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Abstract

We study nonnegative solutions u(x, t) of the nonlinear parabolic inequalities

auλ ≤ ut − ∆u ≤ uλ

in various subset of Rn×R, where λ > n+2
n and a ∈ (0, 1) are constants. We show that changing

the value of a in the open interval (0, 1) can dramatically affect the blow-up of these solutions.

1 Introduction

In this paper, we study nonnegative solutions u(x, t) of the nonlinear parabolic inequalities

auλ ≤ ut − ∆u ≤ uλ (1.1)

in various subsets of Rn × R, where a ∈ (0, 1) is a constant and n ≥ 1 is an integer.
In order to state our results, we define |(x, t)| for (x, t) ∈ Rn × R by

|(x, t)| = max{|x|, |t|1/2} (1.2)

where |x| is the usual Euclidean norm of x in Rn, and we define

λB =

{
n+2

n ( n
n−1)2, if n ≥ 2

∞, if n = 1.

Note that λB > n+2
n .

Our result on the blow-up at the origin of nonnegative solutions of (1.1) is

Theorem 1. Suppose λ > n+2
n . Then there exists a = a(n, λ) ∈ (0, 1) and C = C(n, λ) ∈ (1,∞)

such that for each continuous function

ϕ : (0, 1) → (0,∞) (resp. ϕ : (−1, 0) → (0,∞))

there exists a C∞ positive solution u(x, t) of (1.1) in (Rn × R) − {(0, 0)} such that

u(0, t) 6= O(ϕ(t)) as t→ 0+ (resp. t→ 0−)

and |(x, t)| 2
λ−1u(x, t) is bounded between 1/C and C in the region

(Rn × R) − {(x, t) : |x|2 ≤ t ≤ 1} (resp. (Rn × R) − {(x, t) : − 1 ≤ t ≤ −|x|2}).
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Theorem 1 is in strong contrast to the following result of Poláčik, Quittner, and Souplet [11, 15].

Theorem 2. Suppose 1 < λ < λB. Then there exists a = a(n, λ) ∈ (0, 1) and C = C(n, λ) ∈ (1,∞)
such that if u(x, t) is a C2,1 nonnegative solution of (1.1) in

B2(0) × (0, 2) (resp. B2(0) × (−2, 0))

then u(x, t) ≤ C|t| −1
λ−1 for

(x, t) ∈ B1(0) × (0, 1) (resp. (x, t) ∈ B1(0) × (−1, 0)).

Our result on the blow-up at t = ±∞ of nonnegative solutions of (1.1) is

Theorem 3. Suppose λ > n+2
n . Then there exists a = a(n, λ) ∈ (0, 1) and C = C(n, λ) ∈ (1,∞)

such that for each continuous function

ϕ : (1,∞) → (0,∞) (resp. ϕ : (−∞,−1) → (0,∞))

there exists a C∞ positive solution u(x, t) of (1.1) in Rn × R such that

u(0, t) 6= O(ϕ(t)) as t→ ∞ (resp. t→ −∞)

and
(1 + |(x, t)|) 2

λ−1u(x, t)

is bounded between 1/C and C in the region

{(x, t) : t < |x|2} (resp. {(x, t) : t > −|x|2}).
Theorem 3 is in strong contrast to the following result of Poláčik, Quittner, and Souplet [11, 15].

Theorem 4. Suppose 1 < λ < λB. Then there exists a = a(n, λ) ∈ (0, 1) and C = C(n, λ) ∈ (1,∞)
such that if u(x, t) is a C2,1 nonnegative solution of (1.1) in

{(x, t) : t > |x|2} (resp. {(x, t) : t < −|x|2})

then u(x, t) ≤ C|t| −1
λ−1 for

(x, t) ∈ B1(0) × (2,∞) (resp. (x, t) ∈ B1(0) × (−∞,−2)).

When n+2
n < λ < λB , these four theorems show that changing the value of a in the open interval

(0, 1) can dramatically affect the blow-up of positive solutions of (1.1).
Theorem 1 is not true when λ ≤ n+2

n . In fact, we prove in [17] that if u(x, t) is a C2,1 nonnegative
solution of the parabolic inequalities

0 ≤ ut − ∆u ≤ u
n+2

n + 1

in a punctured neighborhood of the origin in Rn × [0,∞) then

u(x, t) = O(t−n/2) as (x, t) → (0, 0), t > 0.

