorem 2 is nearly optimal when n is 3 or 4. Indeed, after communicating this theorem to Man

Chun Leung, he informed us that if n is 3 or 4, ε > 0 is any small number, and ϕ : (0, 1) → (0,∞) is any

large continuous function, then he can construct a positive function K ∈ C n−2
2 −ε(Bn) such that (1.1) has a

C2 positive solution u(x) which does not satisfy (1.6).
A new feature of Theorem 2 is that our conditions on K include not only a large set of non-constant K

but also the case that K is a positive constant.
Our proof of Theorem 2 for n ≥ 4 relies heavily on various ingenious methods that Chen and Lin used in

their papers [2, 3, 4]. Instead of providing all the details, we shall cite those arguments and indicate what
changes we need to make. However, when n = 3 our assumption on K is only slightly stronger than C1/2

which prevents us from using the Pohozaev identity. Instead we use, as in [21], a delicate version of the
method of moving spheres.

The condition (1.11) was first used by Li [9, page 322], who also gave examples of functions satisfying
this condition.
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If K ∈ C1(Bn), ∇K(0) 6= 0 and u has a non-removable singularity at the origin, then Lin [11] proved that
u satisfies (1.4). On the other hand, if ∇K(0) = 0, then in a neighborhood of the origin, by our assumption

on K, we have |∇K(x)| ≤ C|x|n−2
2 −1, which implies that |K(x) − K(0)| ≤ C|x|n−2

2 . This flatness index
(n−2)/2 is very important, without which the conclusion of Theorem 2 is not true; counter examples can be
found in Chen and Lin’s works [2, 11, 4]. It is interesting to note that the flatness index of the asymptotically
flat manifold in Schoen and Yau’s positive mass theorem [17, 18] is also bounded below by (n−2)/2. Perhaps
there is a connection between Theorem 2 and the positive mass theorem.

We conclude our introduction by stating Chen and Lin’s results mentioned above. They assume

Hypothesis CL. The function K ∈ C0(Bn) ∩C1(Bn \ {0}) is positive and in a neighborhood of the origin
can be written as

K(x) = K(0) +Q(x) +R(x)

where Q ∈ C1(Rn \ {0}) is a homogeneous function of degree α > 0 satisfying

c1|x|α−1 ≤ |∇Q(x)| ≤ c2|x|α−1 for x ∈ Rn \ {0}

for some positive constants c1 and c2 and where R satisfies

lim
|x|→0+

|R(x)||x|−α = lim
|x|→0+

|∇R(x)||x|1−α = 0.

They prove the following two theorems, which highlight the importance of the flatness index (n− 2)/2.

Theorem A [2] [4]. Suppose u is a C2 positive solution of (1.1) where K satisfies Hypothesis CL with
α ≥ (n − 2)/2. Then either u has a removable singularity at the origin or u satisfies (1.4) for some C2

positive radial solution u0(|x|) of (1.3).

Theorem B [11]. Suppose u is a C2 positive solution of (1.1) where K satisfies Hypothesis CL with
0 < α < (n− 2)/2 and in addition Q satisfies either∫

Rn

∇Q(x+ ξ)(1 + |x|2)−ndx 6= 0 for all ξ ∈ Rn

or ∫
Rn

Q(x+ ξ)(1 + |x|2)−ndx > 0

for all ξ satisfying ∫
Rn

∇Q(x+ ξ)(1 + |x|2)−ndx = 0.

Then either u has a removable singularity at the origin or u satisfies (1.4) for some C2 positive radial solution
u0(|x|) of (1.3).

2 Refined asymptotic behavior

In this section, we prove Theorem 1.

Proof of Theorem 1. Define w : (0,∞) × Sn−1 → R by w(t, θ) = e−
n−2
2 tu(e−tθ). Then w is a C2 positive

solution of

wtt −
(
n− 2

2

)2

w + ∆θw + K̂(t, θ)wn
∗

= 0 in (0,∞)× Sn−1 (2.1)

satisfying, uniformly in Sn−1, the inequalities

0 < lim inf
t→∞

w(t, θ) ≤ lim sup
t→∞

w(t, θ) <∞ (2.2)
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where K̂(t, θ) := −∆u(e−tθ)/u(e−tθ)n
∗
. Note, for later, that

max
θ∈Sn−1

|K̂(t, θ)− 1| = O(e−βt) as t→∞. (2.3)

To prove Theorem 1 it suffices to prove that there exists a C2 positive solution w0(t) of

w′′0 −
(
n− 2

2

)2

w0 + wn
∗

0 = 0 in R (2.4)

such that
max
θ∈Sn−1

|w(t, θ)− w0(t)| = O(e−βt) as t→∞. (2.5)

Our proof of (2.5) makes use of two clever observations of Mazzeo, Pollack, and Uhlenbeck [12] concerning
the spectrum of the linearization of (2.1) about certain functions which are independent of θ. These two
observations are stated below in the sentence containing equation (2.21) and in the first sentence of the proof
of Lemma 2.4. Since each of these observations can be verified by direct calculation using only elementary
calculus, our proof of (2.5) can be read independently of [12]. In fact, our proof of Theorem 1 is completely
self-contained except for a result of Caffarelli, Gidas, and Spruck [1, Theorem 8.1] which we use below in
our proofs of Lemmas 2.1 and 2.2.

Multiplying (2.1) by wt and then integrating over Sn−1 we get

d

dt
Q(t, w) = −

∫
Sn−1

[K̂(t, θ)− 1]wn
∗
wt dSθ for t > 0 (2.6)

where

Q(t, w) =
1

2

∫
Sn−1

(
w2
t −

(
n− 2

2

)2

w2 + |∇θw|2 +
n− 2

n
w

2n
n−2

)
dSθ.

It follows from (2.1), (2.2), and (2.3) that w and its first order partial derivatives are bounded for t large.
Thus, by (2.3) and (2.6), we have Q(w) := limt→∞Q(t, w) exists and

Q(t, w) = Q(w) +O(e−βt) as t→∞. (2.7)

Our proof of Theorem 1 will partially consist of some lemmas the first of which is

Lemma 2.1. Q(w) < 0.

Proof. Let wj(t, θ) = w(t+ tj , θ) where tj →∞. Then, by (2.1), we have

wjtt −
(
n− 2

2

)2

wj + ∆θwj + K̂(t+ tj , θ)w
n∗

j = 0 in (−tj ,∞)× Sn−1 (2.8)

and it therefore follows from (2.2) and (2.3) that some subsequence of wj , which we denote again by wj ,
converges to w0 in C1

loc(R× Sn−1) where w0 is bounded between positive constants and satisfies

w0tt −
(
n− 2

2

)2

w0 + ∆θw0 + wn
∗

0 = 0 in R× Sn−1. (2.9)

Thus, as proved by Caffarelli, Gidas, and Spruck [1, Theorem 8.1], w0(t, θ) = w0(t) is independent of θ, and
hence, letting σn−1 be the measure of Sn−1, we have

Q(w) ←−
j→∞

Q(t+ tj , w) = Q(t, wj) −→
j→∞

Q(t, w0)

=
σn−1

2

(
w′0(t)2 −

(
n− 2

2

)2

w0(t)2 +
n− 2

n
w0(t)

2n
n−2

)
which, as first noted by Fowler [6], is constant and negative because its derivative is the left side of (2.9)
multiplied by σn−1w

′
0 and because w0 is bounded below on R by a positive constant.
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Lemma 2.2. As t→∞ we have

max
θ∈Sn−1

|w(t, θ)− w(t)| → 0 (2.10)

max
θ∈Sn−1

|wt(t, θ)− w′(t)| → 0 (2.11)

max
θ∈Sn−1

|∇θw(t, θ)| → 0 (2.12)

where w(t) is the average of w(t, θ) over Sn−1.

Proof. Suppose (2.10) (resp. (2.11), (2.12)) does not hold. Then there exists ε > 0 and tj → ∞ such that
the function wj(t, θ) := w(t+ tj , θ) satisfies

max
θ∈Sn−1

wj(0, θ)− min
θ∈Sn−1

wj(0, θ) ≥ ε

(resp. max
θ∈Sn−1

wjt(0, θ)− min
θ∈Sn−1

wjt(0, θ) ≥ ε,

max
θ∈Sn−1

|∇θwj(0, θ)| ≥ ε).

(2.13)

Since wj also satisfies (2.8) we have some subsequence of wj converges to w0 in C1
loc(R × Sn−1) where w0

is bounded between positive constants and satisfies (2.9). Therefore w0(t, θ) = w0(t) is independent of θ,
which contradicts (2.13).

Lemma 2.3. As t→∞ we have

w′′(t)−
(
n− 2

2

)2

w(t) + w(t)n
∗

= o(1) (2.14)

and

σn−1

2

[
w′(t)2 −

(
n− 2

2

)2

w(t)2 +
n− 2

n
w(t)

2n
n−2

]
= Q(w) + o(1). (2.15)

Proof. Using (2.1) we have

w′′ −
(
n− 2

2

)2

w + wn
∗

= w′′ −
(
n− 2

2

)2

w + wn
∗
−

[
wtt −

(
n− 2

2

)2

w + ∆θw + K̂wn∗
]

= wn
∗
− K̂wn∗ = o(1) as t→∞

by (2.3) and (2.10). Also

L.H.S. of (2.15) = Q(t, w) = Q(t, w) + (Q(t, w)−Q(t, w))

= Q(w) + o(1) as t→∞

by equation (2.7) and Lemma 2.2.

We now continue with our proof of Theorem 1 by using in this paragraph some methods of Veron [20].
Averaging (2.1) and then subtracting the resulting equation from (2.1) we find that W := w − w satisfies

Wtt −
(
n− 2

2

)2

W + ∆θW + Ŵ = 0 in (0,∞)× Sn−1 (2.16)
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where Ŵ = K̂wn
∗ − K̂wn∗ . Multiplying (2.16) by W and integrating over Sn−1 we get∫

Sn−1

(
WWtt −

(
n− 2

2

)2

W 2 +W∆θW +WŴ

)
= 0 in (0,∞). (2.17)

Let ψ(t) =

( ∫
Sn−1

W (t, θ)2

)1/2

. Then ψ is nonnegative and continuous for t > 0 and ψ is C2 on those

intervals where ψ is positive. Since

|ψψ′| =

∣∣∣∣∣∣
∫

Sn−1

WWt

∣∣∣∣∣∣ ≤
 ∫

Sn−1

W 2
t

1/2

ψ, when ψ > 0,

we have

|ψ′| ≤

 ∫
Sn−1

W 2
t

1/2

, when ψ > 0,

and therefore

ψψ′′ + ψ′2 =

∫
Sn−1

W 2
t +

∫
Sn−1

WWtt ≥ ψ′2 +

∫
Sn−1

WWtt, when ψ > 0. (2.18)

Since the smallest nonzero eigenvalue of −∆θ is n− 1 we have∫
Sn−1

W∆θW ≤ −(n− 1)

∫
Sn−1

W 2 in (0,∞). (2.19)

Also, since

∫
Sn−1

W = 0, we have

∫
Sn−1

WŴ =

∫
Sn−1

W (K̂wn
∗
− K̂wn∗)

=

∫
Sn−1

W (K̂wn
∗
− wn

∗
) = I1 + I2

where

I1 :=

∫
Sn−1

Wwn
∗
(K̂ − 1)

≤ ψ(t)

 ∫
Sn−1

(wn
∗
(K̂ − 1))2

1/2

= ψ(t)O(e−βt) as t→∞

by (2.3), and

I2 :=

∫
Sn−1

W (wn
∗
− wn

∗
) =

∫
Sn−1

Wn∗ξn
∗−1W

where ξ = ξ(t, θ) is between w(t, θ) and w(t). Since, by (2.10), ξ(t, θ) = w(t)(1 + o(1)) as t → ∞, we have
I2 = n∗wn

∗−1(1 + o(1))ψ2. Thus using (2.18) and (2.19) in (2.17) we obtain for t large and ψ(t) > 0 that

ψψ′′ −
(
n− 2

2

)2

ψ2 − (n− 1)ψ2 + n∗wn
∗−1(1 + o(1))ψ2 + ψO(e−βt) ≥ 0.
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Hence, for some positive constant C, we have

ψ′′ − n2

4
ψ + n∗w(t)n

∗−1(1 + o(1))ψ > −Ce−βt (2.20)

for t large and ψ(t) > 0.

Letting y(t) = w(t)
−n
n−2ψ(t), it follows from (2.2), (2.14), (2.15), and (2.20) that y(t) satisfies

Ly := y′′ + b(t)y′ − a(t)y > −Ce−βt for t large and y(t) > 0, (2.21)

where C is a positive constant,

b(t) =
2n

n− 2

w′(t)

w(t)
,

and

a(t) =
2n

(n− 2)2

1

w(t)2

[
−2

σn−1
Q(w) + o(1)

]
as t→∞.

This remarkable change of variables, which is due to Mazzeo, Pollack, and Uhlenbeck [12], has the desirable
feature of transforming (2.20) into a differential inequality whose zero order term has a negative coefficient.
Hence the differential operator L on the left side of (2.21) satisfies the maximum principle. We are grateful
to Rafe Mazzeo for bringing this change of variables to our attention. Note also, by (2.2) and (2.10), that

lim
t→∞

y(t) = 0.

We now prove that y(t), and hence ψ(t), tends to zero exponentially as t→∞. Choose positive constants
a0, b0, and t0 such that for t ≥ t0 we have a(t) > a0 and |b(t)| < b0. Choose ε ∈ (0, β) such that
−ε2 − εb0 + a0 > 0. By increasing t0, we can assume

−ε2 − εb0 + a0 > Ce(ε−β)t for t ≥ t0.

Choose A > 1 such that Ae−εt0 > y(t0) and let ŷ(t) = Ae−εt. Then ŷ(t0) > y(t0) and for t ≥ t0 we have

−Lŷ = Ae−εt(−ε2 + εb(t) + a(t))

> Ae−εt(−ε2 − εb0 + a0)

> Ae−εtCe(ε−β)t > Ce−βt.

Hence, letting z(t) = y(t) − ŷ(t), we have z(t0) < 0, limt→∞ z(t) = 0, and Lz > 0 for t ≥ t0 and z(t) > 0.
This implies z(t) ≤ 0 for t ≥ t0, for otherwise z would assume a positive maximum at some t1 > t0 and
substituting t = t1 in Lz > 0 we would obtain a contradiction. Thus y(t), and hence ψ(t), is O(e−εt) as
t→∞, which implies

‖W‖L2(Ω2
t )

= O(e−εt) as t→∞, (2.22)

where
Ωat = (t− a, t+ a)× Sn−1.

Since wn
∗ − wn

∗
= n∗ξn

∗−1(w − w), where ξ(t, θ), being between w(t, θ) and w(t), is bounded, we have

‖wn
∗
− wn

∗
‖Lp(Ωat ) ≤ C‖W‖Lp(Ωat ) for p > 1, t ≥ 4, 1 ≤ a ≤ 2

where C is a positive constant independent of p, t, and a. Hence

‖Ŵ‖Lp(Ωat ) ≤ ‖K̂wn
∗
− wn

∗
‖Lp(Ωat ) + ‖K̂wn∗ − wn∗‖Lp(Ωat )

≤ 2‖K̂wn
∗
− wn

∗
‖Lp(Ωat ) by Jensen’s inequality,

≤ 2‖(K̂ − 1)wn
∗
‖Lp(Ωat ) + 2‖wn

∗
− wn

∗
‖Lp(Ωat )

≤ C[e−βt + ‖W‖Lp(Ωat )] for p > 1, t ≥ 4, 1 ≤ a ≤ 2, (2.23)
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by (2.3), where C is a constant independent of p, t, and a.
Starting with (2.22) and using (2.23) we obtain after a finite number of iterations of standard elliptic

theory applied to (2.16) that
‖W‖C1(Ω1

t )
= O(e−εt) as t→∞. (2.24)

Therefore

w′2 −
(
n− 2

2

)2

w2 +
n− 2

n
w

2n
n−2

=
2

σn−1
Q(t, w)

=
2

σn−1
[(Q(t, w)−Q(t, w)) +Q(t, w)]

=
2

σn−1
Q(w) +O(e−εt) as t→∞

by (2.7). Hence, as noted in [1, p. 291],

w(t) = w0(t) +O(e−εt) as t→∞ (2.25)

where w0(t) is some periodic solution of (2.4) satisfying

w′20 −
(
n− 2

2

)2

w2
0 +

n− 2

n
w

2n
n−2

0 =
2

σn−1
Q(w) in R. (2.26)

Thus, by (2.24),
max
θ∈Sn−1

|w(t, θ)− w0(t)| = O(e−εt) as t→∞. (2.27)

Since ψ(t) satisfies (2.20), it follows from (2.25) that ψ(t) also satisfies

L0ψ > −Ce−βt, for t large and ψ(t) > 0, (2.28)

where L0 = d2

dt2 +
(
n∗wn

∗−1
0 − n2

4 + o(1)
)

.

Lemma 2.4. For each continuous function h satisfying

h(t) = O(e−βt) as t→∞,

the problem

L0ζ = h

ζ(t) = O(e−βt) as t→∞

has a C2 solution ζ(t), which, when h ≡ 0, is nontrivial.

Proof. Using the fact that w0(t) satisfies (2.4) one verifies by direct calculation that a fundamental set of
solutions of

ζ ′′ +

(
n∗wn

∗−1
0 − n2

4

)
ζ = 0

is

ζ1(t) = e−t
(
−w′0(t) +

n− 2

2
w0(t)

)
ζ2(t) = et

(
w′0(t) +

n− 2

2
w0(t)

)
.

These solutions appeared in [12] and [7].
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Under the change of variables x(t) =
(
x1(t)
x2(t)

)
=
(
ζ(t)
ζ′(t)

)
, the equation L0ζ = h becomes

x′ = A(t)x+ f̂(t, x) + ĝ(t),

where

A(t) =

(
0 1

−n∗wn
∗−1

0 + n2

4 0

)
f̂(t, x) =

(
0

x1o(1)

)
and ĝ(t) =

(
0
h(t)

)
,

and a fundamental matrix for x′ = A(t)x is

X(t) =

(
ζ1(t) ζ2(t)
ζ ′1(t) ζ ′2(t)

)
= P (t)eBt,

where

B =

(
−1 0
0 1

)
and P (t) =

(
etζ1(t) e−tζ2(t)
etζ ′1(t) e−tζ ′2(t)

)
.

Note that P (t) is periodic and hence bounded. Define z(t) by x(t) = P (t)z(t). Then

z′ = Bz + f(t, z) + g(t) (2.29)

where
f(t, z) = P (t)−1f̂(t, P (t)z) and g(t) = P (t)−1ĝ(t) = O(e−βt).

Since f(t, z) = M(t)z for some 2× 2 matrix M(t) which tends to 0 as t→∞, it follows from standard ODE
methods (see [5, Chapter 13, Theorem 4.1 and its proof]) that (2.29) has a nontrivial solution z(t) satisfying
|z(t)| = O(e−βt) as t→∞. Transforming this solution z(t) back to ζ(t), we obtain Lemma 2.4.

Letting y0(t) = w0(t)−
n
n−2ψ(t), it follows from (2.4), (2.26), and (2.28) that y0(t) satisfies

L1y0 > −Ce−βt for t large and y0(t) > 0,

where C is a positive constant and

L1 =
d2

dt2
+

2n

n− 2

w′0(t)

w0(t)

d

dt
+

2n

(n− 2)2

1

w0(t)2

[
2

σn−1
Q(w) + o(1)

]
.

Furthermore, by (2.10),
lim
t→∞

y0(t) = 0.

It follows from Lemma 2.4 that there exists a nontrivial C2 solution y1(t) of L1y1 = 0 satisfying

y1(t) = O(e−βt) as t→∞,

and that there exists a C2 solution y2(t) of L1y2 = −Ce−βt satisfying

y2(t) = O(e−βt) as t→∞.

Choose t0 > 0 such that y1(t0) 6= 0 and the zero order term of L1 is negative for t ≥ t0. Choose a constant
A such that

y2(t0) +Ay1(t0) > y0(t0)

and let y3(t) = y2(t) + Ay1(t). Then letting z(t) = y0(t) − y3(t) we have z(t0) < 0, limt→∞ z(t) = 0, and
L1z > 0 for t ≥ t0 and y0(t) > 0. This implies z(t) ≤ 0 for t ≥ t0, for otherwise z would assume a positive
maximum at some t1 > t0 and substituting t = t1 in L1z > 0 we would obtain a contradiction. Thus y0(t),
and hence ψ(t), is O(e−βt) as t → ∞. Hence (2.22) holds with ε replaced with β and the discussion after
(2.22) shows that (2.27) holds with ε replaced with β. This completes the proof of Theorem 1.
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3 Proof of Theorem 2 for n = 3

In this section, we first assume u(x) ≤ C|x|− 1
2 for some C > 0 and in step 1 we show that

u(x) = ū(|x|)(1 + ◦(1)).

Then in step 2 we show that if u has a non-removable singularity at 0, then u is comparable to |x|− 1
2 . In

step 3 we show the proof of u(x) ≤ C|x|−n−2
2 for n = 3. The proof in Step 3 is a small modification of the

proof in [2].

Step 1: Proof of asymptotic symmetry for n = 3

In this step, we show that
u = ū(1 + ◦(1)). (3.1)

under the assumption u(x) ≤ C|x|− 1
2 . Note that (3.1) is much weaker than u = u0(1 + ◦(1)).

Here we quote a well known fact: u(x) ≤ C|x|−n−2
2 implies the following inequalities by a simple rescaling

of u and the Harnack inequality:

max
|x|=r

u(x) ≤ c1 min
|x|=r

u(x), |∇u(x)| ≤ c1|x|−
n
2 , 0 < r <

1

2

for some c1 > 0 independent of r (See [3]).

Suppose (3.1) is not satisfied for n = 3. Then there exists a sequence ri → 0 as i→∞ and ε0 > 0 such
that

max
|x|=ri

u(x) ≥ (1 + ε0) min
|x|=ri

u(x). (3.2)

For those ri in (3.2) we have

Lemma 3.1. There exists C0 > 0 independent of i such that

ū(ri)r
1
2
i ≥ C0.

Proof of Lemma 3.1: If ū(ri)r
1
2
i → 0, let ṽi(y) = r

1
2
i u(riy) for 0 < |y| < 1/ri. By the spherical Harnack

inequality we have ṽi(e)→ 0 where e = (1, 0, 0). Let v̂i(y) = ṽi(y)/ṽi(e), then the equation that v̂i satisfies
is

∆v̂i(y) +K(riy)ṽi(e)
4v̂i(y)5 = 0 0 < |y| < 1/ri.

By the Harnack inequality, v̂i is uniformly bounded over any compact subset of Rn \ {0}. Therefore there
exists v̂ such that a subsequence of v̂i converges uniformly to some v̂ over any compact subset of Rn \ {0}.
Since ṽi(e)→ 0, we have

∆v̂(y) = 0 in Rn \ {0}.

Since v̂ is non-negative, v̂ is of the form

v̂(y) = a|y|−1 + b, a, b ≥ 0.

However, since v̂ is radially symmetric and v̂i converges to v̂ over |y| = 1, it is impossible to have (3.2).
Lemma 3.1 is established. �

In the following argument we shall rescale u at ri, then the key point of our argument is that we can find
standard bubbles which are important for the method of moving spheres. For n = 3, the method of moving
spheres does not require too much on the smoothness of K, so we have the freedom to shift the center of the
standard bubble along any direction we want. In the argument that follows, we will choose one direction to
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shift the center of the standard bubble for a large distance and then we shall apply the method of moving
spheres to get a contradiction.

Let
vi(y) = r

1
2
i u(riy), 0 < |y| < r−1

i .

Since vi(y)|y| 12 ≤ C for y in any compact subset of R3. We know that {vi} converge uniformly to some
function v in R3 \ {0}. This v satisfies

∆v(y) +K0v(y)5 = 0 in R3 \ {0}.

With no loss of generality we assume K0 = n(n − 2) = 3. By a well known result of Caffarelli, Gidas and
Spruck [1] this v can not have a singularity at the origin, because otherwise v will be radially symmetric,
which will lead to a violation of (3.2). So v is defined globally. By the famous classification theorem of
Caffarelli, Gidas and Spruck [1], v has to be a standard bubble. i.e.

v(y) = (
µ

1 + µ2|y −R0e|2
)

1
2

where µ is a positive constant and we choose the coordinate system so that R0 > 0 and e = (1, 0, 0). Note
that R0 can not be zero since v is not radially symmetric.

Let
gi(y) = vi(y + (R+R0)e)

where R will be determined to be a large positive number later. Since vi is not defined at the origin, gi is
not defined at −(R+R0)e. Let

v1(y) = v(y + (R+R0)e) = (
µ

1 + µ2|y +Re|2
)

1
2 .

Then {gi} converge uniformly to v1 over all compact subsets of R3 − Z where Z = −(R+R0)e.
Let

vλ1 (y) = (
λ

|y|
)n−2v1(

λ2y

|y|2
).

This vλ1 is the Kelvin transformation of v1. From now on we shall use yλ to denote λ2y
|y|2 .

Remark 3.1. The reason we have to consider gi, which is a shift vi by a very large distance, is because we
want to stay away from the singularity when we apply the method of moving spheres later. Note that R0

could be any positive number, but no matter how small R0 is, as long as R is large enough, we can always
start our method of moving spheres from a radius (λ0) only slightly less than R to a radius (λ1) slightly
bigger than R. When R is sufficiently large, we can make λ1 as close to R as we want, therefore, the singular
point does not cause us trouble any more.

The following lemma is on the difference between v1 and vλ1 .

Lemma 3.2. For R >> 1, there exists c1(µ,R) > 0 such that for λ0 = R− 2,

v1(y)− vλ0
1 (y) ≥ c1(|y|2 − λ2

0)|y|−3 for |y| ≥ λ0

∂(v1(y)− vλ0
1 (y))

∂ν
> c1 > 0 on ∂Bλ0

where ν stands for the unit outer normal vector of ∂Bλ0
. For λ1 = R+R0/5,

v1(x)− vλ1 (x) < 0 for |x| > λ1.

Proof: Using the formula(
|y|
λ
|yλ − η|

)2

− |y − η|2 =
(|y|2 − λ2)(|η|2 − λ2)

λ2
y, η ∈ Rn, y 6= 0, (3.3)
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which follows from the law of cosines, we find using the mean value theorem that

v1(y)− vλ1 (y) = (
µ

1 + µ2|y +Re|2
)1/2 − (

µ

( |y|
2

λ2 )(1 + µ2|yλ +Re|2
)1/2

=
1

2
µ−1/2 · (|y|2 − λ2)(µ−2 +R2 − λ2)

λ2ξ3/2
(3.4)

Where ξ is some number between µ−2 + |y + Re|2 and ( |y|λ )2(µ−2 + |yλ + Re|) so it is not hard to see that
|ξ| ≤ c3|y|2 when λ = λ0 for some c3(µ,R) > 0. Consequently there exists c4(R,µ) > 0 such that

v1(y)− vλ0
1 (y) ≥ c4(|y|2 − λ2

0)|y|−3.

If R is sufficiently big, for λ = λ1, we have v1 < vλ1
1 for |y| > λ1. The last statement is proved. The

boundary derivative estimate is a result of the Hopf Lemma since both v1 and vλ0
1 satisfy the same equation

over R3 \ B̄λ0
and v1 = vλ0

1 on ∂Bλ0
. Lemma 3.2 is established. �

Now we determine R >> 1 to be the one in Lemma 3.2. From now on in this step we always assume λ
to stay in [λ0, λ1]. Also in this step we define

Σλ = B(0, δr−1
i ) \ B̄λ

with δ > 0 to be determined later.
Note that the singularity of gi is at Z = −(R + R0)e and the peak of v1 is at −Re. gi converge to v1

over all the compact subsets of R3 \ {Z}. The equation that gi satisfies is

∆gi(y) +K(riy + ri(R+R0)e)gi(y)5 = 0, |y| < r−1
i /2, y 6= Z.

Let gλi be defined as the Kelvin transformation of gi with respect to B(0, λ). Then the equation for gλi is

∆gλi (y) +K(riy
λ + ri(R+R0)e)gλi (y)5 = 0, |y| > λ.

We are going to compare gi and gλi for λ ∈ [λ0, λ1]. Note that gλi is well defined on |y| > λ for λ ∈ [λ0, λ1].
Now we have the following lemma on the difference between gi and gλi .

Lemma 3.3. There exist ε0(R,R0, µ) > 0 and i0(R, δ) > 1 such that for i ≥ i0

gi(y)− gλ0
i (y) ≥ ε0(|y| − λ0)|y|−2 + ε0r

1/2
i (λ−1

0 − |y|−1), λ0 < |y| < r−1
i /2, y 6= −(R+R0)e.

Moreover, there exists z1 ∈ Σλ1 \ {−(R+R0)e} independent of i such that

gi(z1) < gλ1
i (z1)− ε0.

Proof of Lemma 3.3: Since {gi} converge uniformly to v1 over any compact subset of R3\{−(R+R0)e},
we see from Lemma 3.2 that for any fixed large R1 >> R, we have

gi(y)− gλ0
i (y) > 2ε2(|y| − λ0)|y|−2, |y + (R+R0)e| > R−1

1 , |y| < R1

for sufficiently large i. Note that ε2 is determined only by v1 and vλ0
1 and at this moment we stay carefully

away from the singularity. Now for |y + (R+R0)e| < R−1
1 , since gλ0

i is well defined there, we have

|gλ0
i (y)− gλ0

i (y∗i )| < ε2/10

where y∗i ∈ ∂B(−(R+R0)e,R−1
1 ) so that gi(y

∗
i ) = min∂B(−(R+R0)e,R−1

1 ) gi. This is true because R1 is large.

Then by the super harmonicity of gi, gi(y) ≥ gi(y
∗
i ) for any y ∈ B(−(R + R0)e,R−1

1 ), y 6= −(R + R0)e.
Therefore for |y| < R1 and y 6= −(R+R0)e we have

gi(y)− gλ0
i (y) >

3

2
ε2(|y| − λ0)|y|−2.

13



The conclusion holds on this region. For R1 ≤ |y| ≤ δr−1
i we take advantage of the super harmonicity of gi.

First we observe that
gi(y) ≥ mr

1
2
i on |y| = δr−1

i

where m is the minumum of u over B1 \ {0} and δ is any fixed constant. So gi(y) >> |y|−1 on |y| = δr−1
i

for all large i.
Secondly by the definition of gλi , we always have

gλ0
i (y) ≤ (µ−

1
2 − 2ε)|y|−1 for |y| > R1

for R1 sufficiently large and some ε > 0. On the other hand,

gi(y) ≥ (µ−
1
2 − ε)|y|−1 |y| = R1.

So by the super harmonicity of gi we have

gi(y) ≥ (µ−
1
2 − 3

2
ε)|y|−1 + εr

1
2
i (λ−1

0 − |y|−1) R1 ≤ |y| ≤ δr−1
i , y 6= −(R+R0)e.

Lemma 3.3 is implied by the above inequality by choosing ε0 small enough. �

Let
wλ = gi(y)− gλi (y).

Observe that for λ ∈ [λ0, λ1],gλi is smooth in B(0, r−1
i /2) \Bλ.

Now consider the equation that wλ satisfies,

∆wλ + bλwλ = Qλ

where

bλ = K(riy + ri(R+R0)e)
gi(y)5 − gλi (y)5

gi(y)− gλi (y)

and
Qλ(y) = (K(riy

λ + ri(R+R0)e)−K(riy + ri(R+R0)e))gλi (y)5.

Remark 3.2. Later we shall apply the method of moving spheres to function wλ + hλ, where hλ will be a
very important test function to construct. The reason we need hλ is that wλ does not satisfy the maximum
principle for all λ ∈ [λ0, λ1]. hλ is a ”perturbation” of wλ that makes the method of moving spheres work
for wλ + hλ. The main feature of hλ is to satisfy the following inequality:

∆hλ + bλhλ +Qλ ≤ 0 in Σλ.

This is always satisfied by making

∆hλ +Qλ ≤ 0 and hλ ≤ 0 in Σλ.

The construction of hλ involves the Green’s function Gλ(y, η) for the Laplacian in Rn \ B̄λ which is given
by

Gλ(y, η) =
1

n(n− 2)ωn
(|y − η|2−n − (

λ

|y|
)n−2|λ

2y

|y|2
− η|2−n) (3.5)

where ωn is the volume of the unit ball in Rn.
In the future the estimate of hλ will rely heavily on the estimate of the Green’s function. So we give an

estimate of the Green’s function first. The information at ∂Bλ is traced carefully.

Lemma 3.4. There exists c1(n) > 0 such that for |η − y| < 1
3 (|y| − λ), we have

Gλ(y, η) ≥ c1|y − η|2−n. (3.6)

For |η − y| ≥ 1
3 (|y| − λ) and |y| ≤ 10λ, there exist constants c2(n), c3(n) > 0 such that

c2
(|y| − λ)(|η|2 − λ2)

λ|y − η|n
≤ Gλ(y, η) ≤ c3

(|y| − λ)(|η|2 − λ2)

λ|y − η|n
. (3.7)

Moreover, if we only assume λ < |y| < 10λ and |η| > λ, we have the second inequality of (3.7).
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Remark 3.3. By the self-adjointness of Gλ(y, η) we can reverse the roles of y and η in Lemma 3.4 and the
conclusions still hold.

Proof of Lemma 3.4: If |η − y| < 1
3 (|y| − λ) then |η − yλ| > 2|y − η|. Therefore

Gλ(y, η) ≥ 1

n(n− 2)ωn
(|y − η|2−n − 22−n|y − η|2−n) ≥ c1|y − η|2−n

which proves (3.6). When |η − y| ≥ 1
3 (|y| − λ) and λ ≤ |y| < 10λ we have

|y|
λ
|yλ − η| < 10(|η − y|+ |y − yλ|) < 70|η − y|.

On the other hand, we always have

|y|
λ
|yλ − η| > |η − y| for y, η ∈ Rn \ B̄λ. (3.8)

because the Green’s function is positive or by (3.3). Consequently

Gλ(y, η) =
1

n(n− 2)ωn
(|y − η|2−n − (

|y|
λ
|yλ − η|)2−n)

≥ 1

nωn

|y|
λ |y

λ − η| − |y − η|
( |y|λ |yλ − η|)n−1

≥ 1

n70n−1ωn

( |y|λ |y
λ − η|)2 − |y − η|2

|y − η|n−1( |y|λ |yλ − η|+ |y − η|)

≥ 1

n71nωn

( |y|λ |y
λ − η|)2 − |y − η|2

|y − η|n

=
1

n71nωn

(|y|2 − λ2)(|η|2 − λ2)

λ2|y − η|n
≥ c2

(|y| − λ)(|η|2 − λ2)

λ|y − η|n
.

where we have used (3.3). So we have proved the first inequality of (3.7). To prove the second, we only need
to reverse all the inequalities in the above in view of (3.8). Lemma 3.4 is established. �

We compare gi and gλi on the boundary |y| = δr−1
i . For gi we have gi(y) ≥ mr1/2

i . For gλi we have

gλi (y) ≤ Cδ−1ri, |y| = δr−1
i .

No matter how small δ is, we always have gi(y) >> gλi (y) for |y| = δr−1
i as long as i is sufficiently large.

To construct hλ we need the following estimate: By the assumption on K,

|K(riy
λ + ri(R+R0)e)−K(riy + ri(R+R0)e)| ≤ c(δ)r1/2

i |y|
1/2, |y| < δr−1

i .

Then
|Qλ(y)| ≤ c(δ)r1/2

i |y|
−4.5, y ∈ Σλ \ {−(R+R0)e}. (3.9)

Here we abuse the notation by using c(·) to indicate a non negative continuous function that vanishes at 0.
Define

hλ(y) = ε1r
1/2
i (|y|−1 − λ−1) +

∫
Σλ

Gλ(y, η)Qλ(η)dη,

We want ε1 and δ to be chosen so that ε0 >> ε1 >> c(δ) where ε0 appeared in Lemma 3.3.
From the definition we see that

∆hλ +Qλ = 0 in Σλ.

We need to show that hλ ≤ 0 in Σλ.
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It follows immediately from (3.9) that∫
Σλ

Gλ(y, η)Qλ(η)dη ≤ c(δ)M−1
i

∫
Σλ

Gλ(y, η)|η|−4.5dη.

To estimate the term on the right we discuss two situations:
Situation 1: λ < |y| < 4λ.
Let

Ωa = { η ∈ Σλ; |η − y| < (|y| − λ)/3 }.
Ωb = { η ∈ Σλ; |η − y| > (|y| − λ)/3 and |η| < 8λ}.
Ωc = { η ∈ Σλ; |η| > 8λ}.

Then we use

Gλ(y, η) ≤ 1

3ω3
|y − η|−1, η ∈ Ωa

to obtain ∫
Ωa

Gλ(y, η)|η|−4.5dη ≤ c6(|y| − λ).

where c6 = c6(n). Then for η ∈ Ωb we use (3.7) to get∫
Ωb

Gλ(y, η)|η|−4.5dη ≤ c7(|y| − λ),

where c7 = c7(n). Note that in the estimate above, we used the estimates for Gλ(y, η) in Lemma 3.4 and
the fact that

|η| − λ| ≤ 4|η − y|, for η ∈ Ωb.

Next for η ∈ Ωc we use (3.7) and |y − η| > |η|/2 to get∫
Ωc

Gλ(y, η)|η|−4.5dη ≤ c8(|y| − λ).

where c8 = c8(n).
Situation 2: |y| > 4λ.
Let

E1 = { η ∈ Σλ; |η| < |y|/2, }.
E2 = { η ∈ Σλ; |η − y| < |y|/2, }.
E3 = { η ∈ Σλ; |η − y| > |y|/2, |y|/2 < |η| < 2|y|.}.
E4 = { η ∈ Σλ; |η| > 2|y|. }.

In this situation we always use

Gλ(y, η) ≤ 1

3ω3
|y − η|−1.

Then by elementary estimates we have∫
Ej

Gλ(y, η)|η|−4.5dη ≤ c10|y|−1, j = 1, 2, 3, 4,

where c10 = c10(n).
Therefore there exists c11 = c11(n) such that

hλ(y) ≤


ε1r

1
2
i (|y|−1 − λ−1) + c11c(δ)r

1
2
i (|y| − λ), λ < |y| < 4λ,

ε1r
1
2
i (|y|−1 − λ−1) + c11c(δ)r

1
2
i , |y| > 4λ.
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So for any fixed ε1 we can determine δ to be small enough so that hλ < 0 in Σλ.
Then the standard method of moving sphere method can be applied here to finish the proof of the

asymptotic symmetry for n = 3. First for λ = λ0, by the estimate of hλ and Lemma 3.3 we see that
wλ0

+ hλ0
≥ 0 in Σλ0

. Then we consider the equation for wλ + hλ:

∆(wλ + hλ) + bλ(wλ + hλ) = Qλ + ∆hλ + bλhλ in Σλ \ Zi.

where Zi stands for the singular point −(R+R0)e. Since hλ ≤ 0 and ∆hλ +Qλ ≤ 0 in Σλ, wλ +hλ satisfies
the maximum principle for all λ ∈ [λ0, λ1]. Also we observe from the estimate of hλ that wλ + hλ is always
positive on |y| = δr−1

i . Let

λ̄i = sup{λ1 ≥ λ ≥ λ0; wµ + hµ ≥ 0 in Σµ \ Zi,∀µ ∈ [λ0, λ) }.

On one hand, by the fact that wλ + hλ always satisfies the maximum principle and the fact that it is always
positive on |y| = δr−1

i we know that λ̄i = λ1. On the other hand, by Lemma 3.3 we know λ̄i < λ1 since
wλ1

+hλ1
< − ε02 for all large i. This contradiction finishes the proof for the asymptotic symmetry for n = 3.

Step 2: If u has a non-removable singularity, then u is comparable to |x|− 1
2

First we cite a few known facts that are true for all dimension n ≥ 3 if u(x) ≤ C|x|−n−2
2 is assumed.

Let w(t) = ū(r)r
n−2
2 where et = r and ū is the spherical average of u. Then standard computation leads

to (see Chen-Lin [3], [4]):

(
n− 2

2
)2w − C1w

n∗ ≤ wtt ≤ (
n− 2

2
)2w − C2w

n∗ . (3.10)

Here we cite two lemmas in [3], [4]:

Lemma 3.5. There exists ε1 > 0 such that wtt > 0 whenever w(t) ≤ ε1.

Proof of Lemma 3.5: The proof follows immediately from (3.10). �.

Lemma 3.6. By making ε1 smaller if necessary, we have the following:

1. Suppose w(t) is non-increasing in (t0, t1) with w(t0) ≤ ε1. Then the inequality

t1 − t0 ≤
2

n− 2
log

w(t0)

w(t1)
+ Cε

4
n−2

1 (3.11)

holds where C(n) is a constant independent of ε1. Further more, if t1 is a local minimum of w(t), we
have

t1 − t0 ≥
2

n− 2
log

w(t0)

w(t1)
.

2. Suppose w(t) is nondecreasing in (t1, t2) with w(t2) ≤ ε1. Then the inequality

t2 − t1 ≤
2

n− 2
log

w(t2)

w(t1)
+ Cε

4
n−2

1 (3.12)

holds where C(n) is a constant independent of ε1. Further more, if t1 is a local minimum of w(t), we
have

t2 − t1 ≥
2

n− 2
log

w(t2)

w(t1)
.

Remark 3.4. Lemma 3.6 stated here is slightly more precise than Lemma 5.1 in [3] and (2.5)(2.6) in [4]. The
reason is we specify that the last term in (3.11) and (3.12) is small if ε1 is small. This observation is crutial
for n = 3.
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Lemma 3.6 is important for our argument. First we can see from its statement that it describes the
fluctuation of w(t). Secondly, it describes the relationship between w(t0) and w(t1) and indicates that t1− t0
tends to infinity if w(t1) → 0 and w(t0) = ε. This is a picture of pathology since this is not the case a
standard bubble (with no singularity) or u0 (a global solution with a singularity) should satisfy. Moreover,
we have seen that at a local minimum, u is very close to its spherical average. These facts will be taken
advantage in our argument in an essential way. Thirdly, this lemma gives a rather precise description of u
between log t0 and log t1. This has been used by Chen-Lin in deriving a contradiction for high dimensions.
They used this description to get a contradiction from the Pohozaev Identity. However, for n = 3, our
assumption on K does not allow us to use the Pohozaev Identity. We shall use a different argument.

Now we finish our proof of Theorem 2 for n = 3. We have known that w(t) ≤ C for all t < 0. If
lim inft→−∞ w(t) > 0, then we can apply Theorem 1 directly to obtain the convergent rate. So here we
assume lim inft→−∞ w(t) = 0 and we want to show that lim supt→−∞ w(t) = 0. Once we have this, a
standard argument shows that u has a removable singularity at the origin. See page 238 of [4].

Suppose for contradiction lim supt→−∞ w(t) > 0. Then by Lemmas 3.5 and 3.6, we can find a sequence
ri → 0 such that w(log ri) → 0 and w(log ri) are local minimums of w. Also, let r∗i be the point on the
left of ri such that w(log r∗i ) = ε1 and w is monotone decreasing on (log r∗i , log ri). Let r̄i be the point that
w(log r̄i) = ε1 and w(·) is monotone increasing over (log ri, log r̄i). For the convenience of notation, we define
t∗i = log r∗i , ti = log ri, t̄i = log r̄i.

The idea of this proof is the following. u decreases like a harmonic function on r∗i ≤ r ≤ ri. However,
ū(ri) and ū(r̄i) are pretty close. By Lemma 3.6 both ti− t∗i and t̄i− ti are tending to infinity, which is where
the problem is. So we construct a harmonic function slightly smaller than u on r∗i and r̄i. This function
will be greater than u(ri) at r = ri, which violates the maximum principle. The asymptotic symmetry
u = ū(1 +O(r)) and the smallness of ε1 are important here.

By Lemma 3.6 we have

2 log
w(t∗i )

w(ti)
≤ ti − t∗i ≤ 2 log

w(t∗i )

w(ti)
+ Cε1, (3.13)

2 log
w(t̄i)

w(ti)
≤ t̄i − ti ≤ 2 log

w(t̄i)

w(ti)
+ Cε1, (3.14)

Recall that C is independent of ε1 and i. We derive from (3.13) and (3.14) that

ū(r∗i )r∗i r
−1
i ≤ ū(ri) ≤ eCε1 ū(r∗i )r∗i r

−1
i , (3.15)

ū(r̄i) ≤ ū(ri) ≤ eCε1 ū(r̄i). (3.16)

Now we define a harmonic function H over r∗i ≤ |x| ≤ r̄i.

H(x) = ai|x|−1 + bi

where

ai = (1− ε1)
ū(r∗i )− ū(r̄i)

(r∗i )−1 − (r̄i)−1

bi = (1− ε1)
ū(r̄i)(r

∗
i )−1 − ū(r∗i )(r̄i)

−1

(r∗i )−1 − (r̄i)−1

By direct computation
H(r∗i ) = (1− ε1)ū(r∗i ), H(r̄i) = (1− ε1)ū(r̄i).

Since u = ū(1 + ◦(1)), we know for sufficiently large i,

u(x) > H(x), for |x| = r∗i and |x| = r̄i.

Since u is super-harmonic, we have
u(x) > H(x), |x| = ri.

Consequently,
(1 + ε1)ū(ri) > H(ri).
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By the definition of H we have

1 + ε1
1− ε1

ū(ri) >
ū(r∗i )r−1

i − ū(r̄i)r
−1
i + ū(r̄i)(r

∗
i )−1 − ū(r∗i )(r̄i)

−1

(r∗i )−1 − (r̄i)−1

which is equivalent to

1 + ε1
1− ε1

ū(ri)

ū(r∗i )

ri
r∗i

+
ū(r̄i)

ū(r∗i )
+
ri
r̄i
>

1 + ε1
1− ε1

ū(ri)

ū(r∗i )

ri
r̄i

+ 1 +
ū(r̄i)

ū(r∗i )

ri
r∗i
.

It follows from Lemma 3.6 that the second term, the third term on the left and the first term on the right
tend to 0 as i tends to ∞.This, combined with (3.15) and (3.16), gives

1 + ε1
1− ε1

eCε1 + ◦(1) + ◦(1) > ◦(1) + 1 + e−Cε1 .

Clearly this is impossible for ε1 sufficiently small. So we have proved lim supt→−∞ w(t) = 0. So we have

shown that if the singularity is not removable, then u(x) is comparable to |x|−n−2
2 when n = 3.

Step 3: u(x) ≤ C|x|− 1
2

The proof in [2] can be modified under our assumption on K. So here we only state the outline and
pinpoint the changes and important estimates. Also we write down the structure for the proof of

u(x) ≤ C|x|−
n−2
2 (3.17)

for all dimension n.
Suppose for contradiction that (3.17) does not hold, i.e. there is a sequence x̄i → 0 such that

u(x̄i)|x̄i|
n−2
2 →∞.

Then by a standard selection process and the classification theorem of Caffarelli-Gidas-Spruck, there exists a

sequence xi → 0 which are local maximums of u such that u(xi)|xi|
n−2
2 →∞ and u(xi)

−1u(u(xi)
− 2
n−2 ·+xi)

converge uniformly on compact subsets of Rn to a function U satisfying

∆U +K(0)Un
∗

= 0 in Rn, U(0) = 1 = max
Rn

U.

With no loss of generality we assume K(0) = n(n − 2). By the classification Theorem of Caffarelli, Gidas
and Spruck, the expression for U is

U(y) = (1 + |y|2)−
n−2
2 .

From now on we let Mi = u(xi).

Let vi(y) = M−1
i ui(M

− 2
n−2

i y + xi) and let vλi be its Kelvin transformation. Let wλ = vi − vλi then wλ
satisfies

∆wλ + bλwλ = Qλ

where

Qλ = (K(xi +M
− 2
n−2

i yλ)−K(xi +M
− 2
n−2

i y))(vλi )n
∗

and

bλ =


K(xi +M

− 2
n−2

i y)
vn
∗

i −(vλi )n
∗

vi−vλi
vi(y) 6= vλi (y)

n+2
n−2K(xi +M

− 2
n−2

i y)vi(y)
4

n−2 vi(y) = vλi (y).

Let λ0 = 1
2 and λ1 = 2, we have, like Lemma 3.6

vi(y)− vλ0
i (y) ≥ ε0(|y| − λ0)|y|1−n + ε0M

−1
i (λ2−n

0 − |y|2−n) y ∈ Σλ0 \ Zi.
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Now for n = 3, by our assumption on K we have

Qλ(y) ≤ c(δ)M−1
i |y|

−4.5 in Σλ (3.18)

Base on this, we construct hλ as

hλ(y) = ε1M
−1
i (

1

|y|
− 1

λ
) +

∫
Σλ

Gλ(y, η)Qλ(η)dη.

where ε1 is a small positive number.
The method of moving spheres can be applied to wλ + hλ for λ ∈ [λ0, λ1]. In [2] Chen-Lin assumed

K ∈ Cβ for any β > 1
2 . It can be weakened to the current version since we can choose δ small enough so

that the first term of hλ dominates. By elementary estimate we can show that hλ is non-positive in Σλ.
Therefore, by the definition of hλ we can apply the method of moving spheres to wλ + hλ from λ0 to λ1,
which leads to a contradiction, since vi and vλi converge to U and Uλ in C2 norm over finite domain. U < Uλ

outside Bλ if λ > 1. hλ tends to 0 uniformly over any finite domain.

4 Proof of Theorem 2 for n ≥ 4

Step One: Spherical Harnack Inequality:
In this step, we indicate the proof of

u(x) ≤ C|x|−
n−2
2 (4.1)

for n ≥ 4. We still use the notations vi, v
λ
i , wλ, Qλ, bλ, etc. The proof is similar to the one in [2]. We only

pinpoint the changes and important estimates.

Case 1: n = 4
For n ≥ 4, K is differentiable, it is proved in [2] that ∇K(0) = 0 under the assumption for contradiction.

Once we have this, by the assumption on K we have, for λ ∈ [ 1
2 , 2], that

|K(xi +M
− 2
n−2

i y)−K(xi +M
− 2
n−2

i yλ)| ≤ c(δ)M−1
i (|y| − λ).

Consequently,
|Qλ(y)| ≤ c(δ)M−1

i |y|
−1−n.

In [2], K ∈ C2 for n = 4, 5 but this is not necessary, the above estimate is enough for n = 4. We construct
hλ as follows:

hλ(y) = ε1M
−1
i (

1

|y|2
− 1

λ2
) +

∫
Σλ

Gλ(y, η)Qλ(η)dη.

where ε1 is, as in the case n = 3, a small positive number. Note that when δ is small, c(δ) is small
correspondingly. The test function hλ can still be non-positive. Then the argument of the method of moving
spheres can be applied to wλ + hλ (λ ∈ [ 1

2 , 2]) to get a contradiction.

Case 2: n ≥ 5
In this case, let Di = |∇K(xi)|. The argument in [2] can be modified slightly to prove that

D
1

α−1

i M
2

n−2

i → 0 (4.2)

where α = (n− 2)/2. Note that even though K ∈ C2 for n = 5 in [2], but this is not needed, the argument
they used to prove ∇K(0) = 0 can be applied to this case under the assumption of K for n = 5. Once we
have (4.2), then

|K(xi +M
− 2
n−2

i y)−K(xi +M
− 2
n−2

i yλ)| ≤ 3c(δ)M−1
i |y|

1/2(|y| − λ), for n = 5

and

|K(xi +M
− 2
n−2

i y)−K(xi +M
− 2
n−2

i yλ)| ≤ 3c(δ)M−1
i |y|

α−1(|y| − λ) for n ≥ 6.

20



Let

hλ(y) =
ε2
Mi

(|y|2−n − λ2−n) +

∫
Σλ

Gλ(y, η)Qλ(η)dη.

We require δ to be so small that ε0 >> ε2 >> ε1.
Then the moving sphere method works for wλ + hλ for λ ∈ [ 1

2 , 2]. The spherical Harnack inequality is
proved. �

Remark 4.1. In [2], the proof of ∇K(0) = 0 or (4.2) under the assumption for contradiction is involved with
a combination of two Kelvin transformations and a small translation in the method of moving planes. Their
approach can be re-interpreted by the method of moving spheres and the amount of computation can be
greatly reduced.

Step Two
In this step, we show that for n ≥ 4, if the singularity at the origin is not removable, then u(x) is

comparable to |x|−n−2
2 . More specifically, we have known that w(t) ≤ C. If lim inft→−∞ w(t) = 0, we want

to show that lim supt→−∞ w(t) = 0. Then u has a removable singularity at 0.
This is essentially proved by the arguments in Lin [11] and Chen-Lin [3]. In [11] Lin proved that if

∇K(0) 6= 0, then either u has a removable singularity or u(x) is comparable to |x|−n−2
2 . So we can assume

∇K(0) = 0. By the assumption of K we have

|x · ∇K(x)| ≤ C|x|α, α = (n− 2)/2.

This fact is exactly what Chen-Lin used in [4] (page 237 and page 238) to get a contradiction from the
Pohozaev Identity. So we don’t repeat the argument here. Therefore we have shown that for n ≥ 5,

lim inf
t→−∞

w(t) = 0 implies lim sup
t→−∞

w(t) = 0.

Consequently, u has a removable singularity at the origin. Here we would like to point out that for n = 4,
there is no need to consider the case ∇K(0) 6= 0 first. The estimate in Lemma 3.6 is enough to derive a
contradiction from the Pohozaev Identity directly.
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