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We study the semilinear elliptic inequality −∆u ≥ φ(δK(x))f(u) in RN \K, where
φ, f are positive and nonincreasing continuous functions. Here K ⊂ RN (N ≥ 3) is a
compact set with finitely many components each of which is either the closure of a C2

domain or an isolated point and δK(x) = dist(x, ∂K). We obtain optimal conditions
in terms of φ and f for the existence of C2 positive solutions. Under these conditions
we prove the existence of a minimal solution and we investigate its behavior around
∂K as well as the removability of the (possible) isolated singularities.

2010 Mathematics Subject Classification: 35J60; 35B05; 35J25; 35B40.
Key words: Elliptic inequality; singularity; boundary behavior; radial symmetry

1. Introduction

In this paper we study the existence and non-existence of C2 positive solutions u(x)
of the following semilinear elliptic inequality

−∆u ≥ φ(δK(x))f(u) in RN \K, (1.1)

where K is a compact set in RN (N ≥ 3) and δK(x) :=dist(x, ∂K). We assume
that K has finitely many connected components each of which is either the closure
of a C2 domain or a singleton. We shall write K = K1 ∪K2 where K1 is the union
of all components of K which are the closure of a C2 domain and K2 is the set of
all isolated points of K.

We also assume that

(A1) f ∈ C1(0,∞) is a positive and decreasing function;

(A2) φ ∈ C0,γ(0,∞) (0 < γ < 1) is a positive and nonincreasing.

Elliptic equations or inequalities in unbounded domains have been subject to
extensive study recently (see, e.g., [6, 7, 11, 13, 14, 16, 18, 19] and the references
therein). In [6, 7] the authors are concerned with elliptic problems with superlinear
nonlinearities f in exterior domains. Large classes of elliptic inequalities in exterior
or cone-like domains involving various types of differential operators are considered
in [13, 14, 16, 18, 19]. In [20, 21, 22, 23, 24] elliptic inequalities are studied in a
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punctured neighborhood of the origin and asymptotic radial symmetry of solutions
is investigated.

The main novelty of the present paper is the presence of the distance function
δK(x) to the boundary of the compact set K which, as we shall see, will play a
significant role in the qualitative study of (1.1). Whenever (1.1) has solutions we
show that it has a minimal solution ũ and we are interested in further properties
of ũ such as removability of possible singularities at isolated points of K2 as well as
boundary behavior around K1.

In our approach to (1.1) we shall distinguish between the case where K is non-
degenerate, that is, K1 ̸= ∅, and the case where K is degenerate, that is K1 = ∅,
which means K reduces to a finite set of points.

We start first with the non-degenerate case K1 ̸= ∅. Our first result in this sense
is the following:

Theorem 1.1. Assume (A1), (A2) and K1 ̸= ∅. Then, inequality (1.1) has C2

positive solutions if and only if ∫ ∞

0

rφ(r)dr <∞. (1.2)

If (1.2) holds, then we prove that (1.1) has a minimal C2 positive solution ũ (in
the sense of the usual order relation) which achieves the equality in (1.1) and ũ is
a ground-state of (1.1) in the sense that ũ(x) → 0 as |x| → ∞. Furthermore, we
prove that all (possible) singularities of ũ at isolated points in K2 are removable
and that ũ can be continuously extended by zero at ∂K1. We also determine the
rate at which ũ vanishes around the boundary of K1. All these results are precisely
described in the following theorem.

Theorem 1.2. Assume (A1), (A2), K1 ̸= ∅ and condition (1.2) is satisfied. Then
there exists a minimal solution ũ of (1.1) that satisfies

ũ ∈ C2(RN \K) ∩ C(RN \ int(K1))

and 
−∆ũ = φ(δK(x))f(ũ), ũ > 0 in RN \K,
ũ = 0 on ∂K1,

ũ > 0 on K2,

ũ(x) → 0 as |x| → ∞.

(1.3)

In addition, there exist positive constants c1, c2, and r0 such that ũ satisfies

c1 ≤ ũ(x)

H(δK1(x))
≤ c2 in {x ∈ RN \K : 0 < δK1(x) < r0}, (1.4)

where H : [0, 1] → [0,∞) is the unique solution of{
−H ′′(t) = φ(t)f(H(t)), H(t) > 0 0 < t < 1,

H(0) = H(1) = 0.
(1.5)
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The existence of a solution to (1.5) follows from [1, Theorem 2.1]. By Theorem
1.1 we have that condition (1.2) is both necessary and sufficient for the existence of
a solution to (1.1). If that is the case, the minimal solution ũ of (1.1) can be contin-
uously extended to ∂K, so that all isolated singularities of ũ at K2 are removable.
If φ(r) = rα and f(u) = u−p, p > 0, the behavior of H in (1.5) was studied in [8,
Theorem 3.5]. In this case we have:

Corollary 1.3. Assume (A2), K1 ̸= ∅, f(u) = u−p, p > 0, and

φ(r) ∼ rα as r → 0 and φ(r) ∼ rβ as r → ∞ ,

for some α, β < 0. Then (1.1) has solutions if and only if 0 > α > −2 > β. In this
case (1.1) has a minimal solution ũ which satisfies (1.3) and there exist positive
constants c1, c2, and r0 such that ũ satisfies (1.4) where

H(t) =


t if p− α < 1,

t

(
log

1

t

) 1
2+α

if p− α = 1,

t
2+α
1+p if p− α > 1.

We are next concerned with the degenerate case K1 = ∅. In this setting the
existence of a solution to (1.1) depends on both φ and f . Our result in this case is:

Theorem 1.4. Assume (A1), K1 = ∅ and that φ ∈ C0,γ(0,∞) (0 < γ < 1) is a
positive function which is nonincreasing in a neighborhood of zero and of infinity.
Then, (1.1) has solutions if and only if∫ ∞

1

rφ(r)dr <∞ (1.6)

and there exists a > 0 such that∫ 1

0

rN−1φ(r)f(ar2−N )dr <∞. (1.7)

Furthermore, if (1.6)-(1.7) hold, then (1.1) has a minimal solution ũ which satisfies{
−∆ũ = φ(δK(x))f(ũ), ũ > 0 in RN \K,
ũ(x) → 0 as |x| → ∞.

(1.8)

In addition, ũ has removable singularities at K if and only if
∫ 1

0
rφ(r)dr <∞.

From Theorem 1.1 and Theorem 1.4 we have the following result regarding the
inequality

−∆u ≥ δαK(x)u−p in RN \K, α < 0 < p. (1.9)

Corollary 1.5. Let K = K1 ∪K2 be as in the statement of Theorem 1.1.

(i) If K1 is nonempty, then (1.9) has no positive C2 solutions;
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(ii) If K1 = ∅ then (1.9) has solutions if and only if

N + α+ p(N − 2) > 0 and α < −2, (1.10)

and all solutions of (1.9) are singular at points of K2.

Finally, we consider the special case K = {0} and describe the solution set of

−∆u = φ(|x|)f(u) in RN \ {0}. (1.11)

For a large class of functions φ, we show that any C2 positive solution of (1.11)
(if exists) is radially symmetric. Furthermore, the solution set of (1.11) consists of
a two-parameter family of radially symmetric functions.

Theorem 1.6. Suppose that f and φ are as in Theorem 1.4 and that φ satisfies
(1.6)-(1.7) for all a > 0. Then :

(i) for any a, b ≥ 0 there exists a radially symmetric positive solution ua,b of
(1.11) such that

lim
|x|→0

|x|N−2ua,b(x) = a and lim
|x|→∞

ua,b(x) = b. (1.12)

(ii) the set of positive solutions of equation (1.11) consists only of {ua,b : a, b ≥ 0}.
In particular, any C2 positive solution of (1.11) is radially symmetric.