If λ > n+2
n , then by Theorem 1, there exists a ∈ (0, 1) such that (1.1) has C2,1 positive solutions

in B1(0)× (0, 1) which are arbitrarily large as (x, t) approaches (0, 0) along the positive t-axis. Let
I1 = I1(n, λ) be the set of all such a.
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If 1 < λ < λB , then by Theorem 2, there exists a ∈ (0, 1) such that every C2,1 positive solution
u(x, t) of (1.1) in B1(0) × (0, 1) satisfies

u(0, t) = O(t
−1

λ−1 ) as t→ 0+.

Let I2 = I2(n, λ) be the set of all such a.
An interesting open question is whether

I1(n, λ) ∪ I2(n, λ) = (0, 1) for all λ ∈ (
n+ 2
n

, λB) and n ≥ 1.

If not, how do the C2,1 positive solutions of (1.1) in B1(0) × (0, 1) behave as (x, t) approaches the
origin along the positive t-axis when a ∈ (0, 1) − (I1 ∪ I2)? A similar question can be asked about
Theorems 3 and 4. These questions seem to be very difficult.

The blow-up of solutions of the equation

ut − ∆u = uλ (1.3)

has been extensively studied in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 18] and elsewhere. See [13]
and [5] for a summary of many of these results. However, other than [15], we know of no previous
results for the inequalities (1.1). When n+2

n < λ < λB, our results show that it is more appropriate
to study the inequalities (1.1) rather than the equation (1.3).

An elliptic analog of the results in this paper can be found in [16].

2 Preliminary results

In this section, we introduce some notation and obtain some results that will be used in Sections
3 and 4 to prove Theorems 1 and 3, respectively.

Lemma 1. Let f be a C∞ nonnegative function in an open subset Ω of Rn × R and define

u(x, t) :=
∫∫
Ω

Φ(x− y, t− s)f(y, s) dy ds for (x, t) ∈ Ω (2.1)

where

Φ(x, t) =


1

(4πt)n/2
e−

|x|2
4t , for t > 0

0, for t ≤ 0
(2.2)

is the heat kernel. If u ∈ L1
loc(Ω) then u is C∞ in Ω and Hu = f in Ω where Hu = ut − ∆u is the

heat operator.

Proof. Let ψ ∈ C∞
0 (Ω). Multiplying (2.1) by H∗ψ := ψt + ∆ψ, integrating the resulting equation

over Ω, and using Fubini’s theorem and the fact that HΦ = δ, we see that Hu = f in D′(Ω). Thus
by standard parabolic regularity theory, u ∈ C∞(Ω).

If (x, t), (y, s) ∈ Rn × R and c ∈ R, then it follows from (1.2) that

|(x, t) + (y, s)| ≤ |(x, t)| + |(y, s)|

and |(cx, c2t)| = |c| |(x, t)|.
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Throughout this section we assume λ > n+2
n , which implies

n >
2

λ− 1
and 2 <

2λ
λ− 1

< n+ 2. (2.3)

Define W : (Rn × R) − {(0, 0)} → R by

W (y, s) = (|y|4 + s2)−
1

2(λ−1) .

Then W is C∞ on (Rn × R) − {(0, 0)} and

W (y, s) ∼ |(y, s)|− 2
λ−1 for 0 < |(y, s)| <∞. (2.4)

(Here and later the notation X ∼ Y (resp. X . Y ) means 1
CY ≤ X ≤ CY (resp. X ≤ CY ) for

some positive constant C which depends only on n and λ.)
Define W0 : (Rn ×R) − {(0, 0)} → R by

W0 = ϕW (2.5)

where ϕ : Rn ×R → [0, 1] is a C∞ function satisfying ϕ(y, s) = 1 for |(y, s)| ≤ 1 and

ϕ(y, s) = 0 for |(y, s)| ≥
√

3
2
. (2.6)

Define w,w0 : (Rn × R) − {(0, 0)} → R by

w(x, t) =
∫∫

Rn×R

Φ(x− y, t− s)W (y, s)λ dy ds (2.7)

and
w0(x, t) =

∫∫
Rn×R

Φ(x− y, t− s)W0(y, s)λ dy ds.

