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Abstract

We study classical nonnegative solutions u(x, t) of the semilinear parabolic inequalities

0 ≤ ut − ∆u ≤ up in Ω × (0, 1)

where p is a positive constant and Ω is a bounded domain in R
n, n ≥ 1.

We show that a necessary and sufficient condition on p for such solutions u to satisfy a
pointwise a priori bound on compact subsets K of Ω as t→ 0+ is p ≤ 1 + 2/n and in this case
the bound on u is

max
x∈K

u(x, t) = O(t−n/2) as t→ 0+.

If in addition, Ω is smooth, u satisfies the boundary condition u = 0 on ∂Ω × (0, 1), and
p < 1 + 2/n, then we obtain a bound for u on the entire set Ω as t→ 0+.
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1 Introduction

It is not hard to prove that if u is a nonnegative solution of the heat equation

ut − ∆u = 0 in Ω × (0, T ), (1.1)

where T is a positive constant and Ω is an open subset of R
n, n ≥ 1, then for each compact subset

K of Ω, we have
max
x∈K

u(x, t) = O(t−n/2) as t→ 0+. (1.2)

The exponent −n/2 in (1.2) is optimal because the Gaussian

Φ(x, t) =






1

(4πt)n/2
e−

|x|2

4t , t > 0

0, t ≤ 0
(1.3)

is a nonnegative solution of the heat equation in R
n × R \ {(0, 0)} and

Φ(0, t) = (4πt)−n/2 for t > 0. (1.4)



It is also not hard to prove that if u is a nonnegative solution of the Dirichlet problem

ut − ∆u = 0 in Ω × (0, T )

u = 0 on ∂Ω × (0, T ),
(1.5)

where T > 0 and Ω is a C2 bounded domain in R
n, n ≥ 1, then

u(x, t) = O




ρ(x)√

t
∧ 1

√
t
n+1



 in Ω × (0, T/2), (1.6)

where ρ(x) = dist(x, ∂Ω) and a ∧ b = min{a, b} for a, b ∈ R.
Note that (1.6) is a pointwise a priori bound for u on the entire set Ω rather than on compact

subsets of Ω. As we discuss and state precisely in the third paragraph after Theorem 1.4, the bound
(1.6) is optimal for x near the boundary of Ω and t small.

In this paper, we investigate when similar results hold for nonnegative solutions u(x, t) of the
inequalities

0 ≤ ut − ∆u ≤ up +
1√
t
α in Ω × (0, T ), (1.7)

where T > 0, p > 0, and α ∈ R are constants and where we sometimes omit either up or 1/
√
t
α

on
the right side of (1.7). Note that nonnegative solutions of the heat equation (1.1) satisfy (1.7).

Our first result deals with nonnegative solutions u of (1.7) when no boundary conditions are
imposed on u.

Theorem 1.1. Suppose u(x, t) is a C2,1 nonnegative solution of

0 ≤ ut − ∆u ≤ u1+2/n +
1

√
t
n+2 in Ω × (0, T ), (1.8)

where T > 0 and Ω is an open subset of R
n, n ≥ 1. Then, for each compact subset K of Ω, u

satisfies (1.2).

We proved Theorem 1.1 in [22] with the strong added assumption that

for some x0 ∈ Ω, u is continuous on (Ω × [0, T )) \ {(x0, 0)}. (1.9)

Theorem 1.1 is optimal in two ways. First, the exponent −n/2 on t in (1.2) cannot be improved
because, as already pointed out, the Gaussian (1.3) is a C∞ nonnegative solution of the heat
equation in R

n × R \ {(0, 0)} satisfying (1.4).
And second, the exponent 1 + 2/n on u in (1.8) cannot be increased by the following theorem

in [22].

Theorem 1.2. Let p > 1+2/n and ψ : (0, 1) → (0,∞) be a continuous function. Then there exists
a C∞ nonnegative solution u(x, t) of

0 ≤ ut − ∆u ≤ up in (Rn × R) \ {(0, 0)}

such that
u(0, t) 6= O(ψ(t)) as t→ 0+.
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By Theorems 1.1 and 1.2, a necessary and sufficient condition on a positive constant p for C2,1

nonnegative solutions u(x, t) of

0 ≤ ut − ∆u ≤ up in Ω × (0, T )

to satisfy a pointwise a priori bound on compact subsets K of Ω as t → 0 is p ≤ 1 + 2/n. In this
case, the optimal bound is the same as the one for the heat equation (1.1).

M.-F. Bidaut-Véron [3], using methods very different than ours, proved Theorem 1.1 when the
differential inequalities (1.8) are replaced with the equation

ut − ∆u = up in Ω × (0, T ) where 1 < p < n(n+ 2)/(n − 1)2. (1.10)

If in addition, p > 1 + 2/n and K is a compact subset of Ω then she shows nonnegative solutions
of (1.10) satisfy

u(x, t) ≤ Ct−1/(p−1) in K × (0, T/2)

where the constant C does not depend on u.
Our next result deals with nonnegative solutions u of (1.7) when no boundary conditions are

imposed on u and when the term up is omitted from the right side of (1.7).

Theorem 1.3. Suppose u is a C2,1 nonnegative solution of

0 ≤ ut − ∆u ≤ 1
√
t
α+2 in Ω × (0, T ),

where α ∈ R, T > 0, and Ω is an open subset of R
n, n ≥ 1. Then for each compact subset K of Ω,

max
x∈K

u(x, t) =





o
(

1√
t
α

)
if α > n

O
(

1√
t
n

)
if α ≤ n

as t→ 0+.

When α ≤ n, Theorem 1.3 follows from Theorem 1.1. We include the case α ≤ n in Theorem
1.3 for completeness.

The rest of our results deal with nonnegative solutions of (1.7) satisfying a Dirichlet boundary
condition. To state our results, we define d(x, t) := ρ(x) ∧

√
t to be the parabolic distance from

(x, t) to the parabolic boundary of Ω × (0, T ).

Theorem 1.4. Suppose u ∈ C2,1(Ω × (0, T )) is a nonnegative solution of

0 ≤ ut − ∆u ≤ up +
1√
t
α in Ω × (0, T )

u = 0 on ∂Ω × (0, T ),

(1.11)

where T > 0, p > 0, and α ∈ R are constants and Ω is a C2 bounded domain in R
n, n ≥ 1. Then

(i) if p < 1 + 2/(n + 1) and α < n+ 3, then u satisfies (1.6);

(ii) if p = 1 + 2/(n + 1) and α ≤ n+ 3, then

u(x, t) = O(d(x, t)−(n+1)) in Ω × (0, T/2); (1.12)

3



(iii) if 1 + 2/(n + 1) ≤ p < 1 + 2/n and α ≤ pq where q = 2/(n + 2 − np), then

u(x, t) = O(d(x, t)−(pq−2)) in Ω × (0, T/2). (1.13)

Part (ii) of Theorem 1.4 is a special case of part (iii). We state part (ii) separately because it
deals with the value of p at which the form of the bound for u changes and because it facilitates
our discussion below.

If we define the inner region Dinn of Ω × (0, T/2) by

Dinn := {(x, t) ∈ Ω × (0, T/2) : ρ(x) >
√
t}

then the bounds (1.6) and (1.12) for u in Theorem 1.4 parts (i) and (ii) are the same in Dinn and

their common value there is 1/
√
t
n+1

.
The bound (1.6) for u in Theorem 1.4(i) is, like u, zero on ∂Ω× (0, T ). Furthermore, the bound

(1.6) is optimal for x near the boundary of Ω and t small. More precisely, let x0 ∈ ∂Ω, G(x, y, t)
be the heat kernel of the Dirichlet Laplacian for Ω, and η be the unit inward normal to Ω at x0.
Then using the lower bound for G in [25], it is easy to show that

u(x, t) := lim
r→0+

G(x, x0 + rη, t)

r

is a nonnegative solution of (1.5), and hence of (1.11), such that for some t0 > 0,

u(x, t)

(ρ(x)√
t
∧ 1)/

√
t
n+1

is bounded between positive constants for all (x, t) ∈ Ω × (0, t0) satisfying |x− x0| <
√
t.

On the other hand, since u in Theorem 1.4(ii) is zero on ∂Ω × (0, T ) and the bound 1/ρ(x)n+1

for u in Theorem 1.4(ii) in Dout := Ω×(0, T/2)\Dinn is infinite on ∂Ω×(0, T ), one might conjecture
that the bound (1.12) for u could be considerably improved in Dout. However, the following theorem
casts some doubt on this conjecture. It also shows that the exponent p = 1 + 2/(n + 1) on u in
Theorem 1.4(ii) is optimal for (1.12) to hold.

Theorem 1.5. Suppose Ω is a C2 bounded domain in R
n, n ≥ 1, and p > 1 + 2/(n + 1). Then

there exists ε = ε(n, p) > 0 such that for each x0 ∈ ∂Ω there exists a nonnegative solution u ∈
C2,1(Ω × (0,∞)) of

0 ≤ ut − ∆u ≤ up in Ω × (0,∞)

u = 0 on ∂Ω × (0,∞)
(1.14)

and a sequence {(xj , tj)}∞j=1 ⊂ Ω × (0, 1) such that as j → ∞ we have (xj , tj) → (x0, 0),

ρ(xj)√
tj

1+ε → 0, and u(xj , tj)ρ(xj)
n+1+ε → ∞.

Thus, the bound (1.12) for u in Theorem 1.4(ii) does not hold for any p > 1+2/(n+1) because
the bound (1.12) is not large enough in the outer region Dout.