We point out that if N = 2 then (1.11) has no C2 positive solutions. More
precisely, if u ∈ C2(R2 \ {0}) satisfies −∆u ≥ 0, u ≥ 0 in R2 \ {0}, then u is
constant (see [17, Theorem 29, page 130]). A direct consequence of Theorem 1.6 is
the following:

Corollary 1.7. Let α ∈ R, p > 0. Then, the equation

−∆u = |x|αu−p in RN \ {0}, N ≥ 3, (1.13)

has positive solutions if and only if (1.10) holds. In this case, we have the same
conclusion as in Theorem 1.6 and the function

ξ(x) :=

[
−(1 + p)2

(α+ 2)(p(N − 2) +N + α)

]1/(1+p)

|x|(2+α)/(1+p), x ∈ RN \ {0},

(1.14)
is the minimal solution of (1.13).

Using Theorem 1.6 we also obtain:

Corollary 1.8. Let α ∈ R, β, p > 0. Then, the equation

−∆u = |x|α logβ(1 + |x|)u−p in RN \ {0}, N ≥ 3, (1.15)

has solutions if and only if

N + α+ β + p(N − 2) > 0 and α < −2. (1.16)

Furthermore, if (1.16) holds, then:
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(i) the set of positive solutions of (1.15) consists of a two-parameter family of
radially symmetric functions as described in Theorem 1.6;

(ii) the minimal solution of (1.15) has a removable singularity at the origin if and
only if α+ β > −2.

The outline of the paper is as follows. In the next section we collect some pre-
liminary results concerning elliptic boundary value problems in bounded domains
involving the distance function up to the boundary. The last four sections of the
paper are devoted to the proofs of Theorems 1.1, 1.2, 1.4 and 1.6 respectively.

2. Preliminary results

In this part we obtain some results for related elliptic problems in bounded domains
that will be further used in the sequel. We start with the following comparison
result.

Lemma 2.1. Let Ω ⊂ RN (N ≥ 2) be a nonempty open set and g : Ω× (0,∞) →
(0,∞) be a continuous function such that g(x, ·) is decreasing for all x ∈ Ω. Assume
that u, v are C2 positive functions that satisfy

∆u+ g(x, u) ≤ 0 ≤ ∆v + g(x, v) in Ω,

lim
x∈Ω, x→y

(v(x)− u(x)) ≤ 0 for all y ∈ ∂∞Ω.

Then u ≥ v in Ω. (Here ∂∞Ω stands for the Euclidean boundary ∂Ω if Ω is bounded
and for ∂Ω ∪ {∞} if Ω is unbounded)

Proof. Assume by contradiction that the set ω := {x ∈ Ω : u(x) < v(x)} is not
empty and let w := v − u. Since limx∈Ω, x→y w(x) ≤ 0 for all y ∈ ∂∞Ω, it follows
that w is bounded from above and it achieves its maximum on Ω at a point that
belongs to ω. At that point, say x0, we have

0 ≤ −∆w(x0) ≤ g(x0, v(x0))− g(x0, u(x0)) < 0,

which is a contradiction. Therefore, ω = ∅, that is, u ≥ v in Ω. �

Lemma 2.2. Let Ω ⊂ RN (N ≥ 2) be a bounded domain with C2 boundary and let
g : Ω× (0,∞) → (0,∞) be a Hölder continuous function such that for all x ∈ Ω we
have g(x, ·) ∈ C1(0,∞) and g(x, ·) is decreasing. Then, for any ϕ ∈ C(∂Ω), ϕ ≥ 0,
the problem {

−∆u = g(x, u), u > 0 in Ω,

u = ϕ(x) on ∂Ω,
(2.1)

has a unique solution u ∈ C2(Ω) ∩ C(Ω).

Proof. For all n ≥ 1 consider the following perturbed problem−∆u = g
(
x, u+

1

n

)
, u > 0 in Ω,

u = ϕ(x) on ∂Ω.
(2.2)
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It is easy to see that u ≡ 0 is a sub-solution. To construct a super-solution, let w
be the solution of {

−∆w = 1, w > 0 in Ω,

w = 0 on ∂Ω.

Then u = Mw + ||ϕ||∞ + 1 is a super-solution of (2.2) provided M > 1 is large
enough. Thus, by sub and super-solution method and Lemma 2.1, there exists a
unique solution un ∈ C2(Ω)∩C(Ω) of (2.2). Furthermore, since g(x, ·) is decreasing,
by Lemma 2.1 we deduce

u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ u in Ω, (2.3)

un +
1

n
≥ un+1 +

1

n+ 1
in Ω. (2.4)

Hence {un(x)} is increasing and bounded for all x ∈ Ω. Letting u(x) := limn→∞ un(x),
a standard bootstrap argument (see [5], [12]) implies un → u in C2

loc(Ω) so that
passing to the limit in (2.2) we deduce −∆u = g(x, u) in Ω. From (2.3) and (2.4) we
obtain un + 1/n ≥ u ≥ un in Ω, for all n ≥ 1. This yields u ∈ C(Ω) and u = ϕ(x)
on ∂Ω. Therefore u ∈ C2(Ω) ∩ C(Ω) is a solution of (2.1). The uniqueness follows
from Lemma 2.1. �

Lemma 2.3 and Lemma 2.4 below extend the existence results obtained in [4, 8, 9].

Lemma 2.3. Let Ω ⊂ RN (N ≥ 2) be a bounded domain with C2 boundary. Also
let φ ∈ C0,γ(0,∞) (0 < γ < 1) and f ∈ C1(0,∞) be positive functions such that:

(i) f is decreasing;

(ii) φ is nonincreasing and
∫ 1

0
rϕ(r)dr <∞.

Then, the problem {
−∆u = φ(δΩ(x))f(u), u > 0 in Ω,

u = 0 on ∂Ω,
(2.5)

has a unique solution u ∈ C2(Ω) ∩ C(Ω). Furthermore, there exist c1, c2 > 0 and
0 < r0 < 1 such that the unique solution u of (2.5) satisfies

c1 ≤ u(x)

H(δΩ(x))
≤ c2 in {x ∈ Ω : 0 < δΩ(x) < r0}, (2.6)

where H : [0, 1] → (0,∞) is the unique solution of (1.5).

Proof. Let (λ1, e1) be the first eigenvalue and the first eigenfunction of −∆ in Ω
subject to Dirichlet boundary condition. It is well known that e1 has constant sign
in Ω so that normalizing, we may assume that e1 > 0 in Ω. Also, since Ω has a C2

boundary, we have ∂e1/∂ν < 0 on ∂Ω and

C1δΩ(x) ≤ e1(x) ≤ C2δΩ(x) in Ω, (2.7)
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where ν is the outward unit normal at ∂Ω and C1, C2 are two positive constants. We
claim that there exist M > 1 and c > 0 such that u =MH(ce1) is a super-solution
of (2.5). First, since the solution H of (1.5) is positive and concave, we can find
0 < a < 1 such that H ′ > 0 on (0, a]. Let c > 0 be such that

ce1(x) ≤ min{a, δΩ(x)} in Ω.