It follows from (2.3), (2.4), and (2.5) that w and w0 are locally bounded in (Rn × R) − {(0, 0)}.
Thus by Lemma 1, w and w0 are C∞ in (Rn × R) − {(0, 0)}, Hw = W λ and Hw0 = W λ

0 in
(Rn × R) − {(0, 0)}, and

0 ≤ w(x, t) −w0(x, t) .
∫

|(y,s)|≥1

Φ(x− y, t− s)|(y, s)|− 2λ
λ−1 dy ds

. 1 for 0 < |(x, t)| ≤ 1. (2.8)

Lemma 2. The functions w,W,w0, and W0 satisfy

w(x, t)
W (x, t)

∼ 1 for 0 < |(x, t)| <∞, (2.9)

w0(x, t)
W0(x, t)

∼ 1 for 0 < |(x, t)| ≤ 1, (2.10)

and
w0(x, t)
|(x, t)|−n

. 1 and
W0(x, t)
|(x, t)|−n

. 1 for 1 ≤ |(x, t)| <∞. (2.11)
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Proof. Making in (2.7) the change of variables

x = cξ t = c2τ
y = cη s = c2ζ

where c is a positive constant (2.12)

we get
w(x, t) = c−

2
λ−1w(ξ, τ). (2.13)

Taking c = |(x, t)| in (2.12) we find

|(ξ, τ)| =
∣∣∣∣(1
c
x,

1
c2
t

)∣∣∣∣ =
1
c
|(x, t)| = 1 (2.14)

and hence (2.9) follows from (2.13) and (2.4).
It follows from (2.5), (2.4) and (2.8) that for 0 < |(x, t)| ≤ 1 we have∣∣∣∣ w0(x, t)

W0(x, t)
− w(x, t)
W (x, t)

∣∣∣∣ = |w0(x, t) − w(x, t)|
W (x, t)

. |(x, t)| 2
λ−1 → 0 as |(x, t)| → 0.

Thus (2.10) follows from (2.9) and from the continuity and positivity of w0 and W0 on 0 < |(x, t)| ≤
1.

Taking c = |(x, t)| ≥ 4 in (2.12) we have (2.14) holds, 2
|(x,t)| ≤ 1

2 , and

w0(x, t)
|(x, t)|−n

. |(x, t)|n
∫∫

|(y,s)|≤2

Φ(x− y, t− s)|(y, s)|− 2λ
λ−1 dy ds

= |(x, t)|n− 2
λ−1

∫∫
|(η,ζ)|≤2/|(x,t)|

Φ(ξ − η, τ − ζ)|(η, ζ)|− 2λ
λ−1 dη dζ

. |(x, t)|n− 2
λ−1

∫∫
|(η,ζ)|≤2/|(x,t)|

|(η, ζ)|− 2λ
λ−1 dη dζ ∼ 1.

Thus the first inequality of (2.11) follows from the continuity of w0(x, t) for 1 ≤ |(x, t)| ≤ 4. The
second inequality of (2.11) follows from (2.5) and (2.4).

For 0 < r ≤ 1
2 , define Wr : Rn × R → R by

Wr(y, s) = (|y|4 + s2 + r4)−
1

2(λ−1)ϕ(y, s)

where ϕ is the function in (2.5). Then

Wr(y, s) ∼ r−
2

λ−1 , for 0 ≤ |(y, s)| ≤ r (2.15)
Wr(y, s) ∼W0(y, s), for r ≤ |(y, s)| <∞. (2.16)

Recall that according to our definition of X ∼ Y after equation (2.4), the constants C for the
relations (2.15) and (2.16) above and the relations (2.18) and (2.19) below do not depend on r.