Theorem 1.4 deals with problem (1.11) when p satisfies 0 < p < 1+2/n. The rest of our results
deal with problem (1.11) when p ≥ 1 + 2/n.
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Theorem 1.6. Suppose p > 1+2/n, Ω is a C2 bounded domain in R
n, n ≥ 1, and ψ : Ω× (0, 2) →

(0,∞) is a continuous function. Then there exists a nonnegative solution u ∈ C2,1(Ω × (0,∞)) of
(1.14) such that

u(x, t) 6= O(ψ(x, t)) in Ω × (0, 1).

In other words, in contrast to Theorem 1.4, there does not exist a pointwise a priori bound on
Ω × (0, 1) for nonegative solutions of (1.14) when p > 1 + 2/n and it is natural to ask the

Open Question. If T > 0 and Ω is a C2 bounded domain in R
n, n ≥ 1, then for what α ∈ R, if

any, do nonnegative solutions u ∈ C2,1(Ω × (0, T )) of

0 ≤ ut − ∆u ≤ u1+2/n +
1√
t
α in Ω × (0, T )

u = 0 on ∂Ω × (0, T )

(1.15)

satisfy a pointwise a priori bound on Ω × (0, T/2)?

By the following theorem, if such a bound does exist, it must be very large.

Theorem 1.7. Suppose Ω is a C2 bounded domain in R
n, n ≥ 1, and β is a positive constant.

Then there exists a nonnegative solution u ∈ C2,1(Ω × (0,∞)) of

0 ≤ ut − ∆u ≤ u1+2/n in Ω × (0,∞)

u = 0 on ∂Ω × (0,∞)

such that
u(x, t) 6= O(d(x, t)−β) in Ω × (0, 1).

Theorem 1.4 can be strengthened by weakening the boundary condition u = 0 and, in parts (ii)
and (iii), by replacing the term 1/

√
t
α

in (1.11) with a larger term which is infinite on ∂Ω× (0, T ).
We state and prove this strengthend version of Theorem 1.4 in Sections 4 and 5.

The proof of Theorems 1.1 and 1.3 (resp. Theorem 1.4) relies heavily on Lemma 2.1 (resp.
Lemma 2.2), which we state and prove in Section 2. We are able to prove Theorem 1.1 without
condition (1.9) because we do not impose this kind of condition on the function u in Lemma 2.1.

As in [22], a crucial step in the proof of Theorem 1.1 (resp. 1.4) is an adaptation and extension
to parabolic inequalities of a method of Brezis [4] concerning elliptic equations and based on Moser’s
iteration. This method is used to obtain an estimate of the form

‖uj‖
L

n+2
n q(D′)

≤ C‖uj‖Lq(D)

where q > 1, D′ ⊂ D, C is a constant which does not depend on j, and uj, j = 1, 2, . . . , is obtained
from the function u in Theorem 1.1 (resp. 1.4) by appropriately scaling u about (xj, tj) where
(xj , tj) ∈ Ω × (0, T ) is a sequence such that tj → 0+ and for which the desired bound for u is
violated.

Our proofs also rely on upper and lower bounds for the heat kernel of the Dirichlet Laplacian.
We use the upper bound in [11] and the lower one in [25].

P. Souplet and P. Quittner communicated to us a proof of Theorem 1.4(i) in the special case
that α = 0. Their method of proof, which is very different from ours being based on [7, Theorem
4, Remark 3.2(b)] and the comparison principle, does not seem to work for our Theorem 1.4(i) as
stated. See also [20, Theorem 26.14(i)].
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Poláčik, Quittner, and Souplet [18, Theorem 3.1] obtained estimates of the form (1.12) and
(1.13) for solutions of the equation (1.10) without imposing boundary conditions on u. Their
method of proof, which is very different from ours being based on a parabolic Liouville-type theorem
of Bidaut-Véron [3], does not seem to work for the inequalities (1.11), even if the term 1/

√
t
α

is
omitted in (1.11).

The blow-up of solutions of the equation

ut − ∆u = up (1.16)

has been extensively studied in [1, 2, 3, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 21, 24] and elsewhere.
The book [20] is an excellent reference for many of these results. However, other than [22], we know
of no previous blow-up results for the inequalities

0 ≤ ut − ∆u ≤ up.

Also, blow-up of solutions of aup ≤ ut − ∆u ≤ up, where a ∈ (0, 1), has been studied in [23].

2 Preliminary lemmas

For the proofs in Section 3 of Theorems 1.1 and 1.3, we will need the following lemma.

Lemma 2.1. Suppose u is a C2,1 nonnegative solution of

Hu ≥ 0 in B4(0) × (0, 3) ⊂ R
n × R, n ≥ 1, (2.1)

where Hu = ut − ∆u is the heat operator. Then

u,Hu ∈ L1(B2(0) × (0, 2)) (2.2)

and there exist a finite positive Borel measure µ on B2(0) and h ∈ C2,1(B1(0)× (−1, 1)) satisfying

Hh = 0 in B1(0) × (−1, 1) (2.3)

h = 0 in B1(0) × (−1, 0] (2.4)

such that
u = N + v + h in B1(0) × (0, 1) (2.5)

where

N(x, t) :=

∫ 2

0

∫

|y|<2

Φ(x− y, t− s)Hu(y, s) dy ds, (2.6)

v(x, t) :=

∫

|y|<2

Φ(x− y, t) dµ(y), (2.7)

and Φ is the Gaussian (1.3).

Proof. Let ϕ1 ∈ C2(B3(0)) and λ > 0 satisfy

−∆ϕ1 = λϕ1

ϕ1 > 0

}
for |x| < 3

ϕ1 = 0 for |x| = 3.
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Then for 0 < t ≤ 2, we have by (2.1) that

0 ≤
∫

|x|<3

[Hu(x, t)]ϕ1(x) dx

=

∫

|x|<3

ut(x, t)ϕ1(x) dx + λ

∫

|x|<3

u(x, t)ϕ1(x) dx+

∫

|x|=3

u(x, t)
∂ϕ1(x)

∂η
dSx

≤ U ′(t) + λU(t)

where U(t) =
∫

|x|<3

u(x, t)ϕ1(x) dx. Thus (U(t)eλt)′ ≥ 0 for 0 < t ≤ 2 and consequently for some

U0 ∈ [0,∞) we have
U(t) = (U(t)eλt)e−λt → U0 as t→ 0+. (2.8)

Thus uϕ1 ∈ L1(B3(0) × (0, 2)). Hence, since for 0 < t ≤ 2,
∫ 2

t

∫

|x|<3

Hu(x, τ)ϕ1(x) dx dτ =

∫

|x|<3

(∫ 2

t
ut(x, τ) dτ

)
ϕ1(x) dx−

∫ 2

t

∫

|x|<3

(∆u(x, τ))ϕ1(x) dx dτ

=

∫

|x|<3

u(x, 2)ϕ1(x) dx−
∫

|x|<3

u(x, t)ϕ1(x) dx

+

∫ 2

t

∫

|x|=3

u(x, τ)
∂ϕ1(x)

∂η
dSx dτ

+ λ

∫ 2

t

∫

|x|<3

u(x, τ)ϕ1(x) dx dτ, (2.9)

we see that (Hu)ϕ1 ∈ L1(B3(0) × (0, 2)). So (2.2) holds.
By (2.8), ∫

|x|≤2

u(x, t) dx is bounded for 0 < t ≤ 2. (2.10)

Hence there exists a finite positive Borel measure µ̂ on B2(0) and a sequence tj decreasing to 0

such that for all g ∈ C(B2(0)) we have
∫

|x|≤2

g(x)u(x, tj) dx −→
∫

|x|≤2

g(x) dµ̂ as j → ∞.

In particular, for all ϕ ∈ C∞
0 (B2(0)) we have

∫

|x|<2

ϕ(x)u(x, tj) dx −→
∫

|x|<2

ϕ(x) dµ as j → ∞, (2.11)

where we define µ to be the restriction of µ̂ to B2(0).
For (x, t) ∈ R

n × (0,∞), let v(x, t) be defined by (2.7). Then v ∈ C2,1(Rn × (0,∞)), Hv = 0 in
R

n × (0,∞), and ∫

Rn

v(x, t) dx =

∫

|y|<2

dµ(y) <∞ for t > 0. (2.12)

7



Thus v ∈ L1(Rn × (0, 2)).
For ϕ ∈ C∞

0 (B2(0)) and t > 0 we have

∫

|x|<2

ϕ(x)v(x, t) dx =

∫

|y|<2




∫

|x|<2

Φ(x− y, t)ϕ(x) dx



 dµ(y) −→
∫

|y|<2

ϕ(y) dµ(y) as t→ 0+,

and hence it follows from (2.11) that

∫

|x|<2

ϕ(x)(u(x, tj) − v(x, tj)) dx → 0 as j → ∞. (2.13)

Let

f :=

{
Hu, in B2(0) × (0, 2)

0, elsewhere in R
n × R.

Then by (2.2),
f ∈ L1(Rn × R). (2.14)

Let

w :=

{
u− v, in B2(0) × (0, 2)

0, elsewhere in R
n × R.