Then
−∆u = −Mc2H ′′(ce1)|∇e1|2 +Mcλ1e1H

′(ce1)

=Mc2φ(ce1)f(H(ce1))|∇e1|2 +Mcλ1e1H
′(ce1)

≥Mc2φ(δΩ(x))f(u)|∇e1|2 +Mcλ1e1H
′(ce1) in Ω.

(2.8)

Since e1 > 0 in Ω and ∂e1/∂ν < 0 on ∂Ω, we can find d > 0 and a subdomain
ω ⊂⊂ Ω such that

|∇e1| > d in Ω \ ω.

Therefore, from (2.8) we obtain

−∆u ≥Mc2d2φ(δΩ(x))f(u) in Ω\ω, −∆u ≥Mcλ1e1H
′(ce1) in ω. (2.9)

Now, we choose M > 0 large enough such that

Mc2d2 > 1 and Mcλ1e1H
′(ce1) ≥ φ(δΩ(x))f(u) in ω. (2.10)

Note that the last relation in (2.10) is possible since in ω the right side of the
inequality is bounded and the left side is bounded away from zero. Thus, from (2.9)
and (2.10), u is a super-solution for (2.5). Similarly, we can choose m > 0 small
enough such that u = mH(ce1) is a sub-solution of (2.5). Therefore, by the sub and
super-solution method we find a solution u ∈ C2(Ω) ∩ C(Ω) such that u ≤ u ≤ u
in Ω. The uniqueness follows from Lemma 2.1. In order to prove the boundary
estimate (2.6), note first that ce1 ≤ δΩ(x) in Ω so

u(x) ≤ u(x) ≤MH(δΩ(x)) in {x ∈ Ω : 0 < δΩ(x) < a}.

On the other hand, since H is concave and H(0) = 0, we easily derive that t →
H(t)/t is decreasing on (0, 1). Also we can assume cC1 < 1. Thus,

u(x) ≥ mH(ce1) ≥ mH(cC1δΩ(x)) ≥ mcC1H(δΩ(x)),

for all x ∈ Ω with 0 < δΩ(x) < 1. The proof of Lemma 2.3 is now complete. �

Lemma 2.4. Let K ⊂ RN (N ≥ 2) be a compact set, Ω ⊂ RN be a bounded domain
such that K ⊂ Ω and Ω \K is connected and has C2 boundary. Let φ and f be as
in Lemma 2.3. Then, there exists a unique solution u ∈ C2(Ω \K)∩C(Ω \ int(K))
of the problem {

−∆u = φ(δK(x))f(u), u > 0 in Ω \K,
u = 0 on ∂(Ω \K).

(2.11)
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Furthermore, there exist c1, c2 > 0 and 0 < r0 < 1 such that the unique solution u
of (2.11) satisfies

c1 ≤ u(x)

H(δK(x))
≤ c2 in {x ∈ Ω \K : 0 < δK(x) < r0}, (2.12)

where H is the unique solution of (1.5).

Proof. According to Lemma 2.3 there exists v ∈ C2(Ω\K)∩C(Ω \K) such that{
−∆v = φ(δΩ\K(x))f(v), v > 0 in Ω \K,
v = 0 on ∂(Ω \K),

which further satisfies

c1 ≤ v(x)

H(δΩ\K(x))
≤ c2 in {x ∈ Ω \K : 0 < δΩ\K(x) < ρ0}, (2.13)

for some 0 < ρ0 < 1 and c1, c2 > 0. Since δK(x) ≥ δΩ\K(x) for all x ∈ Ω \K and
φ is nonincreasing, it is easy to see that u = v is a super-solution of (2.11). Also it
is not difficult to see that u = mw is a sub-solution to (2.11) for m > 0 sufficiently
small, where w satisfies{

−∆w = 1, w > 0 in Ω \K,
w = 0 on ∂(Ω \K).

Using Lemma 2.1 we have u ≤ u in Ω \ K. Therefore, there exists a solution
u ∈ C2(Ω \ K) ∩ C(Ω \ int(K)) of (2.11). As before, the uniqueness follows from
Lemma 2.1. In order to prove (2.12), let 0 < r0 < ρ0 be small such that

ω := {x ∈ Ω\K : 0 < δK(x) < r0} ⊂⊂ Ω and δΩ\K(x) = δK(x) for all x ∈ ω.

Then, from (2.13) we have

u ≤ u ≤ c2H(δK(x)) in ω.

For the remaining part of (2.12), let M > 1 be such that Mu ≥ v on ∂ω \∂K. Also

−∆(Mu) =Mφ(δK(x))f(u) ≥ φ(δK(x))f(Mu) in ω.

By Lemma 2.1 we have Mu ≥ v in ω and from (2.13) we obtain the first inequality
in (2.12). This concludes the proof. �

The following result is a direct consequence of Lemma 2.4.

Lemma 2.5. Let K1,K2, L ⊂ RN (N ≥ 2) be three compact sets (see Figure 1)
such that

K1 ∩ L = ∅, K2 ⊂ int(L), K1, L are the closure of C2 domains.
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K
K

L
2

1

Figure 1. The compact sets K1, K2 and L.

Also let Ω ⊂ RN be a bounded domain with C2 boundary such that K1 ∪ L ⊂ Ω
and Ω \ (K1 ∪ L) is connected. Let φ, f be as in Lemma 2.3. Then, there exists a
unique solution

u ∈ C2(Ω \ (K1 ∪ L)) ∩ C(Ω \ int(K1 ∪ L))

of the problem{
−∆u = φ(δK1∪K2(x))f(u), u > 0 in Ω \ (K1 ∪ L),
u = 0 on ∂(Ω \ (K1 ∪ L)).

(2.14)

Furthermore, there exist c1, c2 > 0 and 0 < r0 < 1 such that the unique solution u
of problem (2.14) satisfies

c1 ≤ u(x)

H(δK1(x))
≤ c2 in {x ∈ Ω \ (K1 ∪ L) : 0 < δK1(x) < r0}, (2.15)

where H is the unique solution of (1.5).

Proof. By Lemma 2.4 there exists a unique v ∈ C2(Ω\(K1∪L))∩C(Ω\ int(K1∪
L)) such that{

−∆v = φ(δK1∪L(x))f(v), v > 0 in Ω \ (K1 ∪ L),
v = 0 on ∂(Ω \ (K1 ∪ L)).

Since δK1∪L(x) ≤ δK1∪K2(x) in Ω \ (K1 ∪L) and φ is nonincreasing, we derive that
u = v is a super-solution of (2.14). As a sub-solution we use u = mw where m is
sufficiently small and w satisfies{

−∆w = 1, w > 0 in Ω \ (K1 ∪ L),
w = 0 on ∂(Ω \ (K1 ∪ L)).

Therefore, problem (2.14) has a solution u. The uniqueness follows from Lemma
2.1 while the asymptotic behavior of u around K1 is obtained in the same manner
as in Lemma 2.4. This ends the proof. �

Several times in this paper we shall use the following elementary results that
provide an equivalent integral condition to (1.2).
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Lemma 2.6. Let N ≥ 3 and φ : (0,∞) → [0,∞) be a continuous function.

(i)

∫ 1

0

rφ(r)dr <∞ if and only if

∫ 1

0

t1−N

∫ t

0

sN−1φ(s)dsdt <∞;

(ii)

∫ ∞

1

rφ(r)dr <∞ if and only if

∫ ∞

1

t1−N

∫ t

1

sN−1φ(s)dsdt <∞;

(iii)

∫ ∞

0

rφ(r)dr <∞ if and only if

∫ ∞

0

t1−N

∫ t

0

sN−1φ(s)dsdt <∞;

Proof. We prove only (i). The proof of (ii) is similar, while (iii) follows from
(i)-(ii).