For 0 < r ≤ 1
2 , define wr : Rn × R → R by

wr(x, t) =
∫∫

Rn×R

Φ(x− y, t− s)Wr(y, s)λ dy ds. (2.17)

It follows from Lemma 1 that wr is C∞ in Rn × R and Hwr = W λ
r .
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Lemma 3. For 0 < r ≤ 1
2 we have

wr(x, t)
Wr(x, t)

∼ 1, for 0 ≤ |(x, t)| ≤ 1 (2.18)

and
wr(x, t) +Wr(x, t)

|(x, t)|−n
. 1, for 1 ≤ |(x, t)| <∞. (2.19)

Proof. It follows from (2.4), (2.5), (2.15), (2.16), and (2.17) that

wr(x, t) ∼ Ir(x, t) + Jr(x, t) +Kr(x, t) for (x, t) ∈ Rn × R

where

Ir(x, t) = r−
2λ

λ−1

∫∫
|(y,s)|<r

Φ(x− y, t− s) dy ds

Jr(x, t) =
∫∫

r<|(y,s)|<1

Φ(x− y, t− s)|(y, s)|− 2λ
λ−1 dy ds (2.20)

Kr(x, t) =
∫∫

1<|(y,s)|<2

Φ(x− y, t− s)ϕ(y, s)|(y, s)|− 2λ
λ−1 dy ds.

For |(x, t)| ≤ r ∈ (0, 1
2 ] we have

Ir(x, t)

r−
2

λ−1

= r−2

∫∫
|(y,s)|<r

Φ(x− y, t− s) dy ds ≤ r−2

∫ r2

−r2

 ∫
y∈Rn

Φ(x− y, t− s)dy

 ds

≤ r−22r2 = 2. (2.21)

Making in (2.20) the change of variables (2.12) with c = r ∈ (0, 1
2 ], we get

Jr(x, t)

r−
2

λ−1

= Ĵr

(
x

r
,
t

r2

)
(2.22)

where
Ĵr(ξ, τ) =

∫∫
1≤|(η,ζ)|≤ 1

r

Φ(ξ − η, τ − ζ)|(η, ζ)|− 2λ
λ−1 dη dζ.

For |(x, t)| ≤ r ∈ (0, 1
2 ] we have |(x

r ,
t
r2 )| ≤ 1. Also

sup
|(ξ,τ)|≤1

Ĵr(ξ, τ) ≤ sup
|(ξ,τ)|≤1

∫∫
1≤|(η,ζ)|≤∞

Φ(ξ − η, τ − ζ)|(η, ζ)|− 2λ
λ−1 dη dζ

= C(n, λ) <∞, (2.23)

and

inf
|(ξ,τ)|≤1

Ĵr(ξ, τ) ≥ inf
|(ξ,τ)|≤1

∫∫
1<|(η,ζ)|<2

Φ(ξ − η, τ − ζ)|(η, ζ)|− 2λ
λ−1 dη dζ

≥ C(n, λ) > 0. (2.24)
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For r ∈ (0, 1
2 ] and (x, t) ∈ Rn × R, we have

Kr(x, t)

r−
2

λ−1

≤
∫∫

1<|(y,s)|<2

Φ(x− y, t− s) dy ds ≤ 8. (2.25)

Combining (2.21)–(2.25) and using (2.15) we obtain for r ∈ (0, 1
2 ] that

wr(x, t)
Wr(x, t)

∼ wr(x, t)

r−
2

λ−1

∼ 1 for |(x, t)| < r.

Since for |(x, t)| ≥ r, Wr(x, t) ∼W0(x, t) and wr(x, t) ≤ w0(x, t), it follows from Lemma 2 that
to complete the proof of Lemma 3 we only need to show

wr(x, t)
Wr(x, t)

& 1 for r ≤ |(x, t)| ≤ 1. (2.26)

To do this, we make in (2.20) the change of variables (2.12) with c = |(x, t)| ∈ [r, 1
2 ] to get (2.14)

and

wr(x, t)
Wr(x, t)

& Jr(x, t)

c−
2

λ−1

=
∫∫

r
c
≤|(η,ζ)|≤ 1

c

Φ(ξ − η, τ − ζ)|(η, ζ)|− 2λ
λ−1 dη dζ

≥ min
|(ξ,τ)|=1

∫∫
1≤|(η,ζ)|≤2

Φ(ξ − η, τ − ζ)|(η, ζ)|− 2λ
λ−1 dη dζ = C(n, λ) > 0. (2.27)

Also, for r ∈ (0, 1
2 ] and |(x, t)| ∈ [12 , 1] we have

wr(x, t)
Wr(x, t)

∼ wr(x, t) & Kr(x, t) ≥ C(n, λ) > 0. (2.28)

Relation (2.26) follows from (2.27) and (2.28).