Then

w ∈ C2,1(B2(0) × (0, 2)) ∩ L1(Rn × R), (2.15)

Hw = f in B2(0) × (0, 2),

and ∫

|x|<2

|w(x, t)| dx is bounded for 0 < t < 2 (2.16)

by (2.10) and (2.12). Let Ω = B1(0) × (−1, 1) and define Λ ∈ D′(Ω) by Λ = −Hw + f , that is

Λϕ =

∫
wH∗ϕ+

∫
fϕ for ϕ ∈ C∞

0 (Ω),

where H∗ϕ := ϕt + ∆ϕ. We now show Λ = 0. Let ϕ ∈ C∞
0 (Ω), let j be a fixed positive integer,

and let ψε : R → [0, 1], ε small and positive, be a one parameter family of smooth nondecreasing
functions such that

ψε(t) =

{
1, t > tj + ε

0, t < tj − ε,

where tj is as in (2.11). Then for 0 < ε < tj , we have

−
∫
fϕψε = −

∫
(Hw)ϕψε =

∫
wH∗(ϕψε)

=

∫
w(ϕtψε + ϕψ′

ε + ψε∆ϕ)

=

∫
wψεH

∗ϕ+

∫
wϕψ′

ε.
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Letting ε→ 0+ we get

−
∫ 1

tj

∫

|x|<1

fϕdx dt =

∫ 1

tj

∫

|x|<1

wH∗ϕdx dt +

∫

|x|<1

w(x, tj)ϕ(x, tj) dx. (2.17)

Also, it follows from (2.16) and (2.13) that
∫

|x|<1

w(x, tj)ϕ(x, tj) dx =

∫

|x|<1

w(x, tj)[ϕ(x, tj) − ϕ(x, 0)] dx +

∫

|x|<1

w(x, tj)ϕ(x, 0) dx

→ 0 as j → ∞.

Thus letting j → ∞ in (2.17) and using (2.14) and (2.15) we get −
∫
fϕ =

∫
wH∗ϕ. So Λ = 0.

For (x, t) ∈ R
n × R, let N(x, t) be defined by (2.6). Then

N(x, t) =

∫∫

Rn×R

Φ(x− y, t− s)f(y, s) dy ds

and N ≡ 0 in R
n × (−∞, 0). By (2.14), we have N ∈ L1(Ω) and HN = f in D′(Ω). Thus

H(w −N) = −Λ + f − f = 0 in D′(Ω)

which implies
w −N = h in D′(Ω)

for some C2,1 solution h of (2.3) and (2.4). Hence (2.5) holds.

For the proof in Sections 4 and 5 of Theorem 1.4, we will need the following lemma.

Lemma 2.2. Suppose u ∈ C2,1(Ω × (0, 2T )) is a nonnegative solution of

Hu ≥ 0 in Ω × (0, 2T ),

where Hu = ut −∆u is the heat operator, T is a positive constant, and Ω is a bounded C2 domain
in R

n, n ≥ 1. Then
u, ρHu ∈ L1(Ω × (0, T )), (2.18)

where ρ(x) = dist(x, ∂Ω)). Moreover, there exists C > 0 such that

0 ≤ u(x, t) −
∫ t

0

∫

Ω
G(x, y, t − s)Hu(y, s) dy ds

≤ C

ρ(x)√
t
∧ 1

t
n+1

2

+ sup
∂Ω×(0,T )

u for all (x, t) ∈ Ω × (0, T ),

(2.19)

where G is the heat kernel of the Dirichlet Laplacian for Ω.

Proof. For ϕ ∈ C2(Ω) ∩ C1(Ω), ϕ = 0 on ∂Ω, and 0 < t < T we have

∫ T

t

∫

Ω
[Hu(y, τ)]ϕ(y) dy dτ =

∫

Ω
u(y, T )ϕ(y) dy −

∫

Ω
u(y, t)ϕ(y) dy

−
∫ T

t

∫

Ω
u(y, τ)∆ϕ(y) dy dτ +

∫ T

t

∫

∂Ω
u(y, τ)

∂ϕ(y)

∂η
dSy dτ (2.20)
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Let ϕ1 ∈ C2(Ω) ∩C1(Ω) and λ > 0 satisfy

−∆ϕ1 = λϕ1

0 < ϕ1 < 1

}
in Ω

ϕ1 = 0 on ∂Ω.

Then for 0 < t < 2T we have

0 ≤
∫

Ω
Hu(y, t)ϕ1(y) dy = U ′(t) + λU(t) +

∫

∂Ω
u(y, t)

∂ϕ1(y)

∂η
dSy

≤ U ′(t) + λU(t),

where U(t) =
∫
Ω u(y, t)ϕ1(y) dy. Thus (U(t)eλt)′ ≥ 0 for 0 < t < 2T and hence for some U0 ≥ 0 we

have
U(t) = (U(t)eλt)e−λt → U0 as t→ 0+. (2.21)

Consequently uϕ1 ∈ L1(Ω × (0, T )). So taking ϕ = ϕ1 in (2.20) we have

ϕ1Hu ∈ L1(Ω × (0, T )), (2.22)

and taking ϕ = ϕ2
1 in (2.20) we obtain u|∇ϕ1|2 ∈ L1(Ω×(0, T )). Thus, since ϕ1+|∇ϕ1|2 is bounded

away from zero on Ω, we have u ∈ L1(Ω × (0, T )). Hence, since ϕ1/ρ is bounded between positive
constants on Ω, it follows from (2.22) that (2.18) holds, and by (2.21) we have

∫

Ω
u(y, t)ρ(y) dy is bounded for 0 < t ≤ T. (2.23)

Let x ∈ Ω and 0 < τ < t < T be fixed. Then for ε > 0 we have
∫

Ω
G(x, y, ε)u(y, t) dy −

∫ t

τ

∫

Ω
G(x, y, t + ε− s)Hu(y, s) dy ds

=

∫

Ω
G(x, y, t + ε− τ)u(y, τ) dy −

∫ t

τ

∫

∂Ω
u(y, s)

∂G(x, y, t + ε− s)

∂ηy
dSy ds

≥ 0.

(2.24)

Since
∫
ΩG(x, y, ζ) dy ≤ 1 for ζ > 0, we have

0 ≤ −
∫ t

τ

∫

∂Ω

∂G(x, y, t + ε− s)

∂ηy
dSy ds

=

∫

Ω
G(x, y, ε) dy −

∫

Ω
G(x, y, t+ ε− τ) dy ≤ 1

and ∫

Ω
G(x, y, t + ε− s)Hu(y, s) dy ≤ max

Ω×[τ,t]
Hu <∞

for ε > 0 and τ ≤ s ≤ t. Thus, letting ε → 0+ in (2.24) and using the fact that the function
(y, ζ) → G(x, y, ζ) is continuous for (y, ζ) ∈ Ω × (0,∞) we get

0 ≤ u(x, t) −
∫ t

τ

∫

Ω
G(x, y, t − s)Hu(y, s) dy ds

≤ v(x, t, τ) + sup
∂Ω×(0,T )

u (2.25)
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where

v(x, t, τ) :=

∫

Ω
G(x, y, t− τ)u(y, τ) dy ≤ C

ρ(x)√
t−τ

∧ 1

(t− τ)
n+1

2

∫

Ω
u(y, τ)ρ(y) dy

because, as shown by Hui [11, Lemma 1.3], there exists a positive constant C = C(n,Ω, T ) such
that if

Ĝ(r, t) =
C

tn/2
e−r2/(Ct) for r ≥ 0 and t > 0

then the heat kernel G(x, y, t) for Ω satisfies

G(x, y, t) ≤
(
ρ(x)√
t

∧ 1

)(
ρ(y)√
t

∧ 1

)
Ĝ(|x− y|, t) for x, y ∈ Ω and 0 < t ≤ T. (2.26)

Hence, letting τ → 0+ in (2.25) and using (2.23) and the monotone convergence theorem we obtain
(2.19).

For the proofs in Sections 3, 4, and 5 of Theorems 1.1 and 1.4 we will need the following lemma
whose proof is an adaptation to parabolic inequalities of a method of Brezis [4] for elliptic equations.

Lemma 2.3. Suppose T > 0 and λ > 1 are constants, B is an open ball in R
n, E = B × (−T, 0),

and ϕ ∈ C∞
0 (B × (−T,∞)). Then there exists a positive constant C depending only on

n, λ, and sup
E

(
|ϕ|, |∇ϕ|,

∣∣∣∣
∂ϕ

∂t

∣∣∣∣ , |∆ϕ|
)

(2.27)

such that if Ω is a C2 bounded domain in R
n, Ω ∩B 6= ∅, D = Ω × (−T, 0), and u ∈ C2,1(D) is a

nonnegative function satisfying

u = 0 on (∂Ω ∩B) × (−T, 0) (2.28)

then




∫∫

E∩D

(uλϕ2)
n+2

n dx dt





n
n+2

≤ C




∫∫

E∩D

(Hu)+uλ−1ϕ2 dx dt+

∫∫

E∩D

uλ dx dt



 . (2.29)

We will usually apply Lemma 2.3 when Ω = B. In this case, the condition (2.28) holds vacuously
and E ∩D = E.

Proof of Lemma 2.3. Let u be as in the lemma. Since

∇u · ∇(uλ−1ϕ2) =
4(λ− 1)

λ2
|∇(uλ/2ϕ)|2 − λ− 2

λ2
∇uλ · ∇ϕ2 − 4(λ− 1)

λ2
uλ|∇ϕ|2 (2.30)

we have for −T < t < 0 that
∫

B∩Ω

(−∆u)uλ−1ϕ2 dx =

∫

B∩Ω

∇u · ∇(uλ−1ϕ2) dx

≥ 4(λ− 1)

λ2

∫

B∩Ω

|∇(uλ/2ϕ)|2 dx− C

∫

B∩Ω

uλ dx (2.31)
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where C is a positive constant depending only on the quantities (2.27) whose value may change
from line to line. Also, for x ∈ B ∩ Ω we have

∫ 0

−T
utu

λ−1ϕ2 dt =
1

λ

∫ 0

−T

∂uλ

∂t
ϕ2 dt

=
1

λ

[
u(x, 0)λϕ(x, 0)2 −

∫ 0

−T
uλ∂ϕ

2

∂t
dt

]

≥ −C
∫ 0

−T
uλ dt. (2.32)

Integrating inequality (2.31) with respect to t from −T to 0, integrating inequality (2.32) with
respect to x over B ∩ Ω, and then adding the two resulting inequalities we get

C(I + J) ≥
∫∫

E∩D

|∇(uλ/2ϕ)|2 dx dt (2.33)

where

I =

∫∫

E∩D

(Hu)+uλ−1ϕ2 dx dt and J =

∫∫

E∩D

uλ dx dt.