Assume first that
∫ 1

0
rφ(r)dr <∞. Integrating by parts we have∫ 1

0

t1−N

∫ t

0

sN−1φ(s)dsdt = − 1

N − 2

∫ 1

0

(
t2−N

)′ ∫ t

0

sN−1φ(s)dsdt

=
1

N − 2

(∫ 1

0

tφ(t)dt−
∫ 1

0

tN−1φ(t)dt

)
≤ 1

N − 2

∫ 1

0

tφ(t)dt <∞.

Conversely, for 0 < ε < 1/2 we have∫ 1

ε

t1−N

∫ t

0

sN−1φ(s)dsdt =
1

N − 2

(∫ 1

ε

tφ(t)dt−
∫ 1

0

tN−1φ(t)dt+ ε2−N

∫ ε

0

tN−1φ(t)dt

)
≥ 1

N − 2

(∫ 1

ε

tφ(t)dt−
∫ 1

ε

tN−1φ(t)dt

)
=

1

N − 2

∫ 1

ε

(1− tN−2)tφ(t)dt

≥ 1

N − 2

(
1−

(1
2

)N−2
)∫ 1/2

ε

tφ(t)dt.

Passing to the limit with ε ↘ 0 we deduce
∫ 1

0
tφ(t)dt < ∞. This concludes the

proof of Lemma 2.6. �

3. Proof of Theorem 1.1

We start first with two nonexistence results that will help us to prove the necessity
part in Theorem 1.1.

Proposition 3.1. Let φ : (0,∞) → [0,∞) and f : (0,∞) → (0,∞) be continuous
functions such that:

(i) lim inft↘0 f(t) > 0;

(ii) φ(r) is monotone for r large;
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(iii)
∫∞
1
rφ(r) dr = ∞;

Then, for any compact set K ⊂ RN (N ≥ 3) there does not exist a C2 positive
solution u(x) of (1.1).

Proof. It is easy to construct a C1 function g : [0,∞) → (0,∞) such that
g < f in (0,∞) and g′ is negative and nondecreasing. Therefore, we may assume
f : [0,∞) → (0,∞) is of class C1 and f ′ is negative and nondecreasing.

Suppose for contradiction that u(x) is a C2 positive solution of (1.1). By trans-
lation, we may assume that 0 ∈ K. Choose r0 > 0 such that

K ⊂ Br0/2(0), φ(r0/2) > 0, and φ is monotone on [r0/2,∞).

Define ψ : [r0/2,∞) → (0,∞) by

ψ(r) = min
r0/2≤ρ≤r

φ(ρ) =

{
φ(r) if φ is nonincreasing for r ≥ r0/2,

φ(r0/2) if φ is nondecreasing for r ≥ r0/2.

Then
∫∞
r0
rψ(r)dr = ∞. Also, since r0/2 ≤ δK(x) ≤ |x| for all x ∈ RN \Br0(0), we

have

φ(δK(x)) ≥ ψ(|x|) for all x ∈ RN \Br0(0).

Thus, the solution u of (1.1) satisfies

−∆u ≥ ψ(|x|)f(u) in RN \Br0(0). (3.1)

Averaging (3.1) and using Jensen’s inequality, we get

−
(
ū′′(r) +

n− 1

r
ū′(r)

)
≥ ψ(r)f(ū(r)) for all r ≥ r0. (3.2)

Here ū is the spherical average of u, that is

ū(r) =
1

σNrN−1

∫
∂Br(0)

u(x) dσ(x), (3.3)

where σ denotes the surface area measure in RN and σN = σ(∂B1(0)).
Making in (3.2) the change of variables ū(r) = v(ρ), ρ = r2−N we get

−v′′(ρ) ≥ 1

(N − 2)2
ρ2(N−1)/(2−N)ψ(ρ1/(2−N))f(v(ρ)) for all 0 < ρ ≤ ρ0,

where ρ0 = r2−N
0 . Since v is concave down and positive, v is bounded for 0 < ρ ≤ ρ0.

Hence f(v(ρ)) ≥ (N − 2)2C for some positive constant C. Consequently

−v′′(ρ) ≥ Cρ2(N−1)/(2−N)ψ(ρ1/(2−N)) for all 0 < ρ ≤ ρ0.
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Integrating this inequality twice we get

∞ >

∫ ρ0

0

v′(ρ) dρ− ρ0v
′(ρ0)

≥ C

∫ ρ0

0

∫ ρ0

ρ

ρ̄2(N−1)/(2−N)ψ(ρ̄1/(2−N)) dρ̄ dρ

= C

∫ ρ0

0

ρ̄1+2(N−1)/(2−N)ψ(ρ̄1/(2−N)) dρ̄

= (N − 2)C

∫ ∞

r0

rψ(r) dr = ∞.

This contradiction completes the proof. �

Proposition 3.2. Let φ : (0,∞) → [0,∞) and f : (0,∞) → (0,∞) be continuous
functions such that

(i) lim inft↘0 f(t) > 0;

(ii)
∫ 1

0
rφ(r) dr = ∞.

Then there does not exist a C2 positive solution u(x) of

−∆u ≥ φ(δΩ(x))f(u) in {x ∈ RN \ Ω : 0 < δΩ(x) < 2r0}, N ≥ 2, (3.4)

where Ω is a C2 bounded domain in RN and r0 > 0.

For the proof of Proposition 3.2 we shall use the following lemma concerning the
geometry of a C2 bounded domain. One can prove it using the methods from [13,
page 96].

Lemma 3.3. Let Ω be a C2 bounded domain in RN , N ≥ 2, such that RN \ Ω is
connected. Then, there exists r0 > 0 such that

(i) Ωr := {x ∈ RN : dist(x,Ω) < r} is a C1 domain for each 0 < r ≤ r0;

(ii) for 0 ≤ r ≤ r0 the function T (·, r) : ∂Ω → RN defined by T (ξ, r) = ξ + rηξ,
where ηξ is the outward unit normal to ∂Ω at ξ, is a C1 diffeomorphism
from ∂Ω onto ∂Ωr (onto ∂Ω if r = 0) whose volume magnification factor
(i.e., the absolute value of its Jacobian determinant) J(·, r) : ∂Ω → (0,∞) is
continuous on ∂Ω and C∞ with respect to r;

(iii) if ηT (ξ,r) is the unit outward normal to ∂Ωr at T (ξ, r) then ηT (ξ,r) and ηξ are
equal (but have different base points) for ξ ∈ ∂Ω and 0 ≤ r ≤ r0.

Proof. [ Proof of Proposition 3.2] Without loss of generality we can assume RN \Ω
is connected. Suppose for contradiction that u(x) is a C2 positive solution of (3.4).
By decreasing r0 if necessary, the conclusion of Lemma 3.3 holds.

Lemma 3.4. The function

g(r) =

∫
∂Ωr

u(x) dσ(x), 0 < r ≤ r0,
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is continuously differentiable and there exists a positive constant C such that∣∣∣∣g′(r)− ∫
∂Ωr

∂u

∂η
dσ(x)

∣∣∣∣ ≤ Cg(r) for all 0 < r ≤ r0,

where η is the outward unit normal to ∂Ωr.