For 0 < r ≤ 1
2 and h > 0, define Wh,r : Rn ×R → R by

Wh,r(y, s) = h−
2

λ−1Wr

(y
h
,
s

h2

)
. (2.29)

It follows from (2.5), (2.15), (2.16), and (2.6) that

Wh,r(y, s) ∼ (hr)−
2

λ−1 , for 0 ≤ |(y, s)| ≤ hr (2.30)

Wh,r(y, s) ∼ |(y, s)|− 2
λ−1 , for hr ≤ |(y, s)| ≤ h (2.31)

Wh,r(y, s) ∼ |(y, s)|− 2
λ−1ϕ

(y
h
,
s

h2

)
, for h ≤ |(y, s)| ≤

√
3
2
h (2.32)

Wh,r(y, s) = 0, for |(y, s)| ≥
√

3
2
h. (2.33)

For 0 < r ≤ 1
2 and h > 0, define wh,r : Rn × R → R by

wh,r(x, t) =
∫∫

Rn×R

Φ(x− y, t− s)Wh,r(y, s)λ dy ds. (2.34)
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Making in (2.34) the change of variables (2.12) with c = h and using (2.17) and (2.29), we get

wh,r(x, t) = h−
2

λ−1wr

(
x

h
,
t

h2

)
. (2.35)

The following lemma follows immediately from Lemma 3 and equations (2.29) and (2.35).

Lemma 4. For 0 < r ≤ 1
2 and h > 0 we have

wh,r(x, t)
Wh,r(x, t)

∼ 1 for 0 ≤ |(x, t)| ≤ h

wh,r(x, t) +Wh,r(x, t)

hn− 2
λ−1 |(x, t)|−n

. 1 for h ≤ |(x, t)| <∞.

Define Ŵ , ŵ : Rn × R → R by

Ŵ (y, s) = (|y|4 + s2 + 1)−
1

2(λ−1)

ŵ(x, t) =
∫∫

Rn×R

Φ(x− y, t− s)Ŵ (y, s)λ dy ds. (2.36)

Then

Ŵ (y, s) ∼ (1 + |(y, s)|)− 2
λ−1 for (y, s) ∈ Rn × R (2.37)

which implies

Ŵ (y, s) ∼ 1 for 0 ≤ |(y, s)| ≤ 1

and

Ŵ (y, s) ∼ |(y, s)|− 2
λ−1 for |(y, s)| ≥ 1 (2.38)

and it follows from (2.3) and Lemma 1 that ŵ is C∞ in Rn × R and Hŵ = Ŵ λ.
For |(x, t)| ≥ 1, we obtain from (2.4) and (2.9) that

|(x, t)| 2
λ−1 ŵ(x, t) ≤ |(x, t)| 2

λ−1w(x, t) ∼ w(x, t)
W (x, t)

∼ 1

and making the change of variables (2.12) with c = |(x, t)| ≥ 1 and using (2.14) and (2.38) we get

|(x, t)| 2
λ−1 ŵ(x, t) & |(x, t)| 2

λ−1

∫∫
|(y,s)|≥2

Φ(x− y, t− s)
1

|(y, s)| 2λ
λ−1

dy ds

=
∫∫

|(η,ζ)|≥ 2
|(x,t)|

Φ(ξ − η, τ − ζ)
1

|(η, ζ)| 2λ
λ−1

dη dζ

≥ min
|(ξ,τ)|=1

∫∫
2≤|(η,ζ)|≤3

Φ(ξ − η, τ − ζ)
1

|(η, ζ)| 2λ
λ−1

dη dζ

= C(n, λ) > 0.
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So ŵ(x, t) ∼ |(x, t)|− 2
λ−1 for |(x, t)| ≥ 1, and thus by (2.38),(

ŵλ

Hŵ

)1/λ

=
ŵ

Ŵ
∼ 1 in Rn ×R. (2.39)

For 0 < r ≤ 1
2 and h > 0, define V +

h,r, V
−
h,r : Rn × R → R by

V +
h,r(x, t) = Wh,r((x, t) − (0, 2h2))

V −
h,r(x, t) = Wh,r((x, t) + (0, 2h2)).