Multiplying (2.33) by

M := max
−T≤t≤0




∫

B∩Ω

uλϕ2 dx




2/n

and using the parabolic Sobolev inequality (see [13, Theorem 6.9]) we obtain

C(I + J)M ≥ A :=

∫∫

E∩D

(uλϕ2)
n+2

n dx dt. (2.34)

Since

∂

∂t
(uλϕ2) = λuλ−1utϕ

2 + 2uλ ϕϕt

= λuλ−1ϕ2(∆u+Hu) + 2uλϕϕt

it follows from (2.31) that for −T < t < 0 we have

∂

∂t

∫

B∩Ω

uλϕ2 dx ≤ C

∫

B∩Ω

uλ dx+ λ

∫

B∩Ω

uλ−1ϕ2(Hu)+ dx

and thus
M

n
2 ≤ C(I + J). (2.35)

Substituting (2.35) in (2.34) we get

A ≤ C(I + J)
n+2

n

which implies (2.29).
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3 Proofs of Theorems 1.1 and 1.3

In this section we prove Theorems 1.1 and 1.3. The following theorem clearly implies Theorem
1.1.

Theorem 3.1. Suppose u is a C2,1 nonnegative solution of

0 ≤ ut − ∆u ≤ b

(

u1+2/n +
1

√
t
n+2

)

in Ω × (0, T ), (3.1)

where T and b are positive constants and Ω is an open subset of R
n, n ≥ 1. Then, for each compact

subset K of Ω, we have
max
x∈K

u(x, t) = O(t−n/2) as t→ 0+. (3.2)

Proof. To prove Theorem 3.1, we claim it suffices to prove Theorem 3.1′ where Theorem 3.1′ is the
theorem obtained from Theorem 3.1 by replacing (3.1) with

0 ≤ ut − ∆u ≤
(
u+

b√
t
n

)1+2/n

in B4(0) × (0, 3) (3.3)

and replacing (3.2) with
max
|x|≤ 1

2

u(x, t) = O(t−n/2) as t→ 0+. (3.4)

To see this, let u be as in Theorem 3.1 and let K be a compact subset of Ω. Since K is compact
there exist finite sequences {rj}N

j=1 ⊂ (0,
√
T/4) and {xj}N

j=1 ⊂ K such that

K ⊂
N⋃

j=1

Brj/2(xj) ⊂
N⋃

j=1

B4rj (xj) ⊂ Ω.

Let vj(y, s) = rn
j b

n/2u(x, t), where x = xj + rjy and t = r2j s. Then

0 ≤ Hvj ≤
(
vj +

bn/2

√
s
n

)1+2/n

for |y| < 4, 0 < s < 16,

where Hvj :=
∂vj

∂s − ∆yvj . Hence by Theorem 3.1′ there exist sj ∈ (0, 16) and Cj > 0 such that

max
|y|≤ 1

2

vj(y, s) ≤ Cjs
−n/2 for 0 < s < sj.

That is
max

|x−xj|≤rj/2
u(x, t) ≤ Cjb

−n/2t−n/2 for 0 < t < tj := r2j sj.

So for 0 < t < min
1≤j≤N

tj we have

max
x∈K

u(x, t) ≤ max
1≤j≤N

max
|x−xj |≤rj/2

u(x, t)

≤ ( max
1≤j≤N

Cj)b
−n/2t−n/2.

That is, (3.2) holds.
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We now complete the proof of Theorem 3.1 by proving Theorem 3.1′. Suppose u is a C2,1

nonnegative solution of (3.3). By Lemma 2.1,

u,Hu ∈ L1(B2(0) × (0, 2)) (3.5)

and

u = N + v + h in B1(0) × (0, 1) (3.6)

where N, v, and h are as in Lemma 2.1.
Suppose for contradiction that (3.4) does not hold. Then there exists a sequence {(xj , tj)} ⊂

B1/2(0) × (0, 1/4) such that for some x0 ∈ B1/2(0) we have (xj , tj) → (x0, 0) as j → ∞ and

lim
j→∞

t
n/2
j u(xj , tj) = ∞. (3.7)

Clearly

(4πt)n/2v(x, t) ≤
∫

|y|<2

dµ(y) <∞ for (x, t) ∈ R
n × (0,∞). (3.8)

For (x, t) ∈ R
n × R and r > 0, let

Er(x, t) := {(y, s) ∈ R
n × R : |y − x| < √

r and t− r < s < t}. (3.9)

In what follows, the variables (x, t) and (ξ, τ) are related by

x = xj +
√
tj ξ and t = tj + tjτ (3.10)

and the variables (y, s) and (η, ζ) are related by

y = xj +
√
tj η and s = tj + tjζ. (3.11)

For each positive integer j, define

fj(η, ζ) =
√
tj

n+2Hu(y, s) for (y, s) ∈ Etj (xj , tj) (3.12)

and define

uj(ξ, τ) =
√
tj

n

∫∫

Etj (xj ,tj)

Φ(x− y, t− s)Hu(y, s) dy ds for (x, t) ∈ R
n × (0,∞). (3.13)

By (3.5) we have ∫∫

Etj (xj ,tj)

Hu(y, s) dy ds→ 0 as j → ∞ (3.14)

and thus making the change of variables (3.11) in (3.14) and using (3.12) we get

∫∫

E1(0,0)

fj(η, ζ) dη dζ → 0 as j → ∞. (3.15)
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Since

Φ(x− y, t− s) =
1√
tjn

Φ(ξ − η, τ − ζ)

it follows from (3.13) and (3.12) that

uj(ξ, τ) =

∫∫

E1(0,0)

Φ(ξ − η, τ − ζ)fj(η, ζ) dη dζ. (3.16)

It is easy to check that for 1 < q < n+2
n and (ξ, τ) ∈ R

n × (−1, 0] we have




∫∫

Rn×(−1,0)

Φ(ξ − η, τ − ζ)q dη dζ





1/q

< C(n, q) <∞. (3.17)

Thus for 1 < q < n+2
n we have by (3.16) and standard Lp estimates for the convolution of two

functions that
‖uj‖Lq(E1(0,0)) ≤ C(n, q)‖fj‖L1(E1(0,0)) → 0 as j → ∞ (3.18)

by (3.15). If
(x, t) ∈ Etj/4(xj , tj) and (y, s) ∈ R

n × (0,∞) \ Etj (xj , tj) (3.19)

then

Φ(x− y, t− s) ≤ max
0≤τ<∞

Φ

(√
tj
2
, τ

)
≤ C(n)√

tjn
.

Thus for (x, t) ∈ Etj/4(xj , tj) we have

∫∫

B2(0)×(0,2)\Etj (xj ,tj)

Φ(x− y, t− s)Hu(y, s) dy ds ≤ C(n)√
tjn

∫∫

B2(0)×(0,2)

Hu(y, s) dy ds.

It follows therefore from (3.6), (3.8), (3.5), and (3.13) that

u(x, t) ≤ uj(ξ, τ) + C√
tjn

for (x, t) ∈ Etj/4(xj , tj) (3.20)

where C is a positive constant which does not depend on j or (x, t).
Substituting (x, t) = (xj , tj) in (3.20) and using (3.7) we obtain

uj(0, 0) → ∞ as j → ∞. (3.21)

For (ξ, τ) ∈ E1(0, 0) we have by (3.13) that

Huj(ξ, τ) =
√
tj

n+2Hu(x, t).

Hence for (ξ, τ) ∈ E1(0, 0) we have by (3.12) that

Huj(ξ, τ) = fj(ξ, τ) (3.22)
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and for (ξ, τ) ∈ E1/4(0, 0) we have by (3.3) and (3.20) that

Huj(ξ, τ) ≤
√
tj

n+2

(

u(x, t) +

√
4

3

n

b
1√
tjn

)n+2
n

≤
√
tj

n+2

(
uj(ξ, τ) + C√

tjn

)n+2
n

= (uj(ξ, τ) + C)
n+2

n

=: vj(ξ, τ)
n+2

n (3.23)

where the last equation is our definition of vj. Thus

vj(ξ, τ) = uj(ξ, τ) + C for (ξ, τ) ∈ E1/4(0, 0) (3.24)

where C is a positive constant which does not depend on (ξ, τ) or j. Hence in E1/4(0, 0) we have
Huj = Hvj and

(
Hvj

vj

)n+2
2

= Huj



Huj

v
n+2

n
j




n/2

≤ Huj = fj

by (3.23) and (3.22). Thus

∫∫

E1/4(0,0)

(
Hvj

vj

)n+2
2

dη dζ → 0 as j → ∞ (3.25)

by (3.15).
Let 0 < R < 1/8 and λ > 1 be constants and let ϕ ∈ C∞

0 (B√
2R(0) × (−2R,∞)) satisfy ϕ ≡ 1

on ER(0, 0) and ϕ ≥ 0 on R
n × R. Then

∫∫

E2R(0,0)

(Hvj)v
λ−1
j ϕ2 dξ dτ =

∫∫

E2R(0,0)

Hvj

vj
vλ
j ϕ

2 dξ dτ

≤




∫∫

E2R(0,0)

(
Hvj

vj

)n+2
2

dξ dτ





2
n+2




∫∫

E2R(0,0)

(vλ
j ϕ

2)
n+2

n dξ dτ





n
n+2

.