Proof. [Proof of Lemma 3.4] By Lemma 3.3 we have

g(r) =

∫
∂Ω

u(ξ + rηξ)J(ξ, r) dσ(ξ) for all 0 < r ≤ r0,

and thus

g′(r) =

∫
∂Ω

[
∂

∂r

(
u(ξ + rηξ)

)]
J(ξ, r) dσ(ξ) +

∫
∂Ω

u(ξ + rηξ)Jr(ξ, r) dσ(ξ)

=

∫
∂Ωr

∂u

∂η
(x) dσ(x) +

∫
∂Ωr

u(x)
Jr(ξ, r)

J(ξ, r)
dσ(x),

(3.5)

for all 0 < r ≤ r0, where in the last integral ξ = x − rηξ ∈ ∂Ω. Since, by Lemma
3.3, J(ξ, r) is positive and continuous for ξ ∈ ∂Ω and 0 ≤ r ≤ r0 and Jr(ξ, r) is
continuous there, we see that Lemma 3.4 follows from (3.5). �

We now come back to the proof of Proposition 3.2. For 0 < r ≤ r0 we have

0 ≤
∫
Ωr0\Ωr

−∆u(x) dx =

∫
∂Ωr

∂u

∂η
dσ(x)−

∫
∂Ωr0

∂u

∂η
dσ(x)

≤ g′(r) + Cg(r) + C

(3.6)

for some positive constant C by Lemma 3.4. Hence(
eCr(g(r) + 1)

)′
≥ 0 for all 0 < r ≤ r0,

and integrating this inequality over [r, r0] we obtain

g(r) ≤ eC(r0−r)(g(r0) + 1)− 1 ≤ C1 for all 0 < r ≤ r0 (3.7)

and for some C1 > 0. Thus

U(r) :=
1

|∂Ωr|

∫
∂Ωr

u(x) dσ(x) =
g(r)

|∂Ωr|

is bounded for 0 < r ≤ r0. Consequently, by the assumption (i) of f , it follows that

|∂Ωρ|f(U(ρ)) ≥ ε > 0 for all 0 < ρ ≤ r0. (3.8)

As in the proof of Proposition 3.1, we may assume that f : [0,∞) → (0,∞) is of
class C1 and f ′ is negative and nondecreasing. From (3.4), (3.6)-(3.8) and Jensen’s
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inequality we now obtain

g′(r) + C2 ≥
∫
Ωr0

\Ωr

−∆u dx

≥
∫ r0

r

φ(ρ)

∫
∂Ωρ

f(u(x)) dσ(x) dρ

≥
∫ r0

r

φ(ρ)|∂Ωρ|f(U(ρ)) dρ

≥ ε

∫ r0

r

φ(ρ) dρ for all 0 < r ≤ r0.

Integrating over [r, r0] in the above estimate we find

g(r0)− g(r) + C2r0 ≥ ε

∫ r0

r

∫ r0

s

φ(ρ) dρ ds

= ε

∫ r0

r

(ρ− r)φ(ρ) dρ→ ε

∫ r0

0

ρφ(ρ) dρ = ∞ as r ↘ 0,

which contradicts g > 0 and completes the proof. �

Proof of Theorem 1.1 The necessity of (1.2) follows from Propositions 3.1 and
3.2. To prove the sufficiency part we shall separately analyse the cases K2 = ∅ and
K2 ̸= ∅.

3.1. Case K2 = ∅
Assume first that RN \K is connected and let 0 < ρ < R be such thatK ⊂ Bρ(0).

By Lemma 2.4 there exists

u ∈ C2(Bρ(0) \K) ∩ C(Bρ(0) \ int(K))

such that {
−∆u = φ(δK(x))f(u), u > 0 in Bρ(0) \K,
u = 0 on ∂(Bρ(0) \K).

(3.9)

We next construct a solution v of (1.1) in a neighborhood of infinity. To this aim,
let

A(r) :=

∫ ∞

r

t1−N

∫ t

R

sN−1φ(s− ρ)dsdt for all r ≥ R.

Since
∫∞
R
rφ(r − ρ)dr < ∞, by Lemma 2.6 we have that A is well defined for all

r ≥ R. Also, it is easy to check that

−∆A(|x|) = φ(|x| − ρ) in RN \BR(0).

Since the mapping

[0,∞) ∋ t 7−→
∫ t

0

1

f(s)
ds ∈ [0,∞)
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is bijective, we can define v : RN \BR(0) → (0,∞) implicitly as the unique solution
of ∫ v(x)

0

1

f(t)
dt = A(|x|) for all x ∈ RN \BR(0). (3.10)

Then, using the properties of A we deduce that v ∈ C2(RN \ BR(0)), v > 0 and
v(x) → 0 as |x| → ∞. Further from (3.10) we obtain

∇A(|x|) = 1

f(v)
∇v in RN \BR(0),

and

φ(|x| − ρ) = −∆A(|x|) = f ′(v)

f2(v)
|∇v|2 − 1

f(v)
∆v in RN \BR(0).

Since f is decreasing, we have f ′ ≤ 0 which implies

−∆v ≥ φ(|x| − ρ)f(v) in RN \BR(0).

Therefore, v ∈ C2(RN \BR(0)) satisfies{
−∆v ≥ φ(δK(x))f(v), v > 0 in RN \BR(0),

v(x) → 0 as |x| → ∞.
(3.11)

Let now 0 < ρ0 < ρ be such that K ⊂ Bρ0(0) and let u, v be the solutions of (3.9)
and (3.11) respectively. Consider

w : (Bρ0(0) \ int(K)) ∪ (RN \BR(0)) → [0,∞),

defined by

w(x) = u(x) if x ∈ Bρ0(0) \ int(K), w(x) = v(x) if x ∈ RN \BR(0).

LetW be a positive C2 extension of w to RN \K. We claim that there existsM > 0
large enough such that

U(x) =W (x) +M(1 + |x|2)(2−N)/2, x ∈ RN \ int(K) (3.12)

satisfies (1.1). Indeed, since (1 + |x|2)(2−N)/2 is superharmonic, this condition is
already satisfied in Bρ0(0) \K and RN \BR(0). In BR(0) \Bρ0(0) we use the fact
that −∆(1 + |x|2)(2−N)/2 is positive and bounded away from zero. Therefore we
have constructed a solution U ∈ C2(RN \K) ∩C(RN \ int(K)) of (1.1) that tends
to zero at infinity.

Assume now that RN \K is not connected. We shall construct a solution to (1.1)
by considering each component of RN \K. Note that since K is compact, RN \K
has only one unbounded component on which we proceed as above. Since φ satisfies
(1.2), by Lemma 2.3, on each bounded component of RN \K we construct a solution
of −∆u = φ(δK(x))f(u) that vanishes continuously on the boundary and has the
behavior described by (1.4).
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3.2. Case K2 ̸= ∅
Proceeding in the same manner as above (see (3.12)) we can find a function

U ∈ C2(RN \K1) ∩ C(RN \ int(K1))

such that {
−∆U ≥ φ(δK1(x))f(U), U > 0 in RN \K1,

U(x) → 0 as |x| → ∞.
(3.13)

We next construct a function V ∈ C2(RN \K2) ∩ C(RN ) such that{
−∆V ≥ φ(δK2(x))f(V ), V > 0 in RN \K2,

V (x) → 0 as |x| → ∞.
(3.14)

Using (1.2) and Lemma 2.6(iii), the function

D(r) :=

∫ ∞

r

t1−N

∫ t

0

sN−1φ(s)dsdt for all r ≥ 0,

is well defined and −∆D(|x|) = φ(|x|) in RN \{0}. We next define v : RN → (0,∞)
by ∫ v(x)

0

1

f(t)
dt = D(|x|) for all x ∈ RN .