We abbreviate these last two equations by writing

V ±
h,r(x, t) = Wh,r((x, t) ∓ (0, 2h2))

and in what follows we abbreviate other pairs of equations in a similar way.
For 0 < r ≤ 1

2 and h > 0, define v±h,r : Rn × R → R by

v±h,r(x, t) =
∫∫

Rn×R

Φ(x− y, t− s)V ±
h,r(y, s)

λ dy ds. (2.40)

Then
Hv±h,r = (V ±

h,r)
λ (2.41)

and by (2.34)
v±h,r(x, t) = wh,r((x, t) ∓ (0, 2h2)).

Thus the following lemma follows directly from Lemma 4.

Lemma 5. For 0 < r ≤ 1
2 and h > 0 we have

v±h,r(x, t)

V ±
h,r(x, t)

∼ 1, for |(x, t) ∓ (0, 2h2)| ≤ h

v±h,r(x, t) + V ±
h,r(x, t)

hn− 2
λ−1 |(x, t) ∓ (0, 2h2)|−n

. 1, for |(x, t) ∓ (0, 2h2)| ≥ h.

Lemma 5 and equations (2.30), (2.31), (2.4), and (2.9) imply

v±h,r ∼ V ±
h,r & h−

2
λ−1 ∼ |(x, t)|− 2

λ−1 ∼W ∼ w for |(x, t) ∓ (0, 2h2)| ≤ h. (2.42)

Since for |(x, t) ∓ (0, 2h2)| ≥ h,

hn− 2
λ−1 |(x, t) ∓ (0, 2h2)|−n

|(x, t)|− 2
λ−1

. min

{(
h

|(x, t)|
)n− 2

λ−1

,

( |(x, t)|
h

) 2
λ−1

}
,

it follows from Lemma 5 that

v±h,r(x, t) + V ±
h,r(x, t)

|(x, t)|− 2
λ−1

. min

{(
h

|(x, t)|
)n− 2

λ−1

,

( |(x, t)|
h

) 2
λ−1

}
(2.43)

for |(x, t) ∓ (0, 2h2)| ≥ h.
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Let hj = 3j for j ∈ Z. Let ϕ : (−∞, 0)∪ (0,∞) → (0,∞) be a continuous function. (There is no
loss of generality in assuming the functions ϕ in Theorems 1 and 3 are all positive and continuous
on the larger set (−∞, 0) ∪ (0,∞).) Choose rj ∈ (0, 1

2 ] such that

(hjrj)
− 2

λ−1

ϕ(±2h2
j )

→ ∞ as |j| → ∞. (2.44)

Let V ±
j = V ±

hj ,rj
and v±j = v±hj ,rj

. Since by (2.33) the support of V ±
j is contained in Rq

3
2
hj

(0,±2h2
j )

where
Rh(x, y) := {(y, s) ∈ Rn × R : |(y, s) − (x, t)| ≤ h},

we see that the functions V ±
j , j ∈ Z, have disjoint supports. By Lemma 5 and equation (2.30),

v±j (0,±2h2
j ) ∼ V ±

j (0,±2h2
j ) = Whj ,rj

(0, 0) ∼ (hj , rj)
− 2

λ−1 (2.45)

for j ∈ Z.
If A is any subset of Z and R±

j = Rhj
(0,±2h2

j ) it follows from (2.43) that for (x, t) /∈ ⋃
j∈A

R±
j

and (x, t) 6= (0, 0) we have∑
j∈A

v±j (x, t) + V ±
j (x, t)

|(x, t)|− 2
λ−1

.
∑

hj≤|(x,t)|

(
hj

|(x, t)|
)n− 2

λ−1

+
∑

hj≥|(x,t)|

( |(x, t)|
hj

) 2
λ−1

. 1 (2.46)

and thus, since the functions V ±
j have disjoint supports,∑

j∈A
V ±

j (x, t)λ

|(x, t)|− 2λ
λ−1

=


∑
j∈A

V ±
j (x, t)

|(x, t)|− 2
λ−1


λ

. 1 (2.47)

for (x, t) /∈ ⋃
j∈A

R±
j and (x, t) 6= (0, 0).