Hence, using (3.25) and applying Lemma 2.3 with T = 2R, B = Ω = B√
2R(0), E = E2R(0, 0), and

u = vj we have

∫∫

E2R(0,0)

(vλ
j ϕ

2)
n+2

n dξ dτ ≤ C




∫∫

E2R(0,0)

vλ
j dξ dτ





n+2
n

where C does not depend on j. Therefore

∫∫

ER(0,0)

v
λ n+2

n
j dξ dτ ≤ C




∫∫

E2R(0,0)

vλ
j dξ dτ





n+2
n

. (3.26)
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Starting with (3.18) with q = n+1
n and applying (3.26) a finite number of times we find for each

p > 1 there exists ε > 0 such that the sequence vj is bounded in Lp(Eε(0, 0)) and thus the same is
true for the sequence fj by (3.23) and (3.22). Thus by (3.17) and Hölder’s inequality we have

lim sup
j→∞

∫∫

Eε(0,0)

Φ(−η,−ζ)fj(η, ζ) dη dζ <∞ (3.27)

for some ε > 0. Also by (3.15)

lim
j→∞

∫∫

E1(0,0)\Eε(0,0)

Φ(−η,−ζ)fj(η, ζ) dη dζ = 0. (3.28)

Adding (3.27) and (3.28), and using (3.16), we contradict (3.21) and thereby complete the proof of
Theorem 3.1.

We now prove Theorem 1.3.

Proof of Theorem 1.3. By Theorem 1.1, we can assume α > n. By using a procedure very similar
to the one used in the first paragraph of the proof of Theorem 3.1, we can assume Ω × (0, T ) =
B4(0) × (0, 3) and K = B1/2(0).

By Lemma 2.1,
u,Hu ∈ L1(B2(0) × (0, 2)) (3.29)

and
u = N + v + h in B1(0) × (0, 1), (3.30)

where N , v, and h are as in Lemma 2.1.
Let (x, t) ∈ B1/2(0) × (0, 1/4]. Then Et/4(x, t) ⊂ B1(0) × (0, 1/4], where Er(x, t) is defined by

(3.9). Clearly

(4πt)n/2v(x, t) ≤
∫

|y|<2
dµ(y) <∞. (3.31)

It is easily verified that for (y, s) ∈ B2(0) × (0, t) \ Et/m2(x, t), where m ≥ 2, we have

Φ(x− y, t− s) ≤ mnC(n)/
√
t
n
.

Thus, for m ≥ 2, we have

∫∫

B2(0)×(0,2)\Et/m2 (x,t)

Φ(x− y, t− s)Hu(y, s) dy ds ≤ mnC(n)√
t
n

∫∫

B2(0)×(0,2)

Hu(y, s) dy ds.

Also for m ≥ 2,

∫∫

Et/m2 (x,t)

Φ(x− y, t− s)Hu(y, s) dy ds ≤ 1
√
t(1 − 1/m2)

α+2

∫∫

Et/m2(x,t)

Φ(x− y, t− s) dy ds

≤ 1
√
t(1 − 1/m2)

α+2

t

m2
=

1

m2
√

1 − 1/m2α+2

1√
t
α
.
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Thus, given ε > 0 and choosing m = m(α, ε) > 2 such that 1/(m2
√

1 − 1/m2α+2
) < ε it follows

from (3.30), (3.29), and (3.31) that

u(x, t) ≤ ε√
t
α +

mnC(n)
∫∫

B2(0)×(0,2)

Hu(y, s) dy ds + 1
(4π)n/2

∫

|y|<2

dµ(y)

√
t
n + h(x, t)

≤ ε√
t
α +

C√
t
n for (x, t) ∈ B1/2(0) × (0, 1/4],

where C is a positive constant which does not depend on (x, t). This establishes Theorem 1.3 when
α > n.

4 Proof of Theorem 1.4(i)

In this section we prove the following theorem which clearly implies Theorem 1.4(i).

Theorem 4.1. Suppose u ∈ C2,1(Ω × (0, 2T )) is a nonnegative solution of

{
0 ≤ ut − ∆u ≤ b

(
up + 1√

t
α

)
in Ω × (0, 2T )

u ≤ b on ∂Ω × (0, 2T )
(4.1)

where T and b are positive constants, 0 < p < 1 + 2/(n + 1), α < n + 3, and Ω is a C2 bounded
domain in R

n, n ≥ 1. Then there exists a positive constant C such that

u(x, t) ≤ C

ρ(x)√
t
∧ 1

√
t
n+1 + sup

∂Ω×(0,T )
u for all (x, t) ∈ Ω × (0, T ), (4.2)

where ρ(x) = dist(x, ∂Ω).

Proof. If p′ > max{p, 1 + 1/(n+ 1), α/(n+ 1)} and p′ < 1 + 2/(n+ 1) then it is easy to check that
for 0 < t < 2T and u ≥ 0 we have

up +
1√
t
α ≤ C

(

up′ +
1

√
t
p′(n+1)

)

for some constant C = C(n, T, α) > 0. Thus we can assume

p > 1 +
1

n+ 1
and α = p(n+ 1). (4.3)

Suppose for contradiction that (4.2) does not hold. Then there exists a sequence {(xj , tj)} ⊂
Ω × (0, T ) such that tj → 0 as j → ∞ and

u(xj , tj) − sup∂Ω×(0,T ) u(
ρ(xj)√

tj
∧ 1

)
/
√
tj

n+1
→ ∞ as j → ∞. (4.4)

In what follows the variables (x, t) and (ξ, τ) are related by

x = xj +
√
tjξ and t = tj + tjτ (4.5)
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and the variables (y, s) and (η, ζ) are related by

y = xj +
√
tjη and s = tj + tjζ. (4.6)

For each positive integer j, define

ρj(η) =
ρ(y)√
tj

and fj(η, ζ) =
√
tj

n+3
Hu(y, s) for (y, s) ∈ Ω × (0, 2T ) (4.7)

and define

uj(ξ, τ) =
√
tj

n+1
∫∫

Etj (xj ,tj)∩(Ω×(0,T ))

G(x, y, t − s)Hu(y, s) dy ds for (x, t) ∈ Ω × (0, 2T ) (4.8)

where we define G(x, y, τ) = 0 if τ ≤ 0 and where Hu and G are as in Lemma 2.2 and Er(x, t) is
given by (3.9).

By (2.18) we have

∫∫

Etj (xj ,tj)∩(Ω×(0,T ))

ρ(y)Hu(y, s) dy ds→ 0 as j → ∞, (4.9)

and thus making the change of variables (4.6) in (4.9) we get

∫∫

E1(0,0)∩Dj

fj(η, ζ)ρj(η) dη dζ → 0 as j → ∞, (4.10)

where Dj = Ωj × (−1, 0) and Ωj = {η : y ∈ Ω}.
Since, by (2.26) and (4.7),

G(x, y, t − s) ≤
(

ρ(x)√
t− s

∧ 1

)(
ρ(y)√
t− s

∧ 1

)
Ĝ(|x− y|, t− s)

=

(
ρj(ξ)√
τ − ζ

∧ 1

)(
ρj(η)√
τ − ζ

∧ 1

)
1√
tj

n Ĝ(|ξ − η|, τ − ζ),

it follows from (4.8) and (4.7) that for (ξ, τ) ∈ Ωj × (−1, 0] we have

uj(ξ, τ) ≤
∫∫

E1(0,0)∩Dj

(
ρj(ξ)√
τ − ζ

∧ 1

)(
ρj(η)√
τ − ζ

∧ 1

)
Ĝ(|ξ − η|, τ − ζ)fj(η, ζ) dη dζ (4.11)

where we define Ĝ(r, τ) = 0 if τ ≤ 0. It is easy to check that for 1 < q < n+2
n+1 and (ξ, τ) ∈ R

n×(−1, 0]
we have 


∫∫

Rn×(−1,0)

(
1√
τ − ζ

Ĝ(|ξ − η|, τ − ζ)

)q

dη dζ





1
q

< C(n, q,Ω, T ) <∞. (4.12)

Thus, for 1 < q < n+2
n+1 , we have by (4.11) and standard Lp estimates for the convolution of two

functions that

‖uj‖Lq(E1(0,0)∩Dj ) ≤ C(n, q,Ω, T )‖fjρj‖L1(E1(0,0)∩Dj ) → 0 as j → ∞ (4.13)
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by (4.10).
If

(x, t) ∈ Etj/4(xj , tj) ∩ (Ω × (0, T )) and (y, s) ∈ Ω × (0, t) \ Etj (xj , tj) (4.14)

then
|x− y| ≥

√
tj/2 (4.15)

and hence by (2.26) we have

G(x, y, t− s) ≤
(

ρ(x)√
t− s

∧ 1

)
ρ(y)√
t− s

Ĝ

(√
tj
2
, t− s

)

≤ ρ(y) max
0<τ<∞

(
ρ(x)√
τ

∧ 1

)
1√
τ
Ĝ

(√
tj
2
, τ

)
≤ C(n,Ω, T )ρ(y)

√
tj

n+1

(
ρ(x)√
tj

∧ 1

)
.