Using the same arguments as in the previous case we have v ∈ C2(RN \{0})∩C(RN )
and {

−∆v ≥ φ(|x|)f(v), v > 0 in RN \ {0},
v(x) → 0 as |x| → ∞.

(3.15)

Let now V : RN → (0,∞) defined by

V (x) =
∑
a∈K2

v(x− a).

By (3.15) we have V ∈ C2(RN \K2) ∩ C(RN ), V (x) → 0 as |x| → ∞ and

−∆V (x) = −
∑
a∈K2

∆v(x− a) ≥
∑
a∈K2

φ(|x− a|)f(v(x− a))

≥
( ∑

a∈K2

φ(|x− a|)
)
f(V (x)) ≥ φ( min

a∈K2

|x− a|)f(V (x))

= φ(δK2(x))f(V (x)) for all x ∈ RN \K2.

Therefore, V fulfills (3.14). Now

W := U + V : RN \K → R (3.16)
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satisfies W (x) → 0 as |x| → ∞ and

−∆W (x) ≥ φ(δK1(x))f(U) + φ(δK2(x))f(V )

≥ (φ(δK1(x)) + φ(δK2(x)))f(W )

≥ φ
(
min{δK1(x), δK2(x)}

)
f(W )

= φ(δK(x))f(W ) for all x ∈ RN \K.

Thus, W is a solution of (1.1) and the proof of Theorem 1.1 is now complete.

Remark. The approach in Theorem 1.1 can be used to study the inequality (1.1)
in some cases where the compact set K consists of infinitely many components all
of them with C2 boundary. For instance, it is easy to see that the same arguments
apply for compact sets K of the form

K = B1(0) ∪
∪
n≥1

{
x ∈ RN : 1 +

1

2n+ 1
< |x| < 1 +

1

2n

}
or

K = ∂B1(0) ∪
∪
n≥1

∂B1+1/n(0).

4. Proof of Theorem 1.2

4.1. Case K2 = ∅
We shall assume that RN \K is connected as using the arguments in the proof

of Theorem 1.1 on any bounded component of RN \K we can construct a solution
of −∆u = φ(δK(x))f(u) that vanishes continuously on its boundary and has the
behavior described by (1.4).

According to Lemma 2.4, for any n ≥ 1 there exists a unique

un ∈ C2(BR+n(0) \K) ∩ C(BR+n(0) \ int(K))

such that {
−∆un = φ(δK(x))f(un), un > 0 in BR+n(0) \K,
un = 0 on ∂(BR+n(0) \K).

(4.1)

We extend un = 0 on RN \ BR+n(0) and by Lemma 2.1 we have that {un} is a
nondecreasing sequence of functions and un ≤ U in RN \K. Let

ũ(x) = lim
n→∞

un(x) for all x ∈ RN \ int(K).

By standard elliptic arguments, we have ũ ∈ C2(RN \K) and

−∆ũ = φ(δK(x))f(ũ) in RN \K.

We next prove that ũ vanishes continuously on ∂K.
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Let u1 be the unique solution of (4.1) with n = 1 and ω := {x ∈ RN \K : 0 <
δK(x) < 1}. Since both u1 and ũ are continuous and positive on ∂ω \K, one can
find M > 1 such that Mu1 ≥ ũ on ∂ω \K. Now, using the fact that the sequence
{un} is nondecreasing, this also yields Mu1 ≥ un on ∂ω \ K, for all n ≥ 1. The
above inequality also holds true on ∂K (since u1 and un are zero there). Therefore
Mu1 ≥ un on ∂ω for all n ≥ 1 which by the comparison result in Lemma 2.1 (note
that the function Mu1 satisfies (1.1) in ω) gives

Mu1 ≥ un in ω,

for all n ≥ 1. Passing to the limit with n → ∞ in the above estimate, we obtain
Mu1 ≥ ũ in ω and since u1 vanishes continuously on ∂K, so does ũ.

The boundary behavior of ũ near K follows from the fact that u1 ≤ ũ ≤Mu1 in
ω and u1 satisfies (2.12). From Lemma 2.1 we obtain that any solution u of (1.1)
satisfies u ≥ un in RN \K which implies u ≥ ũ. Hence, ũ is the minimal solution
of (1.1).

4.2. Case K2 ̸= ∅
Using, if necessary, a dilation argument, we can assume that dist(K1,K2) > 2

and the distance between any two distinct points of K2 is greater than 2. We fix
R > 0 large enough such that

K1 ∪
∪

a∈K2

B1(a) ⊂ BR(0).

We now apply Lemma 2.5 for L =
∪

a∈K2
B1/n(a) and Ω = BR+n(a). Thus, there

exists a unique solution un of
−∆un = φ(δK(x))f(un), un > 0 in BR+n(0) \

(
K1 ∪

∪
a∈K2

B1/n(a)
)
,

un = 0 on ∂BR+n(0) ∪ ∂K1 ∪
∪

a∈K2

∂B1/n(a).

(4.2)
Extending un = 0 outside of BR+n(0) \

∪
a∈K2

B1/n(a), by Lemma 2.1 we obtain

0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ un+1 ≤ · · · in RN \K.

By Lemma 2.1 we obtain un ≤ W in RN \ K, where W is defined by (3.16).
Thus, passing to the limit in (4.2) and by elliptic arguments, we obtain that ũ :=
limn→∞ un satisfies

−∆ũ = φ(δK(x))f(ũ) in RN \K.

The fact that ũ is minimal, vanishes continuously on ∂K1 and has the behavior
near ∂K1 as described by (1.4) follows exactly in the same way as in the proof of
Theorem 1.1.

It remains to prove that ũ can be continuously extended at any point of K2 and
ũ > 0 on K2. To this aim, we state and prove the following auxiliary results.
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Lemma 4.1. Let r > 0 and x ∈ RN \ ∂Br(0), N ≥ 3. Then

1

σNrN−1

∫
∂Br(0)

1

|x− y|N−2
dσ(y) =


1

|x|N−2
if |x| > r,

1

rN−2
if |x| < r.

Proof. [Proof of Lemma 4.1] Suppose first |x| > r. Then u(y) = |y − x|2−N is
harmonic in Br+ε(0), for ε > 0 small. By the mean value theorem we have

1

σNrN−1

∫
∂Br(0)

1

|x− y|N−2
dσ(y) = u(0) =

1

|x|N−2
.

Assume now |x| < r. Since

v(x) :=
1

σNrN−1

∫
∂Br(0)

1

|x− y|N−2
dσ(y)

is harmonic and radially symmetric, it follows that v is constant in Br(0). Thus
v(x) = v(0) = r2−N for x ∈ Br(0). �

Lemma 4.2. Let u be a C2 positive solution of

−∆u ≥ 0 in B2r1(0) \ {0}, N ≥ 2.

Then
u(x) ≥ m := min

|y|=r1
u(y) for all x ∈ Br1(0) \ {0}.

Proof. [Proof of Lemma 4.2] For 0 < r0 < r1 define vr0 : RN \ {0} → R by

vr0(x) =
m(Φ(r0)− Φ(|x|))
Φ(r0)− Φ(r1)

,

where

Φ(r) =


log

1

r
if N = 2,

1

rN−2
if N ≥ 3.