3 Proof of Theorem 1

In this section, we use the notation and results in Section 2 to prove Theorem 1.

Proof of Theorem 1. Since the functions V ±
j , j ∈ Z, are C∞ and have disjoint support,

∑
j≤−1

(V ±
j )λ

converges in (Rn × R) − {(0, 0)} to a C∞ function. It follows from the monotone convergence
theorem and (2.40) that

v±(x, t) :=
∫∫

Rn×R

Φ(x− y, t− s)

∑
j≤−1

V ±
j (y, s)λ

 dy ds

=
∑

j≤−1

v±j (x, t)

.

|(x, t)|− 2
λ−1 , if (x, t) /∈ ⋃

j≤−1
R±

j

v±j0(x, t) + |(x, t)|− 2
λ−1 , if (x, t) ∈ R±

j0
for some j0 ≤ −1

(3.1)
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by (2.46). Thus v± is bounded on compact subsets of (Rn ×R)−{(0, 0)}, and so by Lemma 1, v±

is C∞ on (Rn × R) − {(0, 0)} and

Hv± =
∑

j≤−1

(V ±
j )λ =

∑
j≤−1

Hv±j

by (2.41).
Define u± : (Rn × R) − {(0, 0)} → R by u± = w + v± where w is given by (2.7). Then u± is

C∞ and
Hu± = W λ +

∑
j≤−1

(V ±
j )λ. (3.2)

We now show
Hu± ∼ (u±)λ in (Rn × R) − {(0, 0)}, (3.3)

which after scaling u± if necessary, implies u± satisfies (1.1) in (Rn × R) − {(0, 0)}.
If (x, t) /∈ ⋃

j≤−1
Rj and (x, t) 6= (0, 0) then by (3.2), (2.4), (2.9), (2.47), and (2.46),

Hu± = W λ

1 +
∑

j≤−1

(
V ±

j

W

)λ


∼ wλ

1 +
∑

j≤−1

(V ±
j )λ

|(x, t)|− 2λ
λ−1


∼ wλ ∼ wλ

(
1 +

(
v±

w

)λ
)

= (u±)λ.

If (x, t) ∈ Rj0 for some j0 ≤ −1 then by (3.2), (2.42), (2.46), and Lemma 5,

Hu± = (V ±
j0

)λ +W λ

= (V ±
j0

)λ

1 +

(
W

V ±
j0

)λ


∼ (V ±
j0

)λ ∼ (v±j0)
λ

∼ (v±j0)
λ

1 +
∑

j≤−1
j 6=j0

v±j
v±j0

+
w

v±j0


λ

= (u±)λ

which proves (3.3).
It follows from (2.44) and (2.45) that u±(0, t) 6= O(ϕ(t)) as t→ 0±.
By (2.4), (2.9), and (3.1) we see that |(x, t)| 2

λ−1u±(x, t) ∼ 1 in the regions stated in Theorem 1.
Taking u = u+ (resp. u = u−), we obtain Theorem 1.
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4 Proof of Theorem 3

In this section, we use the notation and results in Section 2 to prove Theorem 3.

Proof of Theorem 3. Since the functions V ±
j , j ∈ Z, are C∞ and have disjoint support,

∑
j≥1

(V ±
j )λ

converges on Rn × R to a C∞ function.
Let B be a subset of N. If |(x, t)| < 1 then (x, t) /∈ ⋃

j∈B
R±

j and it therefore follows from (2.43)

that ∑
j∈B

v±j (x, t) + V ±
j (x, t) .

∑
j≥1

h
− 2

λ−1

j ∼ 1.

Thus, by (2.46), we have for (x, t) /∈ ⋃
j∈B

R±
j that

∑
j∈B

v±j (x, t) + V ±
j (x, t) . (1 + |(x, t)|)− 2

λ−1 . (4.1)

Hence, since the functions V ±
j have disjoint support,∑

j∈B

V ±
j (x, t)λ . (1 + |(x, t)|)− 2λ

λ−1 (4.2)

for (x, t) /∈ ⋃
j∈B

R±
j .