Thus for (x, t) ∈ Etj/4(xj , tj) ∩ (Ω × (0, T )) we have

∫∫

Ω×(0,t)\Etj (xj ,tj)

G(x, y, t− s)Hu(y, s) dy ds ≤ C(n,Ω, T )
√
tj

n+1

(
ρ(x)√
tj

∧ 1

) ∫

Ω×(0,T )

ρ(y)Hu(y, s) dy ds.

It follows therefore from Lemma 2.2 and (4.8) that

u(x, t) ≤
uj(ξ, τ) + C

(
ρ(x)√

tj
∧ 1

)

√
tj

n+1 + sup
∂Ω×(0,T )

u for (x, t) ∈ Etj/4(xj , tj) ∩ (Ω × (0, T )) (4.16)

where C is a positive constant which does not depend on j or (x, t).
Substituting (x, t) = (xj , tj) in (4.16) and using (4.4) we obtain

uj(0, 0)

ρj(0) ∧ 1
≥
u(xj, tj) − sup∂Ω×(0,T ) u(

ρ(xj)√
tj

∧ 1

)
/
√
tj

n+1
− C → ∞ as j → ∞. (4.17)

For (ξ, τ) ∈ E1(0, 0) ∩Dj we have by (4.8) that

(Huj)(ξ, τ) =
√
tj

n+3
(Hu)(x, t). (4.18)

Hence for (ξ, τ) ∈ E1(0, 0) ∩Dj we have by (4.7) that

(Huj)(ξ, τ) = fj(ξ, τ) (4.19)

and for (ξ, τ) ∈ E1/4(0, 0) ∩Dj we have by (4.1), (4.3), and (4.16) that

Huj(ξ, τ) ≤
√
tj

n+3
b

(
u(x, t) +

√
4

3

n+1
1

√
tj

n+1

)p

≤
√
tj

n+3
b

(
uj(ξ, τ) + C

√
tj

n+1

)p

=
√
tj

a
b(uj(ξ, τ) + C)p where a = (n+ 1)

(
n+ 3

n+ 1
− p

)
> 0

=:
√
tj

a
bvj(ξ, τ)

p, (4.20)
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where the last equation is our definition of vj. Thus

vj(ξ, τ) = uj(ξ, τ) + C (4.21)

where C is a positive constant which does not depend on (ξ, τ) or j. Hence in E1/4(0, 0) ∩Dj we
have (

Huj

vj

)n+2
2

≤ (
√
tj

a
bvp−1

j )
n+2

2 ≤
√
tj

a(n+2)/2
b

n+2
2 vq

j ,

where q = (p− 1)n+2
2 < 2

n+1
n+2

2 = n+2
n+1 . Thus

∫∫

E1/4(0,0)∩Dj

(
Huj

vj

)n+2
2

dη dζ ≤
√
tj

a(n+2)/2
b

n+2
2 ‖vj‖q

Lq(E1(0,0)∩Dj)
→ 0 as j → ∞ (4.22)

by (4.13) and (4.21).
Let 0 < R < 1/8 and λ > 1 be constants and let ϕ ∈ C∞

0 (B√
2R(0, 0)× (−2R,∞)) satisfy ϕ ≡ 1

on ER(0, 0) and ϕ ≥ 0 on R
n × R. Then using (4.21) we have

vλ
j ϕ

2 = (uj + C)λϕ2 ≤ 2λ(uλ
jϕ

2 + Cλϕ2) in E1/4(0, 0) ∩Dj

and hence
∫∫

E2R(0,0)∩Dj

(Huj)u
λ−1
j ϕ2 dξ dτ ≤

∫∫

E2R(0,0)∩Dj

(Huj)v
λ−1
j ϕ2 dξ dτ

=

∫∫

E2R(0,0)∩Dj

Huj

vj
vλ
j ϕ

2 dξ dτ

≤




∫∫

E2R(0,0)∩Dj

(
Huj

vj

)n+2
2

dξ dτ





2
n+2




∫∫

E2R(0,0)∩Dj

(vλ
j ϕ

2)
n+2

n dξ dτ





n
n+2

≤ C




∫∫

E2R(0,0)∩Dj

(
Huj

vj

)n+2
2

dξ dτ





2
n+2








∫∫

E2R(0,0)∩Dj

(uλ
jϕ

2)
n+2

n dξ dτ





n
n+2

+ 1



 (4.23)

where C is a positive constant which does not depend on j and whose value may change from line
to line. Thus using (4.22) and applying Lemma 2.3 with T = 2R, B = B√

2R(0), E = E2R(0, 0),
Ω = Ωj, and u = uj, we have




∫∫

E2R(0,0)∩Dj

(uλ
jϕ

2)
n+2

n dξ dτ





n
n+2

≤ C




∫∫

E2R(0,0)∩Dj

uλ
j dξ dτ + 1



 .

Consequently,

∫∫

ER(0,0)∩Dj

u
λ n+2

n
j dξ dτ ≤ C




∫∫

E2R(0,0)∩Dj

uλ
j dξ dτ + 1





n+2
n

. (4.24)
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By (4.13),

lim
j→∞

∫∫

E1/4(0,0)∩Dj

u
n+3
n+2

j dξ dτ = 0. (4.25)

Starting with (4.25) and using (4.24) a finite number of times we find that for each p > 1 there
exists ε > 0 such that the sequence uj is bounded in Lp(Eε(0, 0) ∩Dj) and thus the same is true
for the sequences vj , Huj , and fj by (4.21), (4.20), and (4.19).

Thus by (4.11), there exists ε > 0 such that

lim sup
j→∞

uj(0, 0)

ρj(0)
≤ lim sup

j→∞

∫∫

E1(0,0)∩Dj

1√−ζ

(
ρj(η)√−ζ ∧ 1

)
Ĝ(| − η|,−ζ)fj(η, ζ) dη dζ

≤ lim sup
j→∞




∫∫

Eε(0,0)∩Dj

1√−ζ Ĝ(| − η|,−ζ)fj(η, ζ) dη dζ

+

∫∫

(E1(0,0)\Eε(0,0))∩Dj

1

−ζ Ĝ(| − η|,−ζ)fj(η, ζ)ρj(η) dη dζ



 <∞

where we have estimated the first integral using (4.12) and Hölder’s inequality and the second
integral using (4.10). Similarly by (4.11),

lim sup
j→∞

uj(0, 0) ≤ lim sup
j→∞

∫∫

E1(0,0)∩Dj

(
ρj(η)√−ζ ∧ 1

)
Ĝ(| − η|,−ζ)fj(η, ζ) dη dζ

≤ lim sup
j→∞




∫∫

Eε(0,0)∩Dj

Ĝ(| − η|,−ζ)fj(η, ζ) dη dζ

+

∫∫

(E1(0,0)\Eε(0,0))∩Dj

1√−ζ Ĝ(| − η|,−ζ)fj(η, ζ)ρj(η) dη dζ



 <∞.

Hence

lim sup
j→∞

uj(0, 0)

ρj(0) ∧ 1
<∞

which contradicts (4.17) and completes the proof of Theorem 4.1.

5 Proof of Theorem 1.4(ii) and (iii)

In this section we prove the following theorem which clearly implies Theorem 1.4(ii) and (iii).

Theorem 5.1. Suppose u ∈ C2,1(Ω × (0, 2T )) is a nonnegative solution of





0 ≤ ut − ∆u ≤ b

(
up +

1

d(x, t)qp

)
in Ω × (0, 2T )

u ≤ b, on ∂Ω × (0, 2T )

(5.1)
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where T > 0, b > 0,

1 +
2

n+ 1
≤ p < 1 +

2

n
, and q =

2

n+ 2 − np
(5.2)

are constants, Ω is a C2 bounded domain in R
n, n ≥ 1, and d(x, t) = ρ(x) ∧

√
t is the parabolic

distance from (x, t) to the parabolic boundary of Ω × (0, 2T ). Then

d(x, t)pq−2u(x, t) is bounded in Ω × (0, T ). (5.3)

Proof. First we note for later that (5.2) implies

q ≥ n+ 1 and pq − q − 2 = 2(q − 1 − n)/n ≥ 0. (5.4)

Suppose for contradiction that (5.3) does not hold. Then there exists a sequence {(xj , tj)} ⊂
Ω × (0, T ) such that tj → 0 as j → ∞ and

lim
j→∞

dpq−2
j u(xj , tj) = ∞ (5.5)

where dj = d(xj , tj)/2.
If Er(x, t) is defined by (3.9) then for (x, t) ∈ Ed2

j
(xj , tj) we have

dj ≤
ρ(xj)

2
< ρ(x) <

3ρ(xj)

2
and 3d2

j ≤ 3tj
4
< t < tj (5.6)

and thus dj ≤ d(x, t) for (x, t) ∈ Ed2
j
(xj, tj). Also, if

(x, t) ∈ Ed2
j/4(xj , tj) and (y, s) ∈ Ω × (0, t) \Ed2

j
(xj , tj) (5.7)

then either
|x− y| ≥ dj/2 (5.8)

or

(t− s) ≥ 3

4
d2

j . (5.9)

If (5.7) and (5.8) hold and G is as in Lemma 2.2 then by (2.26)

G(x, y, t − s) ≤ ρ(y)√
t− s

Ĝ

(
dj

2
, t− s

)

≤ ρ(y) max
0<τ<∞

1√
τ
Ĝ

(
dj

2
, τ

)
=
Cρ(y)

dn+1
j

where C = C(n, T,Ω) > 0. If (5.7) and (5.9) hold then by (2.26)

G(x, y, t− s) ≤ ρ(y)√
t− s

Ĝ(0, t− s) = ρ(y)
C

(t− s)
n+1

2

≤ Cρ(y)

dn+1
j
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where C = C(n, T,Ω) > 0. Thus for (x, t) ∈ Ed2
j/4(xj , tj) we have

∫∫

Ω×(0,t)\E
d2
j
(xj ,tj)

G(x, y, t − s)Hu(y, s) dy ds ≤ C

dn+1
j

∫

Ω×(0,T )

ρ(y)Hu(y, s) dy ds

where Hu is as in Lemma 2.2. It follows therefore from (5.6) and Lemma 2.2 that for (x, t) ∈
Ed2

j/4(xj , tj) we have

u(x, t) ≤ C

dn+1
j

+

∫∫

E
d2
j
(xj ,tj)

G(x, y, t − s)Hu(y, s) dy ds (5.10)

where we define G(x, y, τ) = 0 for τ ≤ 0 and where C is a positive constant which does not depend
on j or (x, t).