Then vr0 is harmonic in RN \ {0} and vr0 ≤ u on ∂Br1(0) ∪ ∂Br0(0). Thus, by the
maximum principle, vr0 ≤ u in Br1(0) \ Br0(0). Fix x ∈ Br1(0) \ {0}. Then, for
0 < r0 < |x| we have u(x) ≥ vr0(x) → m as r0 ↘ 0. This concludes the proof. �

Lemma 4.3. Let φ, f : (0,∞) → [0,∞) be continuous functions such that
∫ 1

0
rφ(r)dr <

∞. Suppose that u is a C2 positive bounded solution of −∆u = φ(|x|)f(u) in a
punctured neighborhood of the origin in RN , N ≥ 3. Then, for some L > 0 we have
u(x) → L as x→ 0.

Proof. [Proof of Lemma 4.3] By Lemma 4.2 we can find r0 > 0 small such that u
is bounded away from zero in Br0(0) \ {0}. Hence, for some M > 0 we have

f(u(x)) ≤M in Br0(0) \ {0}. (4.3)



20 Marius Ghergu and Steven D. Taliaferro

For x ∈ RN let

I(x) :=
1

σN

∫
Br0 (0)

φ(y)f(u(y))

|x− y|N−2
dy.

Then,

I(x) =

∫ r0

0

F (x, r)dr, where F (x, r) =
φ(r)

σN

∫
∂Br(0)

f(u(y))

|x− y|N−2
dσ(y).

Since, by (4.3) and Lemma 4.1 we have

(i) F (x, r) ≤Mrφ(r) for x ∈ RN and 0 < r < r0;

(ii)
∫ r0
0
rφ(r)dr <∞;

(iii) F (x, r) → F (0, r) as x→ 0 pointwise for 0 < r < r0,

it follows that I is bounded in RN and by the dominated convergence theorem,

I(x) → I(0) as x→ 0. (4.4)

Since v := u− 1
N−2I is harmonic and bounded in Br0(0)\{0}, it is well known that

limx→0 v(x) exists. Thus, by (4.4), limx→0 u(x) exists and is finite. �

Now, the fact that the minimal solution ũ can be continuously extended on K2

and ũ > 0 on K2 follows by applying Lemma 4.3 for each point of K2. This finishes
the proof of Theorem 1.1.

Remark. The existence of a positive ground state solution in the exterior of a
compact set is a particular feature of the case N ≥ 3. Such solutions do not exist
in dimension N = 2. Indeed, suppose that u is a C2 positive solution of

−∆u ≥ 0 in R2 \K, u(x) → 0 as |x| → ∞,

where K ⊂ R2 is a compact set, not necessarily with smooth boundary. Choose
r0 > 0 such that K ⊂ Br0(0) and let m = min|x|=r0 u(x) > 0. For each r1 > r0
define

vr1 : R2 \ {0} → R, vr1(x) =
m(log r1 − log |x|)
log r1 − log r0

.

Then

vr1 is harmonic in R2 \ {0}, vr1 = m on ∂Br0(0), vr1 = 0 on ∂Br1(0).

Let wr1(x) = u(x)− vr1(x), x ∈ RN \Br0(0). Thus,

−∆wr1 = −∆u ≥ 0 in Br1(0) \Br0(0), wr1 ≥ 0 on ∂Br1(0) ∪ ∂Br0(0).

By maximum principle it follows that wr1 ≥ 0 in Br1(0) \ Br0(0), that is u(x) ≥
vr1(x) in Br1(0) \Br0(0).

Let now x ∈ R2 \ Br0(0) be fixed. Then, for r1 > |x| we have

u(x) ≥ vr1(x) → m as r1 → ∞,

so u(x) ≥ m in R2 \Br0(0), which contradicts u(x) → 0 as |x| → ∞.
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5. Proof of Theorem 1.4

Assume first that (1.1) has a C2 positive solution u. From Proposition 3.1 it follows
that

∫∞
1
rφ(r)dr < ∞. By translation one may assume that 0 ∈ K and fix r0 > 0

such that δK(x) = |x| for 0 < |x| < r0. Let now u∗ be the image of u through the
Kelvin transform, that is,

u∗(x) = |x|2−Nu

(
x

|x|2

)
, x ∈ RN \B1/r0(0). (5.1)

Then u∗ satisfies

−∆u∗ ≥ |x|−2−Nφ

(
1

|x|

)
f

(
u

(
x

|x|2

))
= |x|−2−Nφ

(
1

|x|

)
f(|x|N−2u∗(x)) in RN \B1/r0(0).

By taking the spherical average of u and then using the change of variable ρ = r2−N

as in the proof of Proposition 3.1 (note that here we do not need φ(r) to be monotone
for small values of r > 0) we deduce∫ ∞

1

t−1−Nφ

(
1

t

)
f(atN−2)dt <∞.

Now with the change of variable r = t−1, 0 < r ≤ 1 we derive the condition (1.7).
Conversely, assume now that (1.6)-(1.7) hold and let us construct a solution to

(1.1) in the case K = {0}. This will follow from lemma below.

Lemma 5.1. Let a > 0 be such that (1.6) and (1.7) hold. Then for all b > 0 there
exists a radially symmetric function va,b ∈ C2(RN \ {0}) such that

−∆va,b ≥ φ(|x|)f(va,b) in RN \ {0},

and

lim
|x|→0

|x|N−2va,b(x) = a , lim
|x|→∞

va,b(x) = b.

Proof. Let u0(r) = ar2−N + b, r > 0 and for all n ≥ 1 define inductively the
sequence

un(r) = u0 +

∫ ∞

r

t1−N

∫ t

0

sN−1φ(s)f(un−1(s))dsdt , r > 0. (5.2)

Remark first that un is well defined since un−1 ≥ u0 and by Lemma 2.6 we have∫ ∞

r

t1−N

∫ t

0

sN−1φ(s)f(un−1(s))dsdt ≤
∫ ∞

0

t1−N

∫ t

0

sN−1φ(s)f(u0(s))dsdt

≤
∫ ∞

0

rφ(r)f(u0(r))dr ≤
∫ 1

0

r1−Nφ(r)f(ar2−N )dr + f(b)

∫ ∞

1

rφ(r)dr <∞.
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A straightforward induction argument yields

u1 ≥ u2n−1 ≥ u2n+1 ≥ u2n ≥ u2n−2 ≥ u0 , (5.3)

for all n ≥ 1. Thus, there exists u(r) := limn→∞ u2n(r) and v(r) := limn→∞ u2n−1(r),
r > 0. Passing to the limit in (5.2) and (5.3) we find

u(r) = u0 +

∫ ∞

r

t1−N

∫ t

0

sN−1φ(s)f(v(s))dsdt , r > 0,

v(r) = u0 +

∫ ∞

r

t1−N

∫ t

0

sN−1φ(s)f(u(s))dsdt , r > 0,

(5.4)

and v ≥ u. Thus V (x) = v(|x|) satisfies

−∆V (x) = φ(|x|)f(u(|x|)) ≥ φ(|x|)f(V (x)) in RN \ {0}.

Since the integrals in (5.4) are finite, it is easy to check that

lim
|x|→0

|x|N−2V (x) = a , lim
|x|→∞

V (x) = b.

Therefore, va,b ≡ V satisfies the requirements in Lemma 5.1. �

If K is a finite set of points and V is any solution of −∆V ≥ φ(|x|)f(V ) in
RN \ {0} then U(x) :=

∑
y∈K V (x − y) is a solution of (1.1). This concludes our

proof.
Under the conditions (1.6)-(1.7), the existence of the minimal solution ũ of (1.1)

is obtained with the same proof as in Theorem 1.1. Note that ũ is obtained as a
pointwise limit of the sequence {un} where un satisfies (4.2) in which K1 = ∅ and
K2 = K. It remains to prove that ũ can be continuously extended to a positive

continuous function in RN if and only if
∫ 1

0
rφ(r)dr <∞.

Assume first that the minimal solution ũ of (1.1) is bounded. Using a translation
argument, one can also assume that 0 ∈ K. Fix r0 > 0 such that δK(x) = |x| for
all x ∈ Br0(0). Then averaging (1.1) we obtain

−(rN−1ū′(r))′ ≥ crN−1φ(r) for all 0 < r ≤ r0, (5.5)

where c > 0. Hence rN−1ū′(r) is decreasing and its limit as r ↘ 0 must be zero for
otherwise ū−and hence u−would be unbounded for small r > 0. Thus integrating
(5.5) twice we obtain

∞ >
(
lim sup

r↘0
ū(r)

)
− ū(r0) ≥ c

∫ r0

0

t1−N

∫ t

0

sN−1φ(s)dsdt,

which by Lemma 2.6(ii) yields
∫ 1

0
rφ(r)dr <∞.

Assume now that
∫ 1

0
rφ(r)dr <∞. The conclusion will follow by Lemma 4.3 once

we prove that ũ is bounded around each point of K. Again by translation and a
scaling argument we may assume that 0 ∈ K and δK(x) = |x| for all x ∈ B1(0). Set

v(x) :=M

∫ 2

|x|
t1−N

∫ t

0

sN−1φ(s)dsdt, for all x ∈ B2(0).
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By Lemma 2.6(i), v is bounded and positive in B2(0) and

−∆v(x) =Mφ(|x|) =Mφ(δK(x)) in B1(0) \ {0}. (5.6)

Therefore, we can take M > 1 large enough such that

−∆v(x) ≥ φ(δK(x))f(v(x)) in B1(0) \ {0} and v ≥ ũ on ∂B1(0). (5.7)

Let un be the solution of (4.2) withK1 = ∅ andK2 = K. Recall that {un} converges
pointwise to ũ. Since ũ ≥ un in RN \ K, from (5.7) we have v ≥ un on ∂B1(0).
According to the definition of un, this inequality also holds true on ∂B1/n(0). Now,
by (5.7) and Lemma 2.1 it follows that v ≥ un in B1(0) \ B1/n(0). Passing to the
limit with n→ ∞ it follows that v ≥ ũ in B1(0) \ {0} and so, ũ is bounded around
zero. Proceeding similarly we derive that ũ is bounded around every point of K. By
Lemma 4.3 we now obtain that ũ can be continuously extended on K. This finishes
the proof of Theorem 1.4.

6. Proof of Theorem 1.6

We shall divide our arguments into three steps.

Step 1: There exists a minimal solution ξ : RN \ {0} → (0,∞) which in addition
satisfies

lim
|x|→0

|x|N−2ξ(x) = 0 and lim
|x|→∞

ξ(x) = 0. (6.1)

Indeed, by Lemma 2.2 there exists a unique function ξn such that{
−∆ξn = φ(|x|)f(ξn), ξn > 0 in Bn(0) \B1/n(0),

ξn = 0 on ∂Bn(0) ∪ ∂B1/n(0).
(6.2)

By uniqueness, it also follows that ξn is radially symmetric. We next extend ξn = 0
outside Bn(0) \ B1/n(0). Now, by Lemma 2.1 we have that {ξn} is nondecreasing.
For any ε > 0, let vε be the function constructed in Lemma 5.1 for a = ε and b = ε.
Then, again by Lemma 2.1 we have ξn ≤ vε in Bn(0) \B1/n(0).

Hence, there exists ξ(x) := limn→∞ ξn(x), x ∈ RN \ {0} and ξ ≤ vε. Also ξ is
radially symmetric and by standard elliptic arguments it follows that ξ is a solution
of (1.11). From ξ ≤ vε it follows that lim|x|→0 |x|N−2ξ(x) ≤ ε and lim|x|→∞ ξ(x) ≤
ε. Now, since ε > 0 was arbitrarily chosen, we deduce that ξ satisfies (6.1).

Finally, if u is an arbitrary solution of (1.11), by Lemma 2.1 we deduce ξn ≤ u in
Bn(0) \B1/n(0) which next produces ξ ≤ u in RN \ {0}. Therefore ξ is the minimal
solution of (1.11).

Step 2: Proof of (i).
Fix a, b ≥ 0. We shall construct a radially symmetric solution of (1.11) that

satisfies (1.12) with the aid of the minimal solution ξ constructed at Step 1. By
virtue of Lemma 2.2, for any n ≥ 2 there exists a unique function

un ∈ C2(Bn(0) \B1/n(0)) ∩ C(Bn(0) \B1/n(0))
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such that {
−∆un = |x|αu−p

n , un > 0 in Bn(0) \B1/n(0),

un = a|x|2−N + b+ ξ(x) on ∂Bn(0) ∪ ∂B1/n(0).
(6.3)

Since ξ is radially symmetric, so is un. Furthermore, a|x|2−N + b is a sub-solution
while a|x|2−N + b+ ξ(x) is a super-solution of (6.3). Thus, in view of Lemma 2.1,
we obtain

a|x|2−N + b ≤ un(x) ≤ a|x|2−N + b+ ξ(x) in Bn(0) \B1/n(0). (6.4)

As usual we extend un = 0 outside Bn(0) \B1/n(0). By standard elliptic regularity
and a diagonal process, up to a subsequence there exists

ua,b(x) := lim
n→∞

un(x), x ∈ RN \ {0}

and ua,b is a solution of problem (1.11). Furthermore, from (6.4) we deduce that
ua,b satisfies

a|x|2−N + b ≤ ua,b(x) ≤ a|x|2−N + b+ ξ(x) in RN \ {0}. (6.5)

Now, (6.1) and (6.5) imply (1.12).

Step 3: Proof of (ii).
Let u be a solution of (1.11). By Lemma 2.4 in [10] (see also Brezis and Lions

[2]) we have u ∈ L1
loc(RN ) so there exists a ≥ 0 such that

∆u+ φ(|x|)u−p + aδ(0) = 0 in D′(RN ),

where δ(0) denotes the Dirac mass concentrated at zero. Now, by the representation
formula in [3, Theorem 2.4] we have

u(x) = a|x|2−N + b+ C(N)

∫
RN

φ(|y|)f(u(y))
|x− y|N−2

dy in RN \ {0}.

Since ξ is also a solution of (1.11) that satisfies (6.1) we have

ξ(x) = C(N)

∫
RN

φ(|y|)f(ξ(y))
|x− y|N−2

dy in RN \ {0}.

Using now the monotonicity of f we deduce

a|x|2−N + b ≤ u ≤ a|x|2−N + b+ ξ in RN \ {0}.

This implies lim|x|→0 |x|N−2u(x) = a and lim|x|→∞ u(x) = b.
Let now ua,b be the solution of (1.11) that satisfies (1.12). We claim that u ≡ ua,b.

To this aim, for ε > 0 define

uε(x) := u(x) + ε(|x|2−N + 1), x ∈ RN \ {0}.

Then, we can find R = R(ε) > 0 such that uε ≥ ua,b if |x| > R or 0 < |x| < 1/R. By
means of Lemma 2.1 the same inequality is true in BR(0)\B1/R(0), so uε ≥ ua,b in
RN \ {0}. Passing now to the limit with ε→ 0 it follows that u ≥ ua,b in RN \ {0}.
In the same way we obtain the reverse inequality so u ≡ ua,b. This finishes the
proof of our Theorem 1.6.
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