It follows from the monotone convergence theorem and (2.40) that

v±(x, t) :=
∫∫

Rn×R

Φ(x− y, t− s)
∑
j≥1

V ±
j (y, s)λ dy ds

=
∑
j≥1

v±j (x, t)

.

(1 + |(x, t)|)− 2
λ−1 , if (x, t) /∈ ⋃

j≥1
R±

j

vj0(x, t) + (1 + |(x, t)|)− 2
λ−1 , if (x, t) ∈ R±

j0
for some j0 ≥ 1

(4.3)

by (4.1). Thus v± is bounded on compact subsets of Rn × R and so by Lemma 1, v± is C∞ in
Rn ×R and

Hv± =
∑
j≥1

(V ±
j )λ =

∑
j≥1

Hv±j

by (2.41).
Define u± : Rn × R → R by u± = ŵ + v± where ŵ is given by (2.36). Then u± is C∞ and

Hu± = Ŵ λ +
∑
j≥1

(V ±
j )λ. (4.4)

We now show
Hu± ∼ (u±)λ in Rn × R, (4.5)

which after scaling u± if necessary, implies u± satisfies (1.1) in Rn × R.
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If (x, t) /∈ R±
j then by (4.4), (4.2), (2.37), (2.39), and (4.1), we have

Hu± = Ŵ λ

1 +
∑
j≥1

(
V ±

j

Ŵ

)λ


∼ ŵλ ∼ ŵλ

[
1 +

(
v±

ŵ

)]λ

= (u±)λ.

If (x, t) ∈ R±
j0

for some j0 ≥ 1 then |(x, t)| ≥ 1 and so (2.42), (2.37), and (2.39) imply

v±j0 ∼ V ±
j0

≥ h
− 2

λ−1

j0
∼ |(x, t)|− 2

λ−1 ∼ (1 + |(x, t)|)− 2
λ−1 ∼ Ŵ ∼ ŵ.

Hence, if (x, t) ∈ R±
j0

for some j0 ≥ 1 then by (4.4), (4.1) and Lemma 5, we have

Hu± = (V ±
j0

)λ + Ŵ λ = (V ±
j0

)λ

1 +

(
Ŵ

V ±
j0

)λ


∼ (V ±
j0

)λ ∼ (v±j0)
λ ∼ (v±j0)

λ

1 +
∑
j≥1
j 6=j0

v±j
v±j0

+
ŵ

v±j0


λ

= (u±)λ

which proves (4.5).
It follows from (2.44) and (2.45) that u±(0, t) 6= O(ϕ(t)) as t → ±∞. By (2.37), (2.39), and

(4.3) we see that (1 + |(x, t)|) 2
λ−1u±(x, t) ∼ 1 in the regions stated in Theorem 3.

Taking u = u+ (resp. u = u−), we obtain Theorem 3.

5 Proofs of Theorems 2 and 4

Souplet [15] showed that the proof of Theorem 3.1 in [11] can be very slightly modified to prove
the following theorem.

Theorem 5. Suppose 1 < λ < λB and D is a proper open subset of Rn × R. Then there exists
a = a(n, λ) ∈ (0, 1) and C = C(n, λ) ∈ (1,∞) such that if u(x, t) is a C2,1 nonnegative solution of
(1.1) in D then

u(x, t) ≤ C

(
inf

(y,s)∈∂D
|(y, s) − (x, t)|

) −2
λ−1

for all (x, t) ∈ D.

Theorems 2 and 4 are immediate consequences of Theorem 5.
The proofs of Theorem 5 and [11, Theorem 3.1] rely heavily on the following Liouville-type

result of Bidaut-Véron [3].

Theorem 6. Suppose 1 < λ < λB. Then the only C2,1 nonnegative solution u(x, t) of

ut − ∆u = uλ in Rn × R

is u ≡ 0.
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[18] L. Véron, Singularities of solutions of second order quasilinear equations. Pitman Research
Notes in Mathematics Series, 353. Longman, Harlow, 1996.

15


