Isolated Singularities of Nonlinear Elliptic Inequalities. II. Asymptotic Behavior of Solutions

Steven D. Taliaferro
Mathematics Department
Texas A\&M University
College Station, TX 77843-3368
stalia@math.tamu.edu

Abstract

We give conditions on a continuous function $f:(0, \infty) \rightarrow(0, \infty)$ which guarantee that every C^{2} positive solution $u(x)$ of the differential inequalities $$
0 \leq-\Delta u \leq f(u)
$$ in a punctured neighborhood of the origin in $\boldsymbol{R}^{n}(n \geq 2)$ is asymptotically radial (or asymptotically harmonic) as $|x| \rightarrow 0^{+}$.

1 Introduction

It is well-known that if u is positive and harmonic in a punctured neighborhood of the origin in R^{n} $(n \geq 2)$ then either the origin is a removable singularity of u or for some finite positive number m,

$$
\begin{equation*}
\lim _{|x| \rightarrow 0^{+}} \frac{u(x)}{\Phi(|x|)}=m, \tag{1.1}
\end{equation*}
$$

where Φ is the fundamental solution of $-\Delta$. In particular, u is asymptotically radial as $|x| \rightarrow 0^{+}$, i.e.

$$
\begin{equation*}
\lim _{|x| \rightarrow 0^{+}} \frac{u(x)}{\bar{u}(|x|)}=1 \tag{1.2}
\end{equation*}
$$

where $\bar{u}(r)$ is the average of u on the sphere $|x|=r$.
In this paper we study when similar results hold for C^{2} positive solutions u of the differential inequalities

$$
\begin{equation*}
0 \leq-\Delta u \leq f(u) \text { in a punctured neighborhood of the origin } \tag{1.3}
\end{equation*}
$$

where $f:(0, \infty) \rightarrow(0, \infty)$ is a continuous function.
Specifically, we give essentially optimal conditions on f so that every C^{2} positive solution u of (1.3) satisfies (1.2), and in this case we describe the possible behavior of $\bar{u}(|x|)$, and hence of $u(x)$, as $|x| \rightarrow 0^{+}$.

We also give essentially optimal conditions on f so that every C^{2} positive solution u of (1.3) satisfies

$$
\begin{equation*}
\lim _{|x| \rightarrow 0^{+}} \frac{u(x)}{h(x)}=1 \tag{1.4}
\end{equation*}
$$

for some function h which is positive and harmonic in a punctured neighborhood of origin. We say a positive function u satisfying (1.4) is asymptotically harmonic as $|x| \rightarrow 0^{+}$.

Since (1.4) implies (1.2), the conditions on f for (1.4) to hold will have to be at least as strong as the conditions on f for (1.2) to hold.

As an example of the essential optimality of our results, it follows from Section 2 that every C^{2} positive solution $u(x)$ of

$$
0 \leq-\Delta u \leq e^{u}
$$

in a punctured neighborhood of the origin in R^{2} is asymptotically harmonic as $|x| \rightarrow 0^{+}$; however, if $f:(0, \infty) \rightarrow(0, \infty)$ is a continuous function satisfying $\lim _{t \rightarrow \infty}(\log f(t)) / t=\infty$ then (1.3) has C^{2} positive solutions u in a punctured neighborhood of the origin in R^{2} which are not asymptotically radial (and hence not asymptotically harmonic) as $|x| \rightarrow 0^{+}$.

This paper is a continuation of our paper [11] in which we give essentially optimal conditions on f so that every C^{2} positive solution u of (1.3) satisfies

$$
u(x)=O(\Phi(|x|)) \quad \text { as } \quad|x| \rightarrow 0^{+} .
$$

The question as to when such solutions u satisfy (1.2) or (1.4) was left open in that paper (see [11, open question at the bottom of p. 1887 and conjecture on p. 1889]).

Many authors (see for example [1], [2], [3], [4], [5], [6], [7]) have studied the asymptotic behavior at an isolated singularity of solutions of the differential equation $-\Delta u=f(u)$ under various conditions on the positive function f. Of particular relevance to our results is a result of Lions [8] which states that every C^{2} positive solution of $-\Delta u=u^{p}$ in a punctured neighborhood of the origin in \boldsymbol{R}^{n} is asymptotically harmonic as $|x| \rightarrow 0^{+}$provided $p<n /(n-2)$ (if $n=2, p<\infty$). Note however that in this paper we study differential inequalities rather than differential equations.

2 Two dimensional results

Our result for positive solutions of (1.3) in two dimensions is the following.
Theorem 2.1. Let $u(x)$ be a C^{2} positive solution of

$$
\begin{equation*}
0 \leq-\Delta u \leq f(u) \tag{2.1}
\end{equation*}
$$

in a punctured neighborhood of the origin in \boldsymbol{R}^{2}, where $f:(0, \infty) \rightarrow(0, \infty)$ is a continuous function satisfying

$$
\begin{equation*}
\log f(t)=O(t) \quad \text { as } \quad t \rightarrow \infty . \tag{2.2}
\end{equation*}
$$

Then either u has a C^{1} extension to the origin or

$$
\begin{equation*}
\lim _{|x| \rightarrow 0^{+}} \frac{u(x)}{\log \frac{1}{|x|}}=m \tag{2.3}
\end{equation*}
$$

for some finite positive number m.
In particular the function u in Theorem 2.1 satisfies (1.4) and hence also (1.2). In [10], we showed that if $f:(0, \infty) \rightarrow(0, \infty)$ is a continuous function satisfying $\lim _{t \rightarrow \infty}(\log f(t)) / t=\infty$ then (2.1) has a C^{2} positive solution u in a punctured neighborhood of the origin in R^{2} which satisfies neither (1.4) nor (1.2). Thus the condition (2.2) on f is not only essentially optimal for (1.4) to hold, but also essentially optimal for (1.2) to hold. There is no analogous condition on f in three and higher dimensions, as we discuss in the next section.

Since

$$
u(x)=m \log \frac{1}{|x|}+\log \log \frac{1}{|x|}, \quad m \geq 2
$$

is a C^{2} positive solution of $0 \leq-\Delta u \leq e^{u}$ in a punctured neighborhood of the origin in R^{2}, we see that the conclusion (2.3) of Theorem 2.1 cannot be strengthened to

$$
\begin{equation*}
u(x)=m \log \frac{1}{|x|}+O(1) \quad \text { as } \quad|x| \rightarrow 0^{+} \tag{2.4}
\end{equation*}
$$

for some $m \in(0, \infty)$. However, (2.4) does hold if the condition on u in Theorem 2.1 is slightly strengthened. More precisely, as shown in [9] and [10], if u is a C^{2} positive solution in a punctured neighborhood of the origin in R^{2} of either

$$
a e^{u} \leq-\Delta u \leq e^{u} \quad \text { or } \quad 0 \leq-\Delta u \leq f(u)
$$

where $a \in(0,1)$ is a constant and $f:(0, \infty) \rightarrow(0, \infty)$ is a continuous function satisfying $\log f(t)=$ $o(t)$ as $t \rightarrow \infty$ then either u satisfies (2.4) for some $m \in(0, \infty)$ or u has a C^{1} extension to the origin.

Proof of Theorem 2.1. Since u is positive and superharmonic in a punctured neighborhood of the origin, u is bounded below by some positive constant in some smaller punctured neighborhood of the origin. Therefore, using (2.1) and (2.2) and scaling u and x appropriately, we find that it suffices to prove Theorem 2.1 under the assumption that u is a C^{2} positive solution of

$$
\begin{equation*}
0 \leq-\Delta u \leq e^{u} \quad \text { in } \quad B_{2 r_{0}}(0)-\{0\} \tag{2.5}
\end{equation*}
$$

for some $r_{0} \in(0,1 / 4)$.
Let $\Omega=B_{r_{0}}(0)$. As shown in [9], the fact that u is positive and superharmonic in $B_{2 r_{0}}(0)-\{0\}$ implies that

$$
\begin{equation*}
u,-\Delta u \in L^{1}(\Omega) \tag{2.6}
\end{equation*}
$$

and that there exists a nonnegative constant m and a continuous function $h: \bar{\Omega} \rightarrow \boldsymbol{R}$, which is harmonic in Ω, such that

$$
\begin{equation*}
u(x)=m \log \frac{1}{|x|}+N(x)+h(x) \quad \text { for } \quad x \in \bar{\Omega}-\{0\} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
N(x)=\frac{1}{2 \pi} \int_{\Omega}\left(\log \frac{1}{|x-y|}\right)(-\Delta u(y)) d y \tag{2.8}
\end{equation*}
$$

is the Newtonian potential of $-\Delta u$ in Ω.
It was proved in [11, Theorem 2.3] that

$$
u(y)=O\left(\log \frac{1}{2|y|}\right) \quad \text { as } \quad|y| \rightarrow 0^{+} .
$$

It therefore follows from (2.5) that there exists a positive constant C such that

$$
\begin{equation*}
0 \leq-\Delta u(y) \leq \frac{1}{(2|y|)^{C}} \quad \text { for } \quad y \in \Omega-\{0\} \tag{2.9}
\end{equation*}
$$

To complete the proof of Theorem 2.1 we need the following lemma.

Lemma 2.1. $N(x)=o\left(\log \frac{1}{|x|}\right)$ as $|x| \rightarrow 0^{+}$.
Proof. Let $\varepsilon>0$ and $M=\frac{2}{\varepsilon} \int_{\Omega}-\Delta u(y) d y+1$. For $|x|$ small and positive we have

$$
N(x)=\frac{1}{2 \pi}(I(x)+J(x))
$$

where

$$
\begin{aligned}
I(x) & :=\int_{\substack{|y-x|>\frac{|x|}{2} \\
y \in \Omega}}\left(\log \frac{1}{|x-y|}\right)(-\Delta u(y)) d y \\
& =\int_{\substack{|x|}} \int_{|y-x|<|x|^{1 / M}}\left(\log \frac{1}{|x-y|}\right)(-\Delta u(y)) d y+\int_{\substack{|y-x|>|x|^{1 / M} \\
y \in \Omega}} \log \left(\frac{1}{|x-y|}\right)(-\Delta u(y)) d y \\
& \leq\left(\log \frac{2}{|x|}\right) \int_{\substack{|y-x|<|x|^{1 / M}}}-\Delta u(y) d y+\frac{1}{M}\left(\log \frac{1}{|x|}\right) \int_{\Omega}-\Delta u(y) d y \\
& \leq \frac{2}{M}\left(\log \frac{1}{|x|}\right) \int_{\Omega}-\Delta u(y) d y<\varepsilon \log \frac{1}{|x|}
\end{aligned}
$$

and where

$$
J(x):=\int_{|y-x|<\frac{|x|}{2}}\left(\log \frac{1}{|x-y|}\right)(-\Delta u(y)) d y .
$$

By (2.9),

$$
\begin{equation*}
0 \leq-\Delta u(y) \leq \frac{1}{|x|^{C}} \quad \text { for } \quad x, y \in \Omega-\{0\} \quad \text { and } \quad|y-x|<\frac{|x|}{2} . \tag{2.10}
\end{equation*}
$$

Let

$$
r(x)^{2}=\frac{1}{\pi} E(x)|x|^{C}
$$

where

$$
E(x):=\int_{|y-x|<\frac{|x|}{2}}-\Delta u(y) d y \rightarrow 0 \quad \text { as } \quad|x| \rightarrow 0^{+}
$$

by (2.6). Since

$$
\int_{|y-x|<r(x)} \frac{d y}{|x|^{C}}=\frac{\pi r(x)^{2}}{|x|^{C}}=\int_{|y-x|<\frac{|x|}{2}}-\Delta u(y) d y
$$

it follows from (2.10) that

$$
\begin{aligned}
J(x) & \leq \frac{1}{|x|^{C}} \int_{|y-x|<r(x)}\left(\log \frac{1}{|x-y|}\right) d y=\frac{1}{|x|^{C}} \int_{|\zeta|<r(x)}\left(\log \frac{1}{|\zeta|}\right) d \zeta \\
& =\frac{2 \pi}{|x|^{C}}\left(\frac{r(x)^{2}}{2} \log \frac{1}{r(x)}+\frac{r(x)^{2}}{4}\right) \\
& =O\left(E(x) \log \frac{1}{E(x)|x|^{C}}\right) \\
& =o\left(\log \frac{1}{|x|}\right) \text { as }|x| \rightarrow 0^{+} .
\end{aligned}
$$

This proves Lemma 2.1.
By Lemma 2.1, Theorem 2.1 is true when the nonnegative constant m in (2.7) is positive. Hence we can assume $m=0$ and it follows from (2.7), (2.5), and Lemma 2.1 that

$$
-\Delta u(y)=O\left(|y|^{-1 / 2}\right) \quad \text { as } \quad|y| \rightarrow 0^{+} .
$$

Thus N, and hence u, is bounded in Ω. It follows therefore from (2.5) that $-\Delta u$ is bounded in Ω. Therefore N, and hence u, has a C^{1} extension to origin. This completes the proof of Theorem 2.1.

3 Asymptotically radial solutions in three and higher dimensions

The following theorem gives conditions on f such that each C^{2} positive solution of (1.3) in three and higher dimensions is asymptotically radial as $|x| \rightarrow 0^{+}$.

Theorem 3.1. Let $u(x)$ be a C^{2} positive solution of

$$
\begin{equation*}
0 \leq-\Delta u \leq f(u) \tag{3.1}
\end{equation*}
$$

in a punctured neighborhood of the origin in $\boldsymbol{R}^{n}(n \geq 3)$, where $f:(0, \infty) \rightarrow(0, \infty)$ is a continuous function satisfying

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{f(t)}{t^{\frac{n}{n-2}}} \leq \ell \tag{3.2}
\end{equation*}
$$

for some finite positive number ℓ. Then

$$
\begin{equation*}
\lim _{|x| \rightarrow 0^{+}} \frac{u(x)}{\bar{u}(|x|)}=1, \tag{3.3}
\end{equation*}
$$

where $\bar{u}(r)$ is the average of u on the sphere $|x|=r$. Moreover, either
(i) u has a C^{1} extension to the origin,
(ii) $\lim _{|x| \rightarrow 0^{+}}|x|^{n-2} u(x)=m$ for some finite positive number m, or
(iii) u satisfies the following two conditions:

$$
\begin{equation*}
\lim _{|x| \rightarrow 0^{+}}|x|^{n-2} u(x)=0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{|x| \rightarrow 0^{+}}\left(\log \frac{1}{|x|}\right)^{\frac{n-2}{2}}|x|^{n-2} u(x) \geq\left(\frac{n-2}{\sqrt{2 \ell}}\right)^{n-2} \tag{3.5}
\end{equation*}
$$

In [10], we showed that if $f:(0, \infty) \rightarrow(0, \infty)$ is a continuous function satisfying $\lim _{t \rightarrow \infty} f(t) / t^{n /(n-2)}$ $=\infty$ then (3.1) has a C^{2} positive solution u in $\boldsymbