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Abstract

We investigate pointwise upper bounds for nonnegative solutions u(x, t) of the nonlinear
initial value problem

0 ≤ (∂t −∆)αu ≤ uλ in Rn × R, n ≥ 1, (0.1)

u = 0 in Rn × (−∞, 0) (0.2)

where λ and α are positive constants. To do this we first give a definition—tailored for our
study of (0.1), (0.2)—of fractional powers of the heat operator (∂t − ∆)α : Y → X where X
and Y are linear spaces whose elements are real valued functions on Rn ×R and 0 < α < α0 for
some α0 which depends on n, X and Y .

We then obtain, when they exist, optimal pointwise upper bounds on Rn × (0,∞) for non-
negative solutions u ∈ Y of the initial value problem (0.1), (0.2) with particular emphasis on
those bounds as t→ 0+ and as t→∞.
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1 Introduction

In this paper we study pointwise upper bounds for nonnegative solutions u(x, t) of the nonlinear
inequalities

0 ≤ (∂t −∆)αu ≤ uλ in Rn × R, n ≥ 1, (1.1)

satisfying the initial condition
u = 0 in Rn × (−∞, 0) (1.2)

where λ and α are positive constants.
To do this, we first give in Section 2 a definition—appropriate for our analysis of the initial

value problem (1.1), (1.2)—of fractional powers of the heat operator

(∂t −∆)α : Y → X (1.3)

where ∆ is the Laplacian with respect to x ∈ Rn, X and Y are linear spaces whose elements are
real valued functions on Rn × R, and 0 < α < α0 for some α0 > 0 which depends on n, X and Y .

With the definition of (1.3) in hand, we obtain, when they exist, optimal pointwise upper
bounds on Rn× (0,∞) for nonnegative solutions u ∈ Y of the initial value problem (1.1), (1.2) with
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particular emphasis on these bounds as t→ 0+ and as t→∞. These results are stated in Section
3 and proved in Section 8.

Since the operator (1.3) is nonlocal, we must require the initial condition (1.2) to hold in
Rn×(−∞, 0) (not just in Rn×{0}) and nonnegative solutions of (1.1), (1.2) may not tend pointwise
to zero as t→ 0+ (see Theorem 3.5) even though they satisfy the initial condition (1.2).

Of course any estimates we obtain for nonnegative solutions of (1.1), (1.2) also hold for non-
negative solutions of the initial value problem consisting of (1.2) and the equation

(∂t −∆)αu = uλ in Rn × R.

According to our results in Section 3 there are essentially only three possibilities for the solutions
of (1.1), (1.2) depending on X, Y , λ, and α:

(i) The only solution is u ≡ 0 in Rn × R;

(ii) There exist sharp nonzero pointwise bounds for solutions as t→ 0+ and as t→∞;

(iii) There do not exist pointwise bounds for solutions as t→ 0+ and as t→∞.

All possiblities can occur. For the precise statements of possibilities (i), (ii), and (iii) see Theorem
3.1, Theorems 3.2–3.4, and Theorems 3.5 and 3.6, respectively.

The operator (1.3) is a fully fractional heat operator as opposed to time fractional heat operators
in which the fractional derivatives are only with respect to t, and space fractional heat operators,
in which the fractional derivatives are only with respect to x.

Some recent results for nonlinear PDEs containing time (resp. space) fractional heat operators
can be found in [2, 4, 5, 10, 15, 16, 17, 21, 28, 32, 33] (resp. [1, 3, 7, 8, 9, 11, 12, 14, 18, 22, 29, 30, 31]).
We know of no results for nonlinear PDEs containing the fully fractional heat operator (1.3).
However results for linear PDEs containing (1.3), including in particular

(∂t −∆)αu = f,

where f is a given function, can be found in [6, 20, 24, 27].

2 Definition and properties of fully fractional heat operators

In this section we give a well-motivated definition of the fully fractional heat operator (1.3), suitable
for our study of the initial value problem (1.1), (1.2), and then give some of its properties.

Some of the material in this section is inspired by—and can be viewed as the parabolic analog
of—the material in [26, Sec. 5.1] concerning the fractional Laplacian.

Since for functions u : Rn × R → R, n ≥ 1, which are sufficiently smooth and small at infinity
we have

((∂t −∆)u)̂(y, s) = (|y|2 − is)û(y, s),

where ̂ is the Fourier transform operator on Rn × R given by

û(y, s) =

∫∫
Rn×R

ei(y,s)·(x,t)u(x, t) dx dt,

the fractional heat operator (∂t −∆)α, α > 0, is formally defined in [25, Chapter 2] by

((∂t −∆u)αu)̂(y, s) = (|y|2 − is)αû(y, s). (2.1)
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If f = (∂t −∆)αu then from (2.1) and the fact (see [25, Theorem 2.2] and Theorem 2.1(i) below)
that

Φ̂α(y, s) = (|y|2 − is)−α for 0 < α < (n+ 2)/2

in the sense of tempered distributions where

Φα(x, t) =
tα−1

Γ(α)

1

(4πt)n/2
e−|x|

2/(4t)χ
(0,∞)(t), (2.2)

we formally get
û = Φ̂αf̂ .

Hence by the convolution theorem we formally find that

u = Jαf := Φα ∗ f (2.3)

where ∗ is the convolution operation in Rn × R. Since Φα(x, t) = 0 for t ≤ 0 we have

Jαf(x, t) =

∫∫
Rn×(−∞,t)

Φα(x− ξ, t− τ)f(ξ, τ) dξ dτ. (2.4)

By part (ii) of the following theorem, equations (2.1) and (2.3) are equivalent in the sense that

(Jαf)̂ = (|y|2 − is)−αf̂ for f ∈ L1(Rn × R) and 0 < α < (n+ 2)/2

in the sense of tempered distributions.

Theorem 2.1. Suppose 0 < α < (n+ 2)/2.

(i) The Fourier transform of Φα(x, t) is the function (|y|2 − is)−α in the sense that∫∫
Rn×R

Φα(x, t)ϕ̂(x, t) dx dt =

∫∫
Rn×R

(|y|2 − is)−αϕ(y, s) dy ds

for all ϕ ∈ S where S is the Schwarz class of rapidly decreasing functions.

(ii) The identity (Jαf)̂(y, t) = (|y|2 − is)−αf̂(y, s) holds in the sense that∫∫
Rn×R

Jαf(x, t)ĝ(x, t) dx dt =

∫∫
Rn×R

(|y|2 − is)−αf̂(y, s)g(y, s) dy ds (2.5)

for all f ∈ L1(Rn × R) and all g ∈ S.

Motivated by these formal calculations, we will now define the operator (∂t−∆)α as the inverse
of a linear operator

Jα : X → Y (2.6)

where Jα is defined by (2.4) and (2.2) and X and Y are linear spaces whose elements are functions
f : Rn × R→ R such that the operator (2.6) has the following properties:

(P1) it makes sense because the integral in (2.4) defines a real valued measurable function on Rn×R
for all f ∈ X,

(P2) it is one-to-one and onto, and

(P3) if u = Jαf then f = 0 in Rn × (−∞, 0) if and only if u = 0 in Rn × (−∞, 0).
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Property (P3) will be needed to handle the initial condition (1.2). The domain of Jα is usually
taken to be Lp(Rn×R), 1 ≤ p < n+2

2α (see [24, Section 9.2]). However since the region of integration
for the integral (2.4) is not Rn × R but rather Rn × (−∞, t), we see that more natural and less
restrictive choices for the domain and range of Jα are

Xp :=
⋂
T∈R

Lp(Rn × RT ) (2.7)

Y p
α := Jα(Xp) (2.8)

respectively, where RT = (−∞, T ). By (2.7) we mean Xp is the set of all measurable functions
f : Rn × R→ R such that

‖f‖Lp(Rn×RT ) <∞ for all T ∈ R.

The notation in (2.7) should be interpreted similarly elsewhere in this paper.
According to the following two theorems the formal operator

Jα : Xp → Y p
α , (2.9)

where Xp and Y p
α are defined in (2.7) and (2.8), satisfies properties (P1)–(P3) provided either(
p > 1 and 0 < α <

n+ 2

2p

)
or

(
p = 1 and 0 < α ≤ n+ 2

2p

)
. (2.10)

When p and α satisfy (2.10), part (i) of the following theorem shows that the operator (2.9)
satisfies (P1) and parts (ii) and (iii) give some of its properties.

Theorem 2.2. Suppose p and α are real numbers satisfying (2.10) and f ∈ Xp. Then

(i) Jαf, Jα|f | ∈ Lploc(R
n × R) and

(ii) Jβ(Jγf) = Jαf in Lploc(R
n × R) whenever β > 0, γ > 0, and β + γ = α.

If in addition α > 1 then

(iii) HJαf = Jα−1f in D′(Rn × R) where H = ∂t −∆ is the heat operator.

Remark 2.1. Theorem 2.2(i) can be improved to Jαf ∈ Lqloc(R
n × R) when

1 < p <
n+ 2

2α
and

1

q
=

1

p
− 2α

n+ 2
.

This can be seen by applying Gopala Rao [13, Theorem 3.1] to the function fT defined in the proof
of Theorem 2.2 in Section 6.

According to the following theorem, if p and α satisfy (2.10) then the operator (2.9) satisfies
properties (P2) and (P3) where Xp and Y p

α are defined by (2.7) and (2.8).

Theorem 2.3. Suppose p and α are real numbers satisfying (2.10). Then

(i) the operator (2.9) is one-to-one and onto, and

(ii) if
f ∈ Xp and T ∈ R (2.11)

then
f |Rn×RT = 0 if and only if (Jαf)|Rn×RT = 0.
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By the results in this section, the following definition is natural and makes sense.

Definition 2.1. Suppose p and α are real numbers satisfying (2.10) and Xp and Y p
α are defined

by (2.7) and (2.8). Then the operator

(∂t −∆)α : Y p
α → Xp (2.12)

is defined to be the inverse of the operator (2.9).

Remark 2.2. The functions µT : Xp → R, T ∈ R, defined by µT (f) = ‖f‖Lp(Rn×RT ), form a
separating family of seminorms on Xp which turns Xp into a locally convex topological vector
space (see for example [23, Theorem 1.37]). Thus assuming (2.10) and defining a subset O′ of Y p

α

to be open if O′ = Jα(O) for some open set O ∈ Xp, we see by Theorem 2.3(i) that Y p
α is also a

locally convex topological vector space and the operator (2.12) is a homeomorphism.

We conclude this section by investigating

lim
a→0+

(∂t − a2∆)α and lim
b→0+

(b∂t −∆)α

where α > 0.
To do this we first repeat the above procedure with ∂t − ∆ replaced with b∂t − a2∆ where a

and b are positive constants. The end result after defining

Jα,a,b : Xp → Y p
α,a,b := Jα,a,b(X

p) (2.13)

by
Jα,a,bf = Φα,a,b ∗ f,

where a, b, α, p are positive constants satisfying (2.10) and

Φα,a,b(x, t) =
1

anb
Φα

(
x

a
,
t

b

)
,

is the following modified version of Definition 2.1.

Definition 2.2. Suppose a, b, p and α are positive constants satsfying (2.10) and Xp and Y p
α,a,b are

defined in (2.7) and (2.13). Then the operator

(b∂t − a2∆)α : Y p
α,a,b → Xp

is defined to be the inverse of the operator (2.13).

The following theorem states in what sense

(∂t − a2∆)α → ∂αt as a→ 0+

where we formally define the equation
∂αt u = f

to mean
u = Jα,0,1f

where

(Jα,0,1f)(x, t) :=

∫ t

−∞

(t− τ)α−1

Γ(α)
f(x, τ) dτ

is the Riemann-Liouville integral of f with respect to t of order α with base point −∞.
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Theorem 2.4. Suppose α > 0 and f : Rn ×R→ R is a continuous function with compact support.
Then

Jα,a,1f → Jα,0,1f as a→ 0+

uniformly on compact subsets of Rn × R.

The following theorem states in what sense

(b∂t −∆)α → (−∆)α as b→ 0+

where we formally define the equation
(−∆)αu = f

to mean
u = Jα,1,0f

where

(Jα,1,0f)(x, t) :=
1

γ(n, α)

∫
Rn

f(y, t) dy

|x− y|n−2α

is the Riesz potential of f with respect to x of order α. Here

γ(n, α) =
4απn/2Γ(α)

Γ(n/2− α)
. (2.14)

Theorem 2.5. Suppose 0 < 2α < n and f : Rn × R → R is a continuous function with compact
support. Then

Jα,1,bf → Jα,1,0f as b→ 0+

uniformly on compact subsets of Rn × R.

3 Results for fully fractional initial value problems

In this section we state our results concerning pointwise bounds for nonnegative solutions

u ∈ Y p
α (3.1)

of the fully fractional initial value problem

0 ≤ (∂t −∆)αu ≤ uλ in Rn × R, n ≥ 1, (3.2)

u = 0 in Rn × (−∞, 0) (3.3)

where λ > 0 and, as in the Definition 2.1 of the operator (2.12), α and p satisfy (2.10).

Remark 3.1. If α and p satisfy (2.10) and u satisfies (3.1) and the first inequality in (3.2) then

f := (∂t −∆)αu ≥ 0 in Rn × R

and hence u = Jαf ≥ 0 in Rn × R by (2.4). Thus the assumption that u be nonnegative can be
omitted when studying (3.1)–(3.3).
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n+ 2

2p

1

α =
n+ 2

2p

(
1− 1

λ

)

λ

α

B A

C

Figure 1: Graphs of the regions A, B, and C.

In order to state our results we first note that for each fixed p ≥ 1 the open first quadrant of
the λα-plane is the union of the following pairwise disjoint sets.

A =

{
(λ, α) : λ ≥ 1 and α >

n+ 2

2p

(
1− 1

λ

)}
B = {(λ, α) : 0 < λ < 1 and α > 0}

C =

{
(λ, α) : λ > 1 and 0 < α <

n+ 2

2p

(
1− 1

λ

)}
D =

{
(λ, α) : λ > 1 and α =

n+ 2

2p

(
1− 1

λ

)}
.

Note that A, B, and C are two dimensional regions in the λα-plane whereas D is the curve
separating A and C. (See Figure 1.) Our results in this section deal with solutions of (3.1)–(3.3)
when (λ, α) is in A, B, or C. We have no results when (λ, α) ∈ D.

The following theorem deals with the case that (λ, α) ∈ A.

Theorem 3.1. Suppose α and p satisfy (2.10), (λ, α) ∈ A, and u satisfies (3.1)–(3.3). Then

u = (∂t −∆)αu = 0 almost everywhere in Rn × R.

The following three theorems deal with the case (λ, α) ∈ B.

Theorem 3.2. Suppose α and p satisfy (2.10), (λ, α) ∈ B, and u satisfies (3.1)–(3.3). Then for
all T > 0 we have

‖u‖L∞(Rn×(0,T )) ≤ (MTα)
1

1−λ (3.4)

and
‖(∂t −∆)αu‖L∞(Rn×(0,T )) ≤ (MTα)

λ
1−λ (3.5)

where

M = M(α, λ) =
Γ( αλ

1−λ + 1)

Γ(α+ αλ
1−λ + 1)

(3.6)

where Γ is the Gamma function.
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By the following theorem the bounds (3.4) and (3.5) in Theorem 3.2 are optimal.

Theorem 3.3. Suppose α and p satisfy (2.10), (λ, α) ∈ B, T > 0, and N < M where M is given
by (3.6). Then there exists a solution

u ∈ Y p
α ∩ C(Rn × R)

of (3.2), (3.3) such that
(∂t −∆)αu ∈ Lp(Rn × R) ∩ C(Rn × R),

u(0, t) ≥ (Ntα)
1

1−λ for 0 < t < T

and
(∂t −∆)αu(0, t) = (Ntα)

λ
1−λ for 0 < t < T.

Although the estimates (3.4) and (3.5) are optimal there still remains the question as to whether
there is a single solution which has the same size as these estimates as t → ∞. By the following
theorem there is such a solution.

Theorem 3.4. Suppose α and p satisfy (2.10) and (λ, α) ∈ B. Then there exists N > 0 and
u ∈ Y p

α satisfying (3.2), (3.3) such that

u(x, t) ≥ (Ntα)
1

1−λ for (x, t) ∈ Ω

and
(∂t −∆)αu(x, t) ≥ (Ntα)

λ
1−λ for (x, t) ∈ Ω

where Ω = {(x, t) ∈ Rn × R : |x|2 < t}.
According to the following theorem, if (λ, α) ∈ C then there exist bounds as t→ 0+ for solutions

of (3.1)–(3.3) in neither the pointwise (i.e. L∞) sense nor in the Lq sense when q > p.
Moreover by Theorem 3.6 the same is true as t → ∞ provided q ∈ [q0,∞] for some q0 =

q0(n, α, λ) > p.

Theorem 3.5. Suppose α and p satisfy (2.10)

(λ, α) ∈ C and q ∈ (p,∞].

Then there exists a solution u ∈ Y p
α of (3.2), (3.3) and a sequence {tj} ⊂ (0, 1) such that

lim
j→∞

tj = 0

and
‖uλ‖Lq(Rj) = ‖(∂t −∆)αu‖Lq(Rj) =∞ for j = 1, 2, ...,

where
Rj = {(x, t) ∈ Rn × R : |x| <

√
tj and tj < t < 2tj}. (3.7)

Theorem 3.6. Suppose α and p satisfy (2.10),

(λ, α) ∈ C and q ∈
[
n+ 2

2α

(
1− 1

λ

)
,∞
]
.

Then there exists a solution u ∈ Y p
α of (3.2), (3.3) and a sequence {tj} ⊂ (1,∞) such that

lim
j→∞

tj =∞

and
‖uλ‖Lq(Rj) = ‖(∂t −∆)αu‖Lq(Rj) =∞ for j = 1, 2, ...,

where Rj is given in (3.7).
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4 Jα version of fully fractional initial value problems

In order to prove our results stated in Section 3, we will first reformulate them in terms of the
inverse Jα of the fractional heat operator (2.12) as follows.

Suppose that λ > 0 and, as assumed in Definition 2.1 and Theorems 3.1–3.6, that p and α
satisfy (2.10). Then, by Theorem 2.3, u satisfies (3.1)–(3.3) if and only if f := (∂t −∆)αu satisfies

f ∈ Xp (4.1)

0 ≤ f ≤ (Jαf)λ in Rn × R (4.2)

f = 0 in Rn × (−∞, 0). (4.3)

Thus the two problems (3.1)–(3.3) and (4.1)–(4.3) are equivalent under the transformation
u = Jαf when p and α satisfy (2.10). This restriction on p and α was imposed so that Jαf would
be defined pointwise in Rn × R for all f ∈ Xp. If p ≥ 1 and α > 0 do not satisfy (2.10), that is, if(

p > 1 and α ≥ n+ 2

2p

)
or

(
p = 1 and α >

n+ 2

2p

)
(4.4)

then Jαf is generally not defined pointwise as an extended real valued function for f ∈ Xp.
(However it can be defined for all f in the subspace Lp(Rn×R) of Xp as a distribution on a certain
subspace of the Schwarz space S (see [24, Sec 9.2.5]).

Even though Jαf is generally not defined pointwise as and extended real valued function for
f ∈ Xp when p and α satisfy (4.4), it is defined pointwise as a nonnegative extended real value
function for all nonnegative functions f ∈ Xp for all p ≥ 1 and α > 0 because then the integrand
of Jαf is a nonnegative function. Hence, since f is nonnegative in the problem (4.1)–(4.3), we
see that the problem (4.1)–(4.3) makes sense for all p ≥ 1 and α > 0 when Jα is defined in the
pointwise sense, which is the sense in which we will define it in this section. However Jα, when
restricted to the set Xp

+ of all nonnegative functions f ∈ Xp, is not one-to-one when p and α satisfy
(4.4). Thus our results in this section for the problem (4.1)–(4.3) when p ≥ 1 and α > 0 will yield
corresponding results for the problem (3.1)–(3.3) only when p and α satisfy (2.10).

In view of these remarks, we will consider in this section solutions

f ∈ Xp (4.5)

of the following Jα version of the fully fractional initial value problem (3.2), (3.3):

0 ≤ f ≤ K(Jαf)λ in Rn × R, n ≥ 1 (4.6)

f = 0 in Rn × (−∞, 0) (4.7)

where
p ∈ [1,∞) and K,λ, α ∈ (0,∞) (4.8)

are constants, Xp is defined by (2.7), and Jα is given by (2.4).
Under the equivalence of problems (3.1)–(3.3) and (4.1)–(4.3) discussed above, the following

Theorems 4.1–4.6, when restricted to the case that p and α satisfy (2.10) and K = 1, clearly imply
Theorems 3.1–3.6 in Section 3. We will prove Theorems 4.1–4.6 in Section 8.

Theorem 4.1. Suppose (λ, α) ∈ A and f, p, and K satisfy (4.5)–(4.8). Then

f = Jαf = 0 almost everywhere in Rn × R. (4.9)
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Theorem 4.2. Suppose (λ, α) ∈ B and f, p, and K satisfy (4.5)–(4.8). Then for all b > 0 we have

‖f‖L∞(Rn×(0,b)) ≤ K
1

1−λ (Mbα)
λ

1−λ (4.10)

and
‖Jαf‖L∞(Rn×(0,b)) ≤ K

1
1−λ (Mbα)

1
1−λ (4.11)

where

M = M(α, λ) =
Γ( αλ

1−λ + 1)

Γ(α+ αλ
1−λ + 1)

. (4.12)

Theorem 4.3. Suppose p and K satisfy (4.8), (λ, α) ∈ B, T > 0, and 0 < N < M where M is
given by (4.12). Then there exists a solution

f ∈ Lp(Rn × R) ∩ C(Rn × R) (4.13)

of (4.6), (4.7) such that
Jαf ∈ C(Rn × R) (4.14)

f(0, t) = K
1

1−λ (Ntα)
λ

1−λ for 0 < t < T (4.15)

and
Jαf(0, t) ≥ K

1
1−λ (Ntα)

1
1−λ for 0 < t < T. (4.16)

Theorem 4.4. Suppose p and K satisfy (4.8) and (λ, α) ∈ B. Then there exists N > 0 and

f ∈ Xp

satisfying (4.6), (4.7) such that

f(x, t) ≥ K
1

1−λ (Ntα)
λ

1−λ for |x|2 < t (4.17)

and
Jαf(x, t) ≥ K

1
1−λ (Ntα)

1
1−λ for |x|2 < t. (4.18)

Theorem 4.5. Suppose p and K satisfy (4.8),

(λ, α) ∈ C and q ∈ (p,∞]. (4.19)

Then there exists a solution
f ∈ Lp(Rn × R) (4.20)

of (4.6), (4.7) and a sequence {tj} ⊂ (0, 1) such that

lim
j→∞

tj = 0

and
‖f‖Lq(Rj) =∞ for j = 1, 2, ..., (4.21)

where
Rj = {(x, t) ∈ Rn × R : |x| <

√
tj and tj < t < 2tj}. (4.22)
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Theorem 4.6. Suppose p and K satisfy (4.8),

(λ, α) ∈ C and
n+ 2

2α
(1− 1

λ
) ≤ q ≤ ∞. (4.23)

Then there exists a solution
f ∈ Xp (4.24)

of (4.6), (4.7) and a sequence {tj} ⊂ (1,∞) such that

lim
j→∞

tj =∞

and
‖f‖Lq(Rj) =∞ for j = 1, 2, ..., (4.25)

where Rj is given in (4.22).

5 Preliminary results for fully fractional heat operators

In this section we provide some lemmas needed for the proofs of our results in Section 2 concerning
the fully fractional heat operator (2.12).

The following lemma is needed for the proof of Theorem 2.2.

Lemma 5.1. Suppose α, β > 0. Then

Φα+β = Φα ∗ Φβ in Rn × R (5.1)

where Φα is defined in (2.2).

Proof. Since

Φα ∗ Φβ(x, t) =

∫ ∞
−∞

∫
ξ∈Rn

Φα(x− ξ, t− τ)Φβ(ξ, τ) dξ dτ

=

{
0 for (x, t) ∈ Rn × (−∞, 0]∫ t

0

∫
ξ∈Rn Φα(x− ξ, t− τ)Φβ(ξ, τ) dξ dτ for (x, t) ∈ Rn × (0,∞),

(5.2)

we have (5.1) holds in Rn × (−∞, 0].
Using the well-known facts that

Φ̂α(·, t)(y) =
tα−1

Γ(α)
e−t|y|

2
for t > 0 and y ∈ Rn (5.3)

and ∫ t

0

(t− τ)α−1τβ−1

Γ(α)Γ(β)
dτ =

tα+β−1

Γ(α+ β)
for t, α, β > 0, (5.4)
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and assuming we can interchange the order of integration in the following calculation (we will justify
this after the calculation) we obtain for t > 0 and y ∈ Rn that

(Φα ∗ Φβ)̂(·, t)(y)

=

∫
x∈Rn

eix·y
∫ t

0

(∫
ξ∈Rn

Φα(x− ξ, t− τ)Φβ(ξ, τ) dξ

)
dτ dx (5.5)

=

∫ t

0

(∫
x∈Rn

eix·y

(∫
ξ∈Rn

Φα(x− ξ, t− τ)Φβ(ξ, τ) dξ

)
dx

)
dτ

=

∫ t

0

(t− τ)α−1

Γ(α)
e−|y|

2(t−τ) τ
β−1

Γ(β)
e−|y|

2τdτ (by the convolution theorem)

= e−|y|
2t

∫ t

0

(t− τ)α−1τβ−1

Γ(α)Γ(β)
dτ

= e−t|y|
2 tα+β−1

Γ(α+ β)
= Φ̂α+β(·, t)(y). (5.6)

This calculation is justified by Fubini’s theorem and the fact that the integral (5.5) with eix·y

replaced with 1 is, by Fubini’s theorem for nonnegative functions and (5.4), equal to∫ t

0

∫
ξ∈Rn

(∫
x∈Rn

Φα(x− ξ, t− τ)dx

)
Φβ(ξ, τ) dξ dτ

=

∫ t

0

∫
ξ∈Rn

(t− τ)α−1

Γ(α)
Φβ(ξ, τ) dξ dτ

=
tα+β−1

Γ(α+ β)
for t > 0 and y ∈ Rn.

It follows now from (5.6) that (5.1) holds in Rn × (0,∞).

The following lemma is needed for the proof of Lemma 5.3 which in turn is needed for the proof
of Theorem 2.3.

Lemma 5.2. Suppose f ∈ L1(−∞, 0) and 0 < α ≤ 1. Then

g(t) :=

∫ t

−∞
(t− τ)α−1|f(τ)|dτ <∞ for almost all t ∈ (−∞, 0).

Proof. The lemma is clearly true if α = 1. Hence we can assume 0 < α < 1. Since∫ 0

−∞
(−t)−αg(t) dt =

∫ 0

−∞
(−t)−α

∫ t

−∞
(t− τ)α−1|f(τ)| dτ dt

=

∫ 0

−∞
|f(τ)|

(∫ 0

τ
(−t)(1−α)−1(t− τ)α−1dt

)
dτ

= Γ(1− α)Γ(α)

∫ 0

−∞
|f(τ)| dτ <∞,

where we have used (5.4), we see that g(t) <∞ for almost all t ∈ (−∞, 0).
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Lemma 5.3. Suppose f ∈ L1(Rn × (−∞, 0)), α ∈ (0, 1], and y ∈ Rn. Then for almost all t ∈
(−∞, 0) we have

Ĵαf(·, t)(y) =

∫ t

−∞

(t− τ)α−1

Γ(α)
e−|y|

2(t−τ)f̂(·, τ)(y) dτ.

Proof. By Fubini’s theorem for nonnegative functions and Lemma 5.2 we find for almost all t ∈
(−∞, 0) that ∫

x∈Rn
|eix·y|

∫ t

−∞

(t− τ)α−1

Γ(α)

∫
ξ∈Rn

Φ1(x− ξ, t− τ)|f(ξ, τ)| dξ dτ dx

=

∫ t

−∞

(t− τ)α−1

Γ(α)

(∫
ξ∈Rn

|f(ξ, τ)|dξ

)
dτ <∞.

Hence by Fubini’s theorem, the convolution theorem for Fourier transforms, and (5.3), we see for
almost all t ∈ (−∞, 0) that

Ĵαf(·, t)(y) =

∫ t

−∞

∫
x∈Rn

eix·y
∫
ξ∈Rn

Φα(x− ξ, t− τ)f(ξ, τ) dξ dx dτ

=

∫ t

−∞

(t− τ)α−1

Γ(α)
e−|y|

2(t−τ)f̂(·, τ)(y) dτ.

6 Fully fractional heat operator proofs

In this section we prove our fully fractional heat operator results which we stated in Section 2.

Proof of Theorem 2.1. Part (i) was proved by Sampson [25, Theorem 2.2]. We prove part (ii) in
two steps.

Step 1. Suppose f, g ∈ S. Let (x, t) ∈ Rn × R be momentarily fixed and define ϕ ∈ S by

ϕ(y, s) = f(x+ y, t+ s).

Then ̂̂ϕ(y, s) = (2π)n+1ϕ(−y,−s) = (2π)n+1f(x− y, t− s)

and
ϕ̂(y, s) = e−ix·y−itsf̂(y, s).

Thus by part (i) with ϕ replaced with ϕ̂ we get

(2π)n+1Jαf(x, t) = (2π)n+1

∫∫
Rn×R

Φα(y, s)f(x− y, t− s) dy ds

=

∫∫
Rn×R

Φα(y, s)̂̂ϕ(y, s) dy ds

=

∫∫
Rn×R

(|y|2 − is)−αϕ̂(y, s) dy ds

=

∫∫
Rn×R

(|y|2 − is)−αf̂(y, s)e−ix·y−its dy ds. (6.1)
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Multiplying (6.1) by ĝ(x, t)/(2π)n+1, integrating the resulting equation with respect to (x, t), and
interchanging the order of integration in the resulting integral on the RHS, which is allowed by
Fubini’s theorem and the fact that∫∫

||y|2−is|≤1
||y|2 − is|−αdy ds <∞ for 0 < α < (n+ 2)/2, (6.2)

we get (2.5).

Step 2. Suppose f ∈ L1(Rn × R) and g ∈ S. Then ĝ ∈ S and f̂ ∈ C(Rn × R) ∩ L∞(Rn × R). Since
S is dense in L1(Rn × R) there exists {fj} ⊂ S such that fj → f in L1(Rn × R) and by Step 1∫∫

Rn×R
Jαfj(x, t)ĝ(x, t) dx dt =

∫∫
Rn×R

(|y|2 − is)−αf̂j(y, s)g(y, s) dy ds. (6.3)

Since
‖f̂j − f̂‖L∞(Rn×R) ≤ ‖fj − f‖L1(Rn×R) → 0 as j →∞

we have ∣∣∣∣∣
∫∫

Rn×R
(f̂j(y, s)− f̂(y, s))(|y|2 − is)−αg(y, s) dy ds

∣∣∣∣∣
≤ ‖f̂j − f̂‖L∞(Rn×R)

∫∫
Rn×R

||y|2 − is|−α|g(y, s)| dy ds

→ 0 as j →∞

by (6.2). Thus the RHS of (6.3) tends to the RHS of (2.5) as j →∞.
Also, defining h(x, t) = |ĝ(−x,−t)| we have∣∣∣ ∫∫

Rn×R
Jα(fj − f)(x, t)ĝ(x, t) dx dt

∣∣∣
≤
∫∫

Rn×R

∫∫
Rn×R

Φα(x− y, t− s)|(fj − f)(y, s)| dy ds |ĝ(x, t)| dx dt

=

∫∫
Rn×R

|(fj − f)(y, s)|(Φα ∗ h)(−y,−s) dy ds

→ 0 as j →∞

because noting that h ∈ L1(Rn × R) ∩ L∞(Rn × R),

‖ΦαχRn×(0,1)‖L1(Rn×R) =

∫ 1

0

tα−1

Γ(α)

∫
x∈Rn

Φ1(x, t) dx dt

=

∫ 1

0

tα−1

Γ(α)
dt <∞ for α > 0, (6.4)

and ΦαχRn×(1,∞) ∈ L∞(Rn × R) for α < (n+ 2)/2 we find that

Φα ∗ h = ΦαχRn×(0,1) ∗ h+ ΦαχRn×(1,∞) ∗ h ∈ L∞(Rn × R)

by Young’s inequality. Thus the LHS of (6.3) tends to the LHS of (2.5) as j →∞.
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Proof of Theorem 2.2. Since ⋂
T∈R

Lploc(R
n × RT ) = Lploc(R

n × R)

and since (JαfT )|Rn×RT = (Jαf)|Rn×RT , where fT = fχRn×RT to prove (i), (ii) and (iii) it suffices
to prove for all T ∈ R that

(i)′ JαfT , Jα|fT | ∈ Lploc(R
n × RT )

(ii)′ JβJγfT = JαfT in Lploc(R
n × RT ) whenever β > 0, γ > 0, and β + γ = α

and

(iii)′ HJαfT = Jα−1fT in D′(Rn × RT ) when α > 1.

To do this, let T ∈ R be fixed. Since f ∈ Xp ⊂ Lp(Rn × RT ) we have

fT ∈ Lp(Rn × R). (6.5)

Proof of (i)′. Since |JαfT | ≤ Jα|fT |, to prove (i)′ it suffices to prove only that

Jα|fT | ∈ Lploc(R
n × RT ). (6.6)

By (2.3) we have
Jα|fT | = u1 + u2, (6.7)

where
u1 = (ΦαχRn×(0,1)) ∗ |fT | and u2 = (ΦαχRn×(1,∞)) ∗ |fT |.

It follows from (6.4), (6.5), and Young’s inequality that

u1 ∈ Lp(Rn × R).

Thus to complete the proof of (6.6) and hence of (i)′ it suffices to show

u2 ∈ L∞(Rn × R). (6.8)

To do this we consider two cases.

Case I. Suppose 1 < p < n+2
2α . Let q be the conjugate Hölder exponent for p. Then

1

q
= 1− 1

p
< 1− 2α

n+ 2
=
n+ 2− 2α

n+ 2

and thus making the change of variables
√

q
4sy = z we obtain

‖ΦαχRn×(1,∞)‖
q
Lq(Rn×R) = C(n, α, q)

∫ ∞
1

∫
y∈Rn

s(α−1−n/2)qe−
q
4s
|y|2 dy ds

= C(n, α, q)

∫ ∞
1

s(α−1−n/2)q+n/2

∫
z∈Rn

e−|z|
2
dz ds <∞.

Hence (6.8) follows from (6.5) and Young’s inequality.
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Case II. Suppose 1 = p ≤ n+2
2α . Then

ΦαχRn×(1,∞)(y, s) ≤ C(n, α)sα−1−n/2χRn×(1,∞)(y, s)

≤ C(n, α) for (y, s) ∈ Rn × R.

Thus (6.8) follows from (6.5) and so the proof of (i)′ is complete.

Proof of (ii)′. Using Fubini’s theorem for nonnegative functions and Lemma 5.1 we have

Jβ(Jγ |fT |)(x, t) =

∫∫
Rn×R

Φβ(x− ξ, t− τ)

∫∫
Rn×R

Φγ(ξ − η, τ − ζ)|fT (η, ζ)| dη dζ dξ dτ

=

∫∫
Rn×R

Φβ+γ(x− η, t− ζ)|fT (η, ζ)| dη dζ

= (Jα|fT |)(x, t) <∞ a.e. in Rn × R

by part (i)′. Hence by Fubini’s theorem the above calculation can be repeated with |fT | replaced
with fT which gives (ii)′.

Proof of (iii)′. By (i)′ we have

Jα|fT |, Jα−1|fT | ∈ Lploc(R
n × RT ) ⊂ D′(Rn × RT ). (6.9)

Let ϕ ∈ C∞0 (Rn × RT ). Then noting that∫∫
Rn×RT

Φ1(x− η, t− ζ)H∗ϕ(x, t) dx dt = ϕ(η, ζ) for (η, ζ) ∈ Rn × RT (6.10)

where H∗ = −∂t − ∆ and assuming we can interchange the order of integration in the following
calculation (we will justify this after the calculation) it follows from Lemma 5.1 that

(H(JαfT ))(ϕ) = (JαfT )(H∗ϕ) (6.11)

=

∫∫
Rn×RT

(∫∫
Rn×RT

Φα(x− ξ, t− τ)fT (ξ, τ) dξ dτ

)
H∗ϕ(x, t) dx dt

=

∫∫
Rn×RT

∫∫
Rn×RT

(∫∫
Rn×RT

Φ1(x− η, t− ζ)Φα−1(η − ξ, ζ − τ) dη dζ

)

× fT (ξ, τ) dξ dτH∗ϕ(x, t) dx dt

=

∫∫
Rn×RT

(∫∫
Rn×RT

(∫∫
Rn×RT

Φ1(x− η, t− ζ)H∗ϕ(x, t) dx dt

)
Φα−1(η − ξ, ζ − τ) dη dζ

)

× fT (ξ, τ) dξ dτ (6.12)

=

∫∫
Rn×RT

(∫∫
Rn×RT

Φα−1(η − ξ, ζ − τ)fT (ξ, τ) dξ dτ

)
ϕ(η, ζ) dη dζ

= (Jα−1fT )(ϕ).
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To justify this calculation, it suffices by Fubini’s theorem to show the integral (6.12), with fT
and H∗ϕ replaced with |fT | and |H∗ϕ|, is finite. However in the same way that (6.12) was obtained
from (6.11), we see that this modified integral equals∫∫

Rn×RT

(Jα|fT |)(x, t)|H∗ϕ|(x, t) dx dt <∞

by (6.9).

Proof of Theorem 2.3. Clearly (ii) implies (i). We now prove (ii). Suppose (2.11). It follows from
(2.4) that

f |Rn×RT = 0 implies (Jαf)|Rn×RT = 0.

Conversely suppose
(Jαf)|Rn×RT = 0. (6.13)

The complete the proof of (ii) it suffices to prove

f |Rn×RT = 0. (6.14)

By Theorem 2.2(iii) and mathematical induction, we can, without loss of generality, assume for the
proof (6.14) that

0 < α ≤ 1. (6.15)

Moreover, by translating we can assume
T = 0. (6.16)

We divide the proof of (6.14) into two cases.

Case I. Suppose (2.10)2 holds. Then

1 = p ≤ n+ 1

2α
. (6.17)

Let
F (y, t) = f̂(·, t)(y) for (y, t) ∈ Rn × (−∞, 0). (6.18)

By (2.11) and (6.17) we have
f ∈ L1(Rn × (−∞, 0)) (6.19)

and thus
f(·, t) ∈ L1(Rn) for almost all t ∈ (−∞, 0)

which implies
F (·, t) ∈ C(Rn) for almost all t ∈ (−∞, 0).

Also, by (6.19)

‖F (y, ·)‖L1(−∞,0) =

∫ 0

−∞

∣∣∣∣∫
Rn
eix·yf(x, t) dx

∣∣∣∣ dt
≤ ‖f‖L1(Rn×(−∞,0) <∞ for all y ∈ Rn. (6.20)
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Case I(a). Suppose α = 1. Then by (6.19), (6.13), and Lemma 5.3 we have for each y ∈ Rn that∫ t

−∞
e|y|

2τF (y, τ) dτ = e|y|
2t

∫ t

−∞
e−|y|

2(t−τ)F (y, τ) dτ = 0

for almost all t ∈ (−∞, 0). Hence, by (6.20) and the measure theoretic fundamental theorem of
calculus, we get F = 0 in L1(Rn × (−∞, 0)) which together with (6.18) implies (6.14).

Case I(b). Suppose 0 < α < 1. To handle this case we hold y ∈ Rn\{0} fixed and define

F0(t) := F (y, t). (6.21)

Then by (6.20)
F0 ∈ L1(−∞, 0). (6.22)

From (6.19), (6.13), and Lemma 5.3 we have

g(t) :=

∫ t

−∞
(t− τ)α−1e|y|

2τF0(τ)dτ = 0 (6.23)

for almost all t ∈ (−∞, 0). On the other hand, assuming we can interchange the order of integration
in the following calculation (we will justify this after the calculation), we find for b ∈ R that∫ 0

−∞

(∫ 0

t
(ζ − t)−α cos bζ dζ

)
g(t) dt

=

∫ 0

−∞
e|y|

2τF0(τ)

(∫ 0

τ
cos bζ

(∫ ζ

τ
(t− τ)α−1(ζ − t)−αdt

)
dζ

)
dτ

= C(α)

∫ 0

−∞
e|y|

2τF0(τ)

(∫ 0

τ
cos bζ dζ

)
dτ (6.24)

because making the change of variables t = ζ − (ζ − τ)s we see that∫ ζ

τ
(t− τ)α−1(ζ − t)−αdt =

∫ 1

0
(1− s)α−1s−αds = C(α).

The calculation (6.24) is justified by Fubini’s theorem and the fact that if we replace cos bζ and
g(t) with | cos bζ| and

g0(t) =

∫ t

−∞
(t− τ)α−1e|y|

2τ |F0(τ)| dτ

respectively in the above calculation we get by Fubini’s theorem for nonnegative functions that∫ 0

−∞

∫ 0

t
(ζ − t)−α| cos bζ| dζ g0(t) dt

≤ C(α)

∫ 0

−∞
e|y|

2τ |F0(τ)|

(∫ 0

τ
| cos bζ| dζ

)
dτ

≤ C(α)

∫ 0

−∞
(−τ)e|y|

2τ |F0(τ)| dτ <∞

by (6.22)
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It follows now from (6.23), (6.24) and (6.21) that

0 =

∫ 0

−∞
e|y|

2τF (y, τ) sin bτ dτ

for all y ∈ Rn\{0} and all b ∈ R. Thus since the Fourier sine transform is one to one on L1(−∞, 0)
we have F (y, ·) = 0 in L1(−∞, 0) for all y ∈ Rn\{0}. Hence by Fubini’s theorem, F = 0 in
L1(Rn × (−∞, 0)), which together with (6.18) and (6.16) implies (6.14).

Case II. Suppose (2.10)1 holds. Let fT = fχRn×RT and u = JαfT . Then by (2.11) we have

fT ∈ Lp(Rn × R),

and by (2.4) and (6.13) we have
u = 0 in Rn × RT . (6.25)

Let J−αε u be as defined in Theorem A.1. By (6.25) we have for l > α that (∆l
y,τu)(x, t) = 0 for

(x, t) ∈ Rn × RT and (y, τ) ∈ Rn × (0,∞). Thus for ε > 0 we have

J−αε u = 0 in Rn × RT .

Hence (6.14) follows from Theorem A.1.

Proof of Theorem 2.4. For a, τ > 0 and δ ≥ 0 we have∫
|ξ|>δ

Φα,a,1(ξ, τ) dξ =

∫
|ξ|>δ

τα−1

Γ(α)

1

(4πa2τ)n/2
e−

|ξ|2

4a2τ dξ

=
τα−1

Γ(α)

1

πn/2

∫
|η|> δ√

4a2τ

e−|η|
2
dη. (6.26)

In particular, taking δ = 0 we find that∫
Rn

Φα,a,1(ξ, τ) dξ =
τα−1

Γ(α)
for a, τ > 0. (6.27)

Let Ω be a compact subset of Rn × R. Choose T > 0 such that

f = 0 on Rn × R−T (6.28)

and
Ω ⊂ Rn × RT . (6.29)

Let ε > 0. Since f is uniformly continuous on Rn × R there exists δ > 0 such that

|f(x− ξ, ζ)− f(x, ζ)| < ε (6.30)

whenever x, ξ ∈ Rn, ζ ∈ R, and |ξ| < δ.
Let (x, t) ∈ Ω. Then t < T and thus for τ ≥ 2T we have

t− τ < T − 2T = −T.
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Hence for a > 0 we have by (6.28) and (6.27) that

|(Jα,a,1f − Jα,0,1f)(x, t)|

≤
∫ 2T

0

∣∣∣∣∫
Rn

Φα,a,1(ξ, τ)f(x− ξ, t− τ) dξ − τα−1

Γ(α)
f(x, t− τ)

∣∣∣∣ dτ
=

∫ 2T

0

∣∣∣∣∫
Rn

Φα,a,1(ξ, τ)(f(x− ξ, t− τ)− f(x, t− τ)) dξ

∣∣∣∣ dτ
≤ K1(x, t) +K2(x, t) (6.31)

where

K1(x, t) =

∫ 2T

0

∫
|ξ|<δ

Φα,a,1(ξ, τ)|f(x− ξ, t− τ)− f(x, t− τ)| dξ dτ

and

K2(x, t) =

∫ 2T

0

∫
|ξ|>δ

Φα,a,1(ξ, τ)|f(x− ξ, t− τ)− f(x, t− τ)| dξ dτ.

From (6.30) and (6.27) we conclude that

K1(x, t) ≤ ε
∫ 2T

0

(∫
Rn

Φα,a,1(ξ, τ) dξ

)
dτ = ε

∫ 2T

0

τα−1

Γ(α)
dτ

and letting M = 2‖f‖L∞(Rn×R) and using (6.26) we obtain

K2(x, t) ≤M
∫ 2T

0

(∫
|ξ|>δ

Φα,a,1(ξ, τ) dξ

)
dτ ≤M

(∫ 2T

0

τα−1

Γ(α)
dτ

)
C(n, a, δ, T )

where

C(n, a, δ, T ) =
1

πn/2

∫
|η|> δ√

8a2T

e−|η|
2
dη → 0 as a→ 0+.

The theorem therefore follows from (6.31).

Proof of Theorem 2.5. For b > 0, δ > 0, and ξ ∈ Rn\{0} we have∫ ∞
δ

Φα,1,b(ξ, τ) dτ =

∫ ∞
δ

(τ/b)α−1

Γ(α)

1

(4πτ/b)n/2
e−

b|ξ|2
4τ dτ/b

=

∫ ∞
δ

1

Γ(α)(4π)n/2

(τ
b

)α−1−n/2
e−

b|ξ|2
4τ

1

b
dτ

=

∫ b|ξ|2
4δ

0

1

Γ(α)(4π)n/2

(
|ξ|2

4ζ

)α−1−n/2
e−ζ
|ξ|2

4ζ2
dζ

=
(|ξ|2/4)α−n/2

Γ(α)(4π)n/2

∫ b|ξ|2
4δ

0
ζn/2−α−1e−ζdζ

=
|ξ|2α−n

4απn/2Γ(α)

∫ b|ξ|2
4δ

0
ζn/2−α−1e−ζdζ (6.32)

≤
(
|ξ|2α−n

4απn/2Γ(α)

)
1

n/2− α

(
b|ξ|2

4δ

)n/2−α
= C(n, α)

(
b

δ

)n/2−α
. (6.33)
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Moreover, letting δ → 0+ in (6.32) we obtain∫ ∞
0

Φα,1,b(ξ, τ) dτ =
|ξ|2α−n

γ(n, α)
for b > 0 and ξ 6= 0, (6.34)

where γ is given in (2.14).
Let Ω be a compact subset of Rn × R. Choose R > 0 such that

f = 0 on (Rn\BR(0))× R (6.35)

and
Ω ⊂ BR(0)× R. (6.36)

Let ε > 0. Since f is uniformly continuous on Rn × R there exists δ > 0 such that

|f(η, t− τ)− f(η, t)| < ε (6.37)

whenever η ∈ Rn, t, τ ∈ R, and |τ | < δ.
Let (x, t) ∈ Ω. Then |x| < R and thus for |ξ| ≥ 2R we have

|x− ξ| ≥ |ξ| − |x| > 2R−R = R.

Hence for b > 0 we find by (6.35) and (6.34) that

|(Jα,1,bf − Jα,1,0f)(x, t)|

≤
∫
|ξ|<2R

∣∣∣∣∫ ∞
0

Φα,1,b(ξ, τ)f(x− ξ, t− τ) dτ − f(x− ξ, t)
γ(n, α)|ξ|n−2α

∣∣∣∣ dξ
=

∫
|ξ|<2R

∣∣∣∣∫ ∞
0

Φα,1,b(ξ, τ)(f(x− ξ, t− τ)− f(x− ξ, t)) dτ)

∣∣∣∣ dξ
≤ K1(x, t) +K2(x, t) (6.38)

where

K1(x, t) =

∫
|ξ|<2R

∫ δ

0
Φα,1,b(ξ, τ)|f(x− ξ, t− τ)− f(x− ξ, t)| dτ dξ

and

K2(x, t) =

∫
|ξ|<2R

∫ ∞
δ

Φα,1,b(ξ, τ)|f(x− ξ, t− τ)− f(x− ξ, t)| dτ dξ.

From (6.37) and (6.34) we conclude

K1(x, t) ≤ ε
∫
|ξ|<2R

(∫ ∞
0

Φα,1,b(ξ, τ) dτ

)
dξ = ε

∫
|ξ|<2R

dξ

γ(n, α)|ξ|n−2α

and letting M = 2‖f‖L∞(Rn×R) and using (6.33) we obtain

K2(x, t) ≤M
∫
|ξ|<2R

(∫ ∞
δ

Φα,1,b(ξ, τ) dτ

)
dξ

≤MC(n, α)

(
b

δ

)n/2−α
|B2R(0)| → 0 as b→ 0+.

The theorem therefore follows from (6.38).
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7 Preliminary results for Jα problems

In this section we provide some lemmas needed for the proofs of our results in Section 4 dealing
with solutions of the Jα problem (4.5)–(4.8).

Let Ω = Rn × (a, b) where n ≥ 1 and a < b. Lemmas 7.1 and 7.2 give estimates for the
convolution

(Vα,Ωf)(x, t) =

∫∫
Ω

Φα(x− ξ, t− τ)f(ξ, τ) dξ dτ (7.1)

where α > 0 and Φα is defined in (2.2).

Remark 7.1. Note that if f : Rn × R → R is a nonnegative measurable function such that
‖f‖L∞(Rn×Ra) = 0 then

Vα,Ωf = Jαf in Ω := Rn × (a, b).

Lemma 7.1. For α > 0, Ω = Rn × (a, b) and f ∈ L∞(Ω) we have

‖Vα,Ωf‖L∞(Ω) ≤
(b− a)α

Γ(α+ 1)
‖f‖L∞(Ω).

Proof. The lemma is obvious if ‖f‖L∞(Ω) = 0. Hence we can assume ‖f‖L∞(Ω) > 0. Then for
(x, t) ∈ Ω

|(Vα,Ωf)(x, t)|
‖f‖L∞(Ω)

≤
∫ t

a

(t− τ)α−1

Γ(α)

=1︷ ︸︸ ︷(∫
ξ∈Rn

Φ1(x− ξ, t− τ)dξ

)
dτ

= − (t− τ)α

Γ(α+ 1)

∣∣∣∣∣
τ=t

τ=a

=
(t− a)α

Γ(α+ 1)

≤ (b− a)α

Γ(α+ 1)
.

Lemma 7.2. Let p, q ∈ [1,∞], α, and δ satisfy

0 ≤ δ :=
1

p
− 1

q
<

2α

n+ 2
< 1. (7.2)

Then Vα,Ω maps Lp(Ω) continuously into Lq(Ω) and for f ∈ Lp(Ω) we have

‖Vα,Ωf‖Lq(Ω) ≤M‖f‖Lp(Ω)

where
M = C(b− a)

2α−(n+2)δ
2 for some constant C = C(n, α, δ).

Proof. Define r ∈ [1,∞) by

1− 1

r
= δ (7.3)

and define Pα, f̄ : Rn × R→ R by

Pα(x, t) = Φα(x, t)χ(0,b−a)(t)
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and

f̄(x, t) =

{
f(x, t) if (x, t) ∈ Ω

0 elsewhere.

Since for t ∈ (a, b) and τ ∈ (a, t) we have t− τ ∈ (0, b− a) we see for (x, t) ∈ Ω that

Vα,Ωf(x, t) =

∫ t

a

∫
ξ∈Rn

Pα(x− ξ, t− τ)f(ξ, τ) dξ dτ

=

∫∫
Ω
Pα(x− ξ, t− τ)f(ξ, τ) dξ dτ

= (Pα ∗ f̄)(x, t) (7.4)

where ∗ is the convolution operation in Rn × R.
Also since ∫

Rn
e−r|x|

2/(4t)dx =

(
4πt

r

)n/2
we have by (7.2) and (7.3) that

‖Pα‖Lr(Rn×R) =
1

Γ(α)(4π)n/2

(∫ b−a

0
tr(α−1−n/2)

(∫
x∈Rn

e−r|x|
2/(4t)dx

)
dt

)1/r

= C(n, α, r)

(∫ b−a

0
tr(α−1−n/2)+n

2 dt

)1/r

= C(n, α, r)(b− a)
2α−(n+2)δ

2 .

Thus by (7.4), (7.2), (7.3), and Young’s inequality we have

‖Vα,Ωf‖Lq(Ω) = ‖Pα ∗ f̄‖Lq(Ω) ≤ ‖Pα ∗ f̄‖Lq(Rn×R)

≤ ‖Pα‖Lr(Rn×R)‖f̄‖Lp(Rn×R)

≤ C(b− a)
2α−(n+2)δ

2 ‖f‖Lp(Ω).

Lemma 7.3. Suppose f, p, and K satisfy (4.5)–(4.8) and (λ, α) ∈ A ∪B. Then

f ∈ X∞.

Proof. Let T > 0 be fixed. Then f ∈ Lp(Rn × RT ) and to complete the proof it suffices to show

f ∈ L∞(Rn × (0, T )). (7.5)

We consider two cases.

Case I. Suppose 0 < α < n+2
2p . Then

0 < λ <
n+ 2

n+ 2− 2αp
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and thus there exists ε = ε(n, λ, α, p) > 0 such that

ε < 2αp, 2ε < n+ 2− 2αp, and λ <
n+ 2

n+ 2− 2αp+ 2ε
.

Suppose

f ∈ Lp0(Rn × (0, T )) for some p0 ∈
[
p,
n+ 2

2α

)
. (7.6)

Then letting

q =
(n+ 2)p0

n+ 2− 2αp0 + ε

we have
1

p0
− 1

q
=

2α

n+ 2
− ε

(n+ 2)p0
∈
(

0,
2α

n+ 2

)
.

Hence by (4.7), Remark 7.1, and Lemma 7.2 we see that

Jαf ∈ Lq(Rn × (0, T )).

Thus by (4.6) we find that

0 ≤ f ≤ K(Jαf)λ ∈ Lq/λ(Rn × (0, T )). (7.7)

Since

q/λ

p0
=

n+ 2

λ(n+ 2− 2αp0 + ε)
≥ n+ 2− 2αp+ 2ε

n+ 2− 2αp0 + ε

≥ n+ 2− 2αp+ 2ε

n+ 2− 2αp+ ε
= C(n, λ, α, p) > 1

we see that starting with p0 = p and iterating a finite number of times the process of going from
(7.6) to (7.7) yields

f ∈ Lp0(Rn × (0, T )) for some p0 >
n+ 2

2α
.

Hence (7.5) follows from (4.6) and Lemma 7.2.

Case II. Suppose α ≥ n+2
2p . Clearly there exists α̂ ∈ (0, n+2

2p ) such that (λ, α̂) ∈ A ∪ B. Then for
(x, t), (ξ, τ) ∈ Rn × (0, T ) we have

Φα(x− ξ, t− τ)

Φα̂(x− ξ, t− τ)
= (t− τ)α−α̂Γ(α̂)/Γ(α)

≤ Tα−α̂Γ(α̂)/Γ(α)

= C(T, α, α̂).

Thus for (x, t) ∈ Rn × (0, T ) we have

Jαf(x, t) ≤ C(T, α, α̂)Jα̂f(x, t)

and hence by (4.6) we see that

0 ≤ f ≤ KC(T, α, α̂)λ(Jα̂f)λ almost everywhere in Rn × (0, T ).

It follows therefore from Case I that f satisfies (7.5).
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Lemma 7.4. Suppose x ∈ Rn and t, τ ∈ (0,∞) satisfy

|x|2 < t and
t

4
< τ <

3t

4
. (7.8)

Then ∫
|ξ|2<τ

Φ1(x− ξ, t− τ) dξ ≥ C(n) > 0

where Φα is defined by (2.2).

Proof. Making the change of variables z = x−ξ√
4(t−τ)

, letting e1 = (1, 0, ..., 0), and using (7.8) and

(2.2) we find that∫
|ξ|2<τ

Φ1(x− ξ, t− τ) dξ =
1

πn/2

∫
|z− x√

4(t−τ)
|<

√
τ√

4(t−τ)

e−|z|
2
dz

≥ 1

πn/2

∫
|z−

√
t√

4(t−τ)
e1|<

√
τ√

4(t−τ)

e−|z|
2
dz

≥ 1

πn/2

∫
|z−e1|< 1

2
√
3

e−|z|
2
dz

= C(n) > 0

where in this calculation we used the fact that the integral of e−|z|
2

over a ball is decreased if the
absolute value of the center of the ball is increased or the radius of the ball is decreased.

Lemma 7.5. For τ < t ≤ T and |x| ≤
√
T − t we have∫

|ξ|<
√
T−τ

Φ1(x− ξ, t− τ) dξ ≥ C

where C = C(n) is a positive constant.

Proof. Making the change of variables z = x−ξ√
t−τ and letting e1 = (1, 0, ..., 0) we get∫

|ξ|<
√
T−τ

Φ1(x− ξ, t− τ) dξ =
1

(4π)n/2
1

(t− τ)n/2

∫
|ξ|<
√
T−τ

e
− |x−ξ|

2

4(t−τ)dξ

=
1

(4π)n/2

∫
|z− x√

t−τ |<
√
T−τ√
t−τ

e−|z|
2/4dz (7.9)

≥ 1

(4π)n/2

∫
|z−
√
T−τ√
t−τ e1|<

√
T−τ√
t−τ

e−|z|
2/4dz (7.10)

≥ 1

(4π)n/2

∫
|z−e1|<1

e−|z|
2/4dz, (7.11)

where the last two inequalities need some explanation. Since |x| ≤
√
T − t <

√
T − τ , the center of

the ball of integration in (7.9) is closer to the origin than the center of the ball of integration in (7.10).
Thus, since the integrand is a decreasing function of |z|, we obtain (7.10). Since

√
T − τ ≥

√
t− τ ,

the ball of integration in (7.10) contains the ball of integration in (7.11) and hence (7.11) holds.
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Lemma 7.6. Suppose α > 0, γ > 0, p ≥ 1, and

f0(x, t) =

(
1

t

)n+2
2p
−γ
χΩ0(x, t) where Ω0 = {(x, t) ∈ Rn × R : |x|2 < t}.

Then f0 ∈ Xp and

C1

(
1

t

)n+2
2p
−γ−α

≤ Jαf0(x, t) ≤ C2

(
1

t

)n+2
2p
−γ−α

for (x, t) ∈ Ω0

where C1 and C2 are positive constants depending only on n, α, γ, and p.

Proof. For T > 0 we have

‖f0‖pLp(Rn×RT ) =

∫ T

0

∫
|x|<
√
t

(
1

t

)n+2
2
−γp

dx dt

= C(n)

∫ T

0
tγp−1dt <∞

because γp > 0. Hence f0 ∈ Xp.
Also for (x, t) ∈ Rn × (0,∞) we have

Jαf0(x, t) =

∫ t

−∞

∫
ξ∈Rn

Φα(x− ξ, t− τ)f0(ξ, τ) dξ dτ

=
1

Γ(α)

∫ t

0
(t− τ)α−1

(
1

τ

)n+2
2p
−γ (∫

|ξ|2<τ
Φ1(x− ξ, t− τ) dξ

)
dτ. (7.12)

Hence by Lemma 7.4 we see for (x, t) ∈ Ω0 that

Jαf0(x, t) ≥ C(n, α)

∫ 3t/4

t/4
(t− τ)α−1

(
1

τ

)n+2
2p
−γ
dτ

= C(n, α)t
α−n+2

2p
+γ
∫ 3/4

1/4
(1− s)α−1

(
1

s

)n+2
2p
−γ
ds where τ = ts

= C(n, α, γ, p)t
α−n+2

2p
+γ
.

Moreover for (x, t) ∈ Rn × (0,∞) and 0 < τ < t/2 we have∫
|ξ|2<τ

Φ1(x− ξ, t− τ) dξ =
1

πn/2

∫
|z− x√

4(t−τ)
|<

√
τ√

4(t−τ)

e−|z|
2
dz where z =

x− ξ√
4(t− τ)

≤ |B1(0)|
πn/2

( √
τ√

4(t− τ)

)n
and for (x, t) ∈ Rn × (0,∞) and t/2 < τ < t we have∫

|ξ|2<τ
Φ1(x− ξ, t− τ) dξ ≤

∫
Rn

Φ1(x− ξ, t− τ) dξ = 1.
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Thus by (7.12) for (x, t) ∈ Rn × (0,∞) we have

Jαf0(x, t) ≤ C(n, α)

[∫ t/2

0
(t− τ)α−1

(
1

τ

)n+2
2p
−γ ( τ

t− τ

)n/2
dτ

+

∫ t

t/2
(t− τ)α−1

(
1

τ

)n+2
2p
−γ
dτ

]

= C(n, α)t
α−n+2

2p
+γ

[∫ 1/2

0
(1− s)α−1

(
1

s

)n+2
2p
−γ ( s

1− s

)n/2
ds

+

∫ 1

1/2
(1− s)α−1

(
1

s

)n+2
2p
−γ
ds

]
= C(n, α, γ, p)t

α−n+2
2p

+γ

because α and γ are positive.

Lemma 7.7. Suppose α > 0, γ ∈ R, 0 ≤ t0 < T, p ∈ [1,∞), and

f(x, t) =

(
1

T − t

)n+2
2p
−γ
χΩ(x, t)

where
Ω = {(x, t) ∈ Rn × (t0, T ) : |x| <

√
T − t}.

Then

Jαf(x, t) ≥ C
(

1

T − t

)n+2
2p
−γ−α

for (x, t) ∈ Ω+ := {(x, t) ∈ Ω : T+t0
2 < t < T} where C = C(n, α, γ, p) > 0. Moreover,

f ∈ Lp(Rn × R) if and only if γ > 0 (7.13)

and in this case

‖f‖pLp(Rn×R) = C(n)

∫ T−t0

0
sγp−1ds. (7.14)

Proof. Since

‖f‖pLp(Rn×R) =

∫ T

t0

∫
|x|<
√
T−t

(T − t)γp−
n+2
2 dx dt

= C(n)

∫ T

t0

(T − t)γp−1dt = C(n)

∫ T−t0

0
sγp−1ds

we see that (7.13) and (7.14) hold.
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Let r = n+2
2p − γ − α. Then for (x, t) ∈ Ω we have

Jαf(x, t) =

∫ t

t0

(T − τ)−r−α
∫
|ξ|<
√
T−τ

Φα(x− ξ, t− τ) dξ dτ

= C

∫ t

t0

(T − τ)−r−α(t− τ)α−1

(∫
|ξ|<
√
T−τ

Φ1(x− ξ, t− τ) dξ

)
dτ

≥ C
∫ t

t0

(T − τ)−r−α(t− τ)α−1dτ, by Lemma 7.5,

= C(T − t)−rg
(
t− t0
T − t

)
where g(z) =

∫ z
0 (ζ + 1)−r−αζα−1dζ and where we made the change of variables t − τ = (T − t)ζ.

Thus
Jαf(x, t) ≥ C(T − t)−r for (x, t) ∈ Ω+

because t−t0
T−t > 1 in Ω+.

8 Proofs of results for Jα problems

In this section we prove our results stated in Section 4 concerning pointwise bounds for nonnegative
solutions f of (4.5)–(4.8). As explained in Section 4, these results immediately imply Theorems
3.1–3.6 in Section 3.

Remark 8.1. The function g : Rn × R→ [0,∞) defined by

g(x, t) = g(t) =

{
(Mtα)

λ
1−λ for t > 0

0 for t ≤ 0,

where α > 0, 0 < λ < 1, and M = M(α, λ) is defined in (4.12), satisfies

g = (Jαg)λ in Rn × R (8.1)

which can be verified using (5.4). Even though g /∈ Xp for all p ≥ 1, it will be useful in our analysis
of solutions of (4.6), (4.7) which are in Xp for some p ≥ 1.

Remark 8.2. It will be convenient to scale (4.6) as follows. Suppose K,λ, α, T ∈ (0,∞), λ 6= 1,
and f, f̄ : Rn × R→ R are nonnegative measurable functions such that f = f̄ = 0 in Rn × (−∞, 0)
and

f(x, t) = K
1

1−λT
αλ
1−λ f̄(x̄, t̄)

where
x = T 1/2x̄ and t = T t̄.

Then f satisfies
0 ≤ f ≤ K(Jαf)λ in Rn × R

if and only if f̄ satisfies
0 ≤ f̄ ≤ (Jαf̄)λ in Rn × R.

Moreover
f(x, t)

K
1

1−λ t
αλ
1−λ

=
f̄(x̄, t̄)

t̄
αλ
1−λ

for (x, t) ∈ Rn × (0,∞)
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and
Jαf(x, t)

K
1

1−λ t
α

1−λ
=
Jαf̄(x̄, t̄)

t̄
α

1−λ
for (x, t) ∈ Rn × (0,∞).

Proof of Theorem 4.1. Suppose for contradiction that (4.9) is false. Then there exists T > 0 such
that

‖f‖L∞(Rn×RT ) > 0.

Hence by (4.7) there exists t0 ∈ [0, T ) such that

‖f‖L∞(Rn×Rt)

{
= 0 for t ≤ t0
> 0 for t > t0.

Thus by Remark 7.1, we have for all b > t0 that

Jαf = Vα,Ωbf in Ωb

where Ωb = Rn × (t0, b) and Vα,Ω is defined by (7.1). Also, by Lemma 7.3,

‖f‖L∞(Ωb) ≤ ‖f‖L∞(ΩT ) <∞ for t0 < b < T.

It follows therefore from (4.6) and Lemma 7.1 that for t0 < b < T we have

0 < K−1 ≤
‖Vα,Ωbf‖λL∞(Ωb)

‖f‖L∞(Ωb)
≤

(
(b− t0)α

Γ(α+ 1)

)λ
‖f‖λ−1

L∞(Ωb)
→ 0 as b→ t+0

because λ ≥ 1. This contradiction proves Theorem 4.1.

Proof of Theorem 4.2. By Remark 8.2 with T = 1 we can assume K = 1. For b > 0 we have by
Lemma 7.3 that

f ∈ L∞(Rn × Rb)

and by (4.6), (4.7), Remark 7.1 with a = 0, and Lemma 7.1 that

‖f‖L∞(Ωb) ≤ ‖Jαf‖
λ
L∞(Ωb)

≤

(
bα

Γ(α+ 1)
‖f‖L∞(Ωb)

)λ
where Ωb = Rn × (0, b). Thus, since 0 < λ < 1, we see that

‖f‖L∞(Ωb) ≤

(
bα

Γ(α+ 1)

) λ
1−λ

for all b > 0. (8.2)

Define {γj} ⊂ (0,∞) by γ1 = 1 and

γj+1 = (M̄γj)
λ, j = 1, 2, ..., where M̄ = Γ(α+ 1)M. (8.3)

Then, since 0 < λ < 1, we see that

γj → M̄
λ

1−λ as j →∞. (8.4)
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Suppose for some positive integer j that

‖f‖L∞(Ωb) ≤ γj

(
bα

Γ(α+ 1)

) λ
1−λ

for all b > 0. (8.5)

Then for b > 0 and (x, t) ∈ Ωb we find from (4.6) and (5.4) that

f(x, t) ≤ (Jαf(x, t))λ

≤

(∫ t

0

(t− τ)α−1

Γ(α)

(∫
ξ∈Rn

Φ1(x− ξ, t− τ) dξ

)
‖f‖L∞(Ωτ )dτ

)λ

≤

(∫ t

0

(t− τ)α−1

Γ(α)
γj

(
τα

Γ(α+ 1)

) λ
1−λ

dτ

)λ

=

(
γj

1

Γ(α)Γ(α+ 1)
λ

1−λ

∫ t

0
(t− τ)α−1τ

αλ
1−λdτ

)λ

=

(
γj

Γ(α)Γ( αλ
1−λ + 1)tα+ αλ

1−λ

Γ(α)Γ(α+ 1)
λ

1−λΓ(α+ αλ
1−λ + 1)

)λ

=

(
γj

Mt
α

1−λ

Γ(α+ 1)
λ

1−λ

)λ
=

(
γj

M̄t
α

1−λ

Γ(α+ 1)
1

1−λ

)λ

= γj+1

(
tα

Γ(α+ 1)

) λ
1−λ

. (8.6)

Thus

‖f‖L∞(Ωb) ≤ γj+1

(
bα

Γ(α+ 1)

) λ
1−λ

for all b > 0.

Hence (4.10) follows inductively from (8.2)–(8.5).

Finally, repeating the calculation (8.6) with γj = γj+1 = M̄
λ

1−λ we get

(Jαf(x, t))λ ≤ M̄
λ

1−λ

(
tα

Γ(α+ 1)

) λ
1−λ

for (x, t) ∈ Ωb

which proves (4.11).

Proof of Theorem 4.3. By Remark 8.2 we can assume K = T = 1. For (x, t) ∈ Rn×R and δ ∈ (0, 1)
let

gδ(x, t) = gδ(t) = ψδ(t)g(t) (8.7)

where g is as in Remark 8.1 and ψδ ∈ C∞(R→ [0, 1]) satisfies

ψδ(t) =

{
1 if t ≤ 1

0 if t ≥ 1 + δ.
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Then for 1 ≤ t ≤ 1 + δ

Jαg(t)− Jαgδ(t) =

∫ t

1

(t− τ)α−1

Γ(α)
g(τ)(1− ψδ(τ)) dτ

≤
∫ t

1

(t− τ)α−1

Γ(α)
g(τ) dτ ≤ g(1 + δ)

∫ t

1

(t− τ)α−1

Γ(α)
dτ

= g(1 + δ)
(t− 1)α

Γ(α+ 1)
≤ g(2)

δα

Γ(α+ 1)

and thus by (8.1) we have for 1 ≤ t ≤ 1 + δ that

Jαgδ(t)

Jαg(t)
=
Jαg(t)− (Jαg(t)− Jαgδ(t))

g(t)1/λ

≥ 1− g(2)δα

Γ(α+ 1)g(1)1/λ

= 1− C(α, λ)δα ≥
√
N

M

provided we choose δ = δ(α, λ,N) ∈ (0, 1) sufficiently small. Hence for 1 ≤ t ≤ 1 + δ we see from
(8.1) that

gδ(t) ≤ g(t) = (Jαg(t))λ ≤
(
M

N

)λ/2
(Jαgδ(t))

λ (8.8)

which by (8.7) and (8.1) holds for all other t as well.
Next let ϕ(x) = e−ψ(x) where ψ(x) =

√
1 + |x|2−1. Then for ε ∈ (0, 1), γ > 1, and |ξ−x| < γ

√
2

we have
ϕ(εξ)

ϕ(εx)
= e−(ψ(εξ)−ψ(εx)) ≥ e−ε|ξ−x| ≥ e−εγ

√
2.

Thus defining fε : Rn × R→ [0,∞) by

fε(x, t) = ϕ(εx)

(
N

M

) λ
1−λ

gδ(t)

we find for |ξ − x| < γ
√

2 and τ ∈ R that

fε(ξ, τ) ≥ ϕ(εx)e−εγ
√

2

(
N

M

) λ
1−λ

gδ(τ).

Thus for (x, t) ∈ Rn × (0, 2) we have

Jαfε(x, t) ≥ ϕ(εx)e−εγ
√

2

(
N

M

) λ
1−λ

∫ t

0

(t− τ)α−1

Γ(α)
gδ(τ)

∫
|ξ−x|<γ

√
2

Φ1(x− ξ, t− τ) dξ dτ. (8.9)

But for x, ξ ∈ Rn and 0 < τ < t < 2 we find making the change of variables z = x−ξ√
4(t−τ)

that

∫
|ξ−x|<γ

√
2

Φ1(x− ξ, t− τ) dξ ≥
∫
|ξ−x|<γ

√
t−τ

1

(4π(t− τ))n/2
e
− |x−ξ|

2

4(t−τ)dξ

=
1

πn/2

∫
|z|<γ/2

e−|z|
2
dz =: I(γ)→ 1
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as γ →∞. Thus by (8.9) and (8.8) we have for (x, t) ∈ Rn × (0, 1 + δ) that

(Jαfε(x, t))
λ

fε(x, t)
≥
ϕ(εx)λe−εγλ

√
2(NM )

λ2

1−λ I(γ)λ(Jαgδ(t))
λ

ϕ(εx)(NM )
λ

1−λ gδ(t)

≥
(
M

N

)λ/2
I(γ)λe−εγλ

√
2. (8.10)

So first choosing γ so large that (MN )λ/2I(γ)λ > 1 and then choosing ε > 0 so small that (8.10)
is greater than 1 we see that f := fε satisfies(4.6) in Rn × (0, 1 + δ). Thus, since gδ(t) and hence
f(x, t) is identically zero in Rn × ((−∞, 0] ∪ [1 + δ,∞)) see that f satisfies (4.6), (4.7).

From the exponential decay of ϕ(x) as |x| → ∞, we see that f satisfies (4.13). Also since f is
uniformly continuous and bounded on Rn × R and∫ b

a

∫
Rn

Φα(x, t) dx dt =
1

Γ(α+ 1)
(bα − aα) for a < b,

we easily check that (4.14) holds.
Finally, since

f(0, t) =

(
N

M

) λ
1−λ

g(t) for 0 ≤ t ≤ 1

we find that (4.15) holds and thus (4.16) follows from (4.6).

Proof of Theorem 4.4. By Remark 8.2 with T = 1 we can assume K = 1. Define f̄ : Rn×R→ [0,∞)
by

f̄(x, t) = g(t)χ{|x|2<t}(x, t) (8.11)

where g is defined in Remark 8.1. Then for (x, t) ∈ Rn × (0,∞) we have

Jαf̄(x, t) =

∫ t

0

(t− τ)α−1

Γ(α)

(∫
|ξ|2<τ

Φ1(x− ξ, t− τ) dξ

)
g(τ) dτ.

Thus by Lemma 7.4 we see for |x|2 < t that

Jαf̄(x, t) ≥ C(n, α, λ)

∫ 3t/4

t/4
(t− τ)α−1τ

αλ
1−λdτ

= C(n, α, λ)t
α

1−λ

= C(n, α, λ)g(x, t)1/λ

= C(n, α, λ)f̄(x, t)1/λ (8.12)

which also holds in (Rn × R)\{|x|2 ≤ t} because f̄ = 0 there. Thus letting f = Lf̄ where

L = C
λ

1−λ

where C = C(n, α, λ) is as in (8.12) we find that f satisfies (4.5)–(4.7).
It follows from (8.11) and the definitions of g and f that there exists N > 0 such that (4.17)

holds. Thus, since f solves (4.6) we obtain (4.18).
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Proof of Theorem 4.5. Since |Rj | <∞, to prove Theorem 4.5 it suffices to show for each ε ∈ (0, 1)
that the conclusion of Theorem 4.5 holds for some

q ∈ (p, p+ ε). (8.13)

So let ε ∈ (0, 1). By (4.19)1, there exists q satisfying (8.13) such that

α <
n+ 2

2q

(
1− 1

λ

)
. (8.14)

Define f0 : Rn × R→ R by

f0(x, t) =

(
1

t

)r
χΩ0(x, t) (8.15)

where
Ω0 = {(x, t) ∈ Rn × R : |x|2 < t < 1}

and

r :=
n+ 2

2q
<
n+ 2

2p
(8.16)

by (8.13). Then by (8.16) and Lemma 7.6 we have

f0 ∈ Lp(Rn × R) (8.17)

and

Jαf0(x, t) ≥ C
(

1

t

)r−α
for (x, t) ∈ Ω0 (8.18)

where, throughout this entire proof, C = C(n, λ, α, p, q) is a positive constant whose value may
change from line to line.

Let {Tj} ⊂ (0, 1/2) be a sequence such that

Tj+1 < Tj/4 j = 1, 2, ...

and define
tj = Tj/2. (8.19)

Then
Ωj := {(y, s) ∈ Rn × R : |y| <

√
Tj − s and tj < s < Tj} ⊂ Rj ⊂ Ω0 (8.20)

and thus defining fj : Rn × R→ R by

fj(x, t) = (Tj − t)−rχΩj (x, t) (8.21)

we obtain from (8.16) and Lemma 7.7 that

‖fj‖pLp(Rn×R) = C(n)

∫ Tj−tj

0
s

(n+2
2p
−r)p−1

ds → 0 as j →∞, (8.22)

‖fj‖Lq(Rj) = ‖fj‖Lq(Rn×R) =∞ for j = 1, 2, ..., (8.23)

and

Jαfj(x, t) ≥ C
(

1

(Tj − t)

)r−α
for (x, t) ∈ Ω+

j (8.24)
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where

Ω+
j = {(x, t) ∈ Ωj :

3Tj
4

< t < Tj}.

It follows from (8.15) and (8.18) that

f0(x, t)

(Jαf0(x, t))λ
≤ Ct(r−α)λ−r for (x, t) ∈ Ω0

and from (8.14) and (8.16) that the exponent

(r − α)λ− r = λ[r(1− 1/λ)− α] > 0. (8.25)

Thus

sup
Ω0

f0

(Jαf0)λ
≤ C (8.26)

and by (8.20)

sup
Ωj

f0

(Jαf0)λ
≤ CT (r−α)λ−r

j < 1 (8.27)

by taking a subsequence.
By (8.21), (8.24), and (8.25) we have

sup
Ω+
j

fj
(Jαfj)λ

≤ C sup
(x,t)∈Ω+

j

(Tj − t)(r−α)λ−r

≤ C(Tj − tj)(r−α)λ−r < 1 (8.28)

by taking a subsequence.
It follows from (8.15), (8.21), (8.20), and (8.19) that

sup
Ωj

f0

fj
= sup

(x,t)∈Ωj

(Tj − t)r

tr
≤ (Tj − tj)r

trj
= 1 (8.29)

and letting Ω−j = Ωj\Ω+
j we see from (8.21), (8.18), (8.20), and (8.25) that

sup
Ω−j

fj
(Jαf0)λ

≤ C sup
(x,t)∈Ω−j

t(r−α)λ

(Tj − t)r
≤ C

T
(r−α)λ
j

(Tj/4)r

= CT
(r−α)λ−r
j <

1

2
(8.30)

by taking a subsequence.
Taking an appropriate subsequence of fj and letting

f = f0 +

∞∑
j=1

fj

we find from (8.17) and (8.22) that f satsfies (4.20).
In Ω+

j we have by (8.27) and (8.28) that

f = f0 + fj ≤ (Jαf0)λ + (Jαfj)
λ

≤ (Jα(f0 + fj))
λ ≤ (Jαf)λ.
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In Ω−j we have by (8.29) and (8.30) that

f = f0 + fj ≤ 2fj ≤ (Jαf0)λ ≤ (Jαf)λ.

In Ω0\ ∪∞j=1 Ωj we have by (8.26) that

f = f0 ≤ C(Jαf0)λ ≤ C(Jαf)λ.

In (Rn × R)\Ω0, f = 0 ≤ (Jαf)λ. Thus, after scaling f , we see that f is a solution of (4.6), (4.7).
Also (4.21) holds by (8.23).

Proof of Theorem 4.6. By (4.23)1, there exists a unique number γ ∈ (0, n+2
2p − α) such that

λ =

n+2
2p − γ

n+2
2p − α− γ

. (8.31)

Let f0 and Ω0 be as in Lemma 7.6. Then by (8.31) and Lemma 7.6 we have

f0 ∈ Xp (8.32)

and
f0 ≤ C(Jαf0)λ in Rn × R (8.33)

where in this proof C = C(n, λ, α, p) is a positive constant whose value may change from line to
line. Let {Tj}, {tj} ⊂ (2,∞) satisfy

Tj+1 ≥ 4Tj and Tj = 2tj

and define fj : Rn × R→ R by

fj(x, t) =

(
1

Tj − t

)n+2
2p
−γ

χΩj (x, t) (8.34)

where
Ωj := {(x, t) ∈ Rn × (Tj/2, Tj) : |x| <

√
Tj − t}.

Then
Ωj ⊂ Rj ⊂ Ω0, Ωj ∩ Ωk = ∅ for j 6= k, (8.35)

inf {t : (x, t) ∈ Ωj} = Tj/2→∞ as j →∞, (8.36)

and by (8.34), (8.31), and Lemma 7.7 we have

fj ∈ Lp(Rn × R) (8.37)

and
fj ≤ C(Jαfj)

λ in Ω+
j

where

Ω+
j = {(x, t) ∈ Ωj :

3Tj
4

< t < Tj}.

It follows therefore from (8.33) that

f0 + fj ≤ C((Jαf0)λ + (Jαfj)
λ) ≤ C(Jα(f0 + fj))

λ in Ω+
j . (8.38)
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In Ω−j := Ωj\Ω+
j we have

fj
f0

=

(
t

(Tj − t)

)n+2
2p
−γ

≤

(
3
4Tj
1
4Tj

)n+2
2p
−γ

= 3
n+2
2p
−γ

and thus we obtain from (8.33) that

f0 + fj ≤ Cf0 ≤ C(Jαf0)λ ≤ C(J0(f0 + fj))
λ in Ω−j . (8.39)

Let f = f0 +
∑∞

j=1 fj . Then clearly f satisfies (4.7) and by (8.32), (8.37), and (8.36) we see that
f satisfies (4.24).

In Ωj we have by (8.35)2, (8.38), and (8.39) that

f = f0 + fj ≤ C(Jα(f0 + fj))
λ ≤ C(Jαf)λ

and in (Rn × R)\ ∪∞j=1 Ωj we have by (8.33) that

f = f0 ≤ C(Jαf0)λ ≤ C(Jαf)λ.

Thus after scaling f , we find that f satisfies (4.6).
Since |Rj | <∞, we can for the proof of (4.25) assume instead of (4.23)2 that

q =
n+ 2

2α
(1− 1

λ
)

and hence by (8.31) we get
n+ 2

2p
− γ =

α

1− 1
λ

=
n+ 2

2q
.

Consequently from (8.35)1, (8.34), and Lemma 7.7 we find that

‖f‖Lq(Rj) ≥ ‖fj‖Lq(Ωj) =∞ for j = 1, 2, ...

which proves (4.25)

A Appendix

For the proof of Theorem 2.3(ii) we will need the following result due to Nogin and Rubin [19]
concerning the inversion of the operator Jα in the framework of the spaces Lp(Rn × R). See also
[24, Theorem 9.24].

Theorem A.1. Suppose 0 < α < n+2
2p , 1 < p <∞, and u = Jαf with f ∈ Lp(Rn × R). Then

lim
ε→0+

J−αε u = f in Lp(Rn × R)

where

J−αε u(x, t) = C(n, α, l)

∫∫
Rn×(ε,∞)

(∆l
y,τu)(x, t)

τ1+α
e−
|y|2
4 dy dτ (A.1)

and

(∆l
y,τu)(x, t) =

l∑
k=0

(−1)k
(
l

k

)
u(x− y

√
kτ, t− kτ), l > α. (A.2)
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