Substituting (x, t) = (xj , tj) in (5.10) and using (5.5) and (5.4) we obtain

dpq−2
j

∫∫

E
d2
j
(xj ,tj)

G(xj , y, tj − s)Hu(y, s) dy ds→ ∞ as j → ∞. (5.11)

Also, by (2.18) we have

∫∫

E
d2
j
(xj ,tj)

ρ(y)Hu(y, s) dy ds→ 0 as j → ∞.

Hence, it follows from (5.6) that

∫∫

E
d2
j
(xj ,tj)

djHu(y, s) dy ds→ 0 as j → ∞. (5.12)

In what follows the variables (x, t) and (ξ, τ) are related by

x = xj + djξ and t = tj + d2
jτ

and the variables (y, s) and (η, ζ) are related by

y = xj + djη and s = tj + d2
jζ. (5.13)

For each positive integer j, define

fj(η, ζ) := dq+2
j Hu(y, s) for (y, s) ∈ Ω × (0, 2T ) (5.14)

and

uj(ξ, τ) := dq
j

∫∫

E
d2
j
(xj ,tj)

G(x, y, t − s)Hu(y, s) dy ds for (x, t) ∈ Ω × R. (5.15)

Then
Huj(ξ, τ) = dq+2

j Hu(x, t) = fj(ξ, τ) for (ξ, τ) ∈ E1(0, 0) (5.16)
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and making the change of variables (5.13) in (5.12) and (5.15) we get

1

d
q−(n+1)
j

∫∫

E1(0,0)

fj(η, ζ) dη dζ → 0 as j → ∞ (5.17)

and

uj(ξ, τ) ≤
∫∫

E1(0,0)

Ĝ(|ξ − η|, τ − ζ)fj(η, ζ) dη dζ for (ξ, τ) ∈ E1(0, 0) (5.18)

where we have used

G(x, y, t− s) ≤ Ĝ(|x− y|, t− s) for (x, t), (y, s) ∈ Ω × (0, T ) (5.19)

which follows from (2.26) and where we define Ĝ(r, τ) = 0 if τ ≤ 0.
It is easy to check that for 1 < r < 1 + 2/n and (ξ, τ) ∈ R

n × [−1, 0] we have




∫∫

Rn×(−1,0)

(
Ĝ(|ξ − η|, τ − ζ)

)r
dη dζ





1/r

< C(n, T,Ω, r) <∞. (5.20)

Thus, applying standard Lp estimates for the convolution of two functions to the right side of
(5.18), we have for 1 < r < 1 + 2/n that

‖uj‖Lr(E1(0,0)) ≤ C(n, T,Ω, r)‖fj‖L1(E1(0,0)) → 0 as j → ∞ (5.21)

by (5.17) and (5.4).
Also, by (5.11), (5.14), and (5.19),

dpq−q−2
j

∫∫

E1(0,0)

Ĝ(| − η|,−ζ)fj(η, ζ) dη dζ → ∞ as j → ∞, (5.22)

and for (x, t) ∈ Ed2
j/4(xj, tj) it follows from (5.16), (5.1), (5.6), (5.10), (5.15), and (5.4) that

Huj(ξ, τ) = dq+2
j Hu(x, t)

≤ dq+2
j b(u(x, t) + d−q

j )p

≤ dq+2
j b

(
uj(ξ, τ) + C

dq
j

)p

= bd
−(pq−q−2)
j (uj(ξ, τ) + C)p

=: bd
−(pq−q−2)
j vj(ξ, τ)

p (5.23)

where the last equation is our definition of vj. Thus

vj(ξ, τ) = uj(ξ, τ) + C for (ξ, τ) ∈ E1/4(0, 0)

where C > 1 is a constant which does not depend on (ξ, τ) or j. Hence in E1/4(0, 0) we have
Huj = Hvj and

(
Hvj

vj

)1+n/2

= (Huj)

(
Huj

v
1+2/n
j

)n/2

≤ (Huj)(bd
−(pq−q−2)
j )n/2

= bn/2d
−(q−n−1)
j fj
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by (5.23), (5.2), (5.16), and (5.4). Thus (3.25) holds by (5.17).
Exactly as in the second to last paragraph of the proof of Theorem 3.1, we have for 0 < R < 1/8

and λ > 1 that the functions vj satisfy (3.26) where C does not depend on j.
Starting with (5.21) with r = 1 + 1/n and applying (3.26) a finite number of times we find

for each r > 1 there exists ε > 0 such that the sequence vj is bounded in Lr(Eε(0, 0)) and thus

the same is true for the sequence dpq−q−2
j fj by (5.23) and (5.16). Thus by (5.20) and Hölder’s

inequality we have

lim sup
j→∞

dpq−q−2
j

∫∫

Eε(0,0)

Ĝ(| − η|,−ζ)fj(η, ζ) dη dζ <∞ (5.24)

for some ε > 0. Also by (5.17) and (5.4),

lim
j→∞

dpq−q−2
j

∫∫

E1(0,0)\Eε(0,0)

Ĝ(| − η|,−ζ)fj(η, ζ) dη dζ = 0. (5.25)

Adding (5.24) and (5.25), we contradict (5.22).

6 Proof of Theorems 1.5, 1.6, and 1.7

Theorem 6.1 below clearly implies Theorems 1.5, 1.6, and 1.7 in the introduction.
In the following theorem, g : (0,∞) → (0,∞) is a continuous function such that as ρ → 0+ we

have
g(ρ)

ρ
→ ∞ (6.1)

perhaps very slowly.

Theorem 6.1. Suppose Ω is a C2 bounded domain in R
n, ψ : Ω × (0, 1) → (0,∞) is a continuous

function, and a and p are constants satisfying

a = p−
(

1 +
2

n+ 1

)
> 0. (6.2)

Then for each x0 ∈ ∂Ω there exists a nonnegative solution u ∈ C2,1(Ω × (0,∞)) of

0 ≤ ut − ∆u ≤ up in Ω × (0,∞)
u = 0 on ∂Ω × (0,∞)

(6.3)

and a sequence {(xj , tj)} ⊂ Ω × (0, 1) satisfying

ρ(xj) =
√
tj

1+
(n+1)a

p+1 (6.4)

such that as j → ∞ we have (xj , tj) → (x0, 0) and

u(xj , tj) 6=






O
(
g(ρ(xj))

− n+1
1−n(n+1)a/2

)
if p < 1 +

2

n

O
(
eg(ρ(xj ))−1

)
if p = 1 +

2

n

O(ψ(xj , tj)) if p > 1 +
2

n
.

(6.5)
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Since (6.2) and (6.4) imply ρ(xj) = d(xj , tj) we see that we can replace ρ(xj) with d(xj , tj) in
(6.5).

Proof of Theorem 6.1. By [25, Theorem 1] there exist positive constants T and α depending only
on n and Ω such that the heat kernel G of the Dirichlet–Laplacian for Ω satisfies

G(x, y, τ) ≥
(
ρ(x)√
τ

∧ 1

)(
ρ(y)√
τ

∧ 1

)
1

ατn/2
e−

α|x−y|2

τ (6.6)

for all x, y ∈ Ω and 0 < τ ≤ T .
We define positive constants β, γ, and δ by

β =
ωn

2α
e−α ∧ 1, γ = (p− 1)βp, γδp−1 = 5, (6.7)

where ωn is the volume of the unit ball in R
n. Thus β, γ, and δ depend only on n, p, and Ω.

We note here for future reference that (6.2) implies

1

1 − (p − 1)n/2
=

n+ 1

1 − n(n+ 1)a/2
>

2

p− 1
for p− 1 <

2

n
(6.8)

and
n+ 2

1 + 2/(p − 1)
= 1 +

(n+ 1)a

p+ 1
. (6.9)

Let x0 ∈ ∂Ω and
D = {(x, t) ∈ Ω × (0, T ) : |x− x0| <

√
t}.

Then by the third paragraph after Theorem 1.4 there exists a nonnegative solution u0(x, t) of

Hu0 = 0 in Ω × (0,∞)
u0 = 0 on ∂Ω × (0,∞),

where H is as in Lemma 2.2, such that

u0(x, t)(
ρ(x)√

t
∧ 1
)/√

t
n+1

=
u0(x, t)

ρ(x)/
√
t
n+2 > 8δ for (x, t) ∈ D. (6.10)

Choose a sequence of positive numbers {ρj}∞j=1 such that

ρj+1 < ρj/4 for j ≥ 1. (6.11)

Let xj = x0 + ρjη, where η is the inward unit normal to ∂Ω at x0, and define tj > 0 by

ρj =
√
tj

1+
(n+1)a

p+1 .

By taking a subsequence of ρj if necessary, we can assume (xj , tj) ∈ D and

ρj = ρ(xj) = |xj − x0| for j ≥ 1. (6.12)

Thus (6.4) holds.
Choose

aj >
δ

ρ
2/(p−1)
j

(6.13)
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such that
aj

ψ(xj , tj)
→ ∞ as j → ∞. (6.14)

Since decreasing g increases the right side of (6.5), we can assume in addition to (6.1) that

g(ρ)

ρ
= O

(
log

1

ρ

)
as ρ→ 0+. (6.15)

Let bj =
√
ρjg(ρj). Then by (6.1),

g(ρj)

bj
=
bj
ρj

=

√
g(ρj)

ρj
→ ∞ as j → ∞, (6.16)

and thus by (6.15),
bj
ρj

= o

(
g(ρj)

ρj

)
= o

(
log

1

ρj

)
as j → ∞. (6.17)

Taking a subsequence of ρj, we can by (6.16) assume

ρj

bj
<

1

2j
for j ≥ 1. (6.18)

Let wj(s) be the solution of

w′
j(s) =

γ

p− 1
wj(s)

p

satisfying

wj(tj) =






(
1

bj

) 1
1−(p−1)n/2

if p− 1 <
2

n

e1/bj if p− 1 =
2

n

aj if p− 1 >
2

n
.

(6.19)

Then

tj − t =
1

γ

[
1

wj(t)p−1
− 1

wj(tj)p−1

]
for t ≤ tj . (6.20)

By taking a subsequence of ρj, it follows from (6.8), (6.13), and (6.17) that

δ

ρ
2/(p−1)
j

< wj(tj) for j ≥ 1.

Thus there is a unique τj < tj such that

wj(τj) =
δ

ρ
2/(p−1)
j

(6.21)

and by (6.20),

tj − τj ≤
1

γ

1

wj(τj)p−1
=

ρ2
j

γδp−1
<
ρ2

j

4
<
tj
4

(6.22)
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by (6.7) and (6.4). Hence there exists εj > 0 such that
√
tj − τj + 2εj <

ρj

2
and tj + εj < 2

2
n+2 tj . (6.23)

Let hj(s) =
√
tj − s and Hj(s) =

√
tj + εj − s. Then by (6.23)

Hj(τj − εj) <
ρj

2
. (6.24)

Define

Dj = {(y, s) ∈ R
n × R : |y − xj | < hj(s) and τj < s < tj}

Ej = {(y, s) ∈ R
n × R : |y − xj | < Hj(s) and τj − εj < s < tj + εj}.

Then by (6.24),
ρj

2
< ρ(x) <

3ρj

2
for (x, t) ∈ Ej. (6.25)

Thus by (6.11),
Ej ∩ Ek = ∅ for 1 ≤ j < k. (6.26)

For (x, t) ∈ Ej , we have using (6.12) and (6.24) that

|x− x0| ≤ |x− xj| + |xj − x0| ≤
ρj

2
+ ρj =

3

2
ρj,

and using (6.23) that

t > τj − εj > tj −
ρ2

j

4
= ρ2

j

(
tj
ρ2

j

− 1

4

)

.

Therefore, taking a subsequence of ρj, it follows from (6.4) that

Dj ⊂ Ej ⊂ D for j ≥ 1.

Hence for (x, t) ∈ Ej , we obtain from (6.10), (6.23), (6.25), (6.4), (6.9), and (6.21) that

u0(x, t) ≥ 8δ
ρ(x)
√
t
n+2 ≥ 8δ

ρj/2

2
√
tj

n+2

= 2δ
ρj√
tj

n+2 = 2δ
ρj

ρ
1+2/(p−1)
j

=
2δ

ρ
2/(p−1)
j

= 2wj(τj). (6.27)

Using (3.17), Hölder’s inequality, and the well-known fact that

G(x, y, τ) ≤ Φ(x− y, τ) for (x, y) ∈ Ω, τ > 0,

we find for (x, t) ∈ Ej that

∫∫

Ej\Dj

G(x, y, t− s)w′
j(s) dy ds ≤




∫∫

Rn×(0,1)

Φ(x− y, t− s)
n+1

n dy ds





n
n+1




∫∫

Ej\Dj

w′
j(s)

n+1 dy ds





1
n+1

≤ C(n)




∫∫

Ej\Dj

w′
j(s)

n+1 dy ds





1
n+1

≤ wj(τj) (6.28)
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provided we decrease εj if necessary.
Let χj : R

n × R → [0, 1] be a C∞ function such that χj ≡ 1 in Dj and χj ≡ 0 in R
n × R \ Ej .

Define vj, uj : Ω × R → [0,∞) by

vj(y, s) = χj(y, s)w
′
j(s)

uj(x, t) =

∫∫

Ω×(0,∞)

G(x, y, t− s)vj(y, s) dy ds.

Then vj , uj ∈ C2,1(Ω × R) and

Huj = vj in Ω × R

uj = 0 on ∂Ω × R.
(6.29)

Let (x, t), (y, s) ∈ Ej with s < t. Then by (6.23) and (6.25)

√
t− s ≤

√
tj − τj + 2εj ≤ ρj

2
≤ ρ(x) ∧ ρ(y)

and hence
ρ(x)√
t− s

∧ 1 = 1 =
ρ(y)√
t− s

∧ 1

and thus by (6.6),

G(x, y, t− s) ≥ 1

α(t− s)n/2
e

−α|x−y|2

t−s .

Hence, for τj − εj ≤ s < t ≤ tj + εj and (x, t) ∈ Ej , we have

∫

|y−xj |≤Hj(s)

G(x, y, t − s) dy ≥ ωn

2α

1

ωn(t− s)n/2

∫

|y−x|<
√

t−s

e
−α|y−x|2

t−s dy

≥ ωn

2α
e−α ≥ β

where we have used (6.7) and the fact that at least half the ball B√
t−s(x) is contained in BHj(s)(xj).

Thus for (x, t) ∈ Ej ,

∫∫

(y,s)∈Ej

G(x, y, t− s)w′
j(s) dy ds =

∫ t

τj−εj

w′
j(s)




∫

|y−xj |≤Hj(s)

G(x, y, t− s) dy



 ds

≥ β(wj(t) − wj(τj − εj)) ≥ βwj(t) − wj(τj)

by (6.7). Hence, for (x, t) ∈ Ej we have

uj(x, t) ≥
∫∫

Dj

G(x, y, t − s)w′
j(s) dy ds

=

∫∫

Ej

G(x, y, t − s)w′
j(s) dy ds−

∫∫

Ej\Dj

G(x, y, t− s)w′
j(s) dy ds

≥ βwj(t) − 2wj(τj) (6.30)
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by (6.28). By deceasing εj if necessary, we have
∫∫

Ej\Dj

w′
j(s)ρ(y) dy ds < 1/2j .

Thus using (6.25), (6.20), (6.19), and taking a subsequence of ρj when necessary we obtain
∫∫

Ω×R

vj(y, s)ρ(s) dy ds−
1

2j
≤
∫∫

Dj

w′
j(s)ρ(y) dy ds+

∫∫

Ej\Dj

w′
j(s)ρ(y) dy ds−

1

2j

≤
∫∫

Dj

w′
j(s)ρ(y) dy ds =

∫ tj

τj

w′
j(s)




∫

|y−xj |<hj(s)

ρ(y) dy



 ds

≤ 2ωnρj

∫ tj

τj

w′
j(s)(tj − s)n/2ds

= 2ωn
ρj

γn/2

∫ tj

τj

(
1

wj(s)p−1
− 1

wj(tj)p−1

)n/2

w′
j(s) ds

≤ 2ωn

γn/2
ρj

∫ wj(tj)

wj(τj )
w−(p−1)n/2dw

≤ c(n, p)
ρj

γn/2






wj(tj)
1−(p−1)n/2 =

1

bj
, if p− 1 <

2

n

log
wj(tj)

wj(τj)
< logwj(tj) =

1

bj
, if p− 1 =

2

n

1

wj(τj)(p−1)n/2−1
< 1 <

1

bj
, if p− 1 >

2

n

≤ c(n, p)ρj

γn/2bj
≤ c(n, p)

γn/2

1

2j

by (6.18). Thus ∫∫

Ω×R

∞∑

j=1

vj(y, s)ρ(y) dy ds <∞.

Hence the function u : Ω × (0,∞) → [0,∞) defined by

u(x, t) = u0(x, t) +

∫∫

Ω×(0,∞)

G(x, y, t− s)

∞∑

j=1

vj(y, s) dy ds

= u0(x, t) +
∞∑

j=1

uj(x, t)

is in C2,1(Ω × (0,∞)) and by (6.29) we have

Hu =
∞∑

j=1
vj in Ω × (0,∞)

u = 0 on ∂Ω × (0,∞).

(6.31)
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Also, by (6.27) and (6.30), for (x, t) ∈ Ej , we have

u(x, t) ≥ u0(x, t) + uj(x, t) ≥ βwj(t). (6.32)

Hence, for (x, t) ∈ Ej, it follows from (6.26) that

Hu(x, t) = vj(x, t) ≤ w′
j(t) =

γ

p− 1
wj(t)

p

≤ γ

p− 1
β−pu(x, t)p = u(x, t)p (6.33)

by (6.7). Inequality (6.33) also holds for (x, t) ∈ (Ω × (0,∞)) \
∞⋃

j=1
Ej because Hu ≡ 0 there by

(6.31). Thus (6.3) holds. Finally, by (6.32),

u(xj , tj) ≥ βwj(tj)

and it therefore follows from (6.19), (6.16), (6.14), and (6.8) that (6.5) holds.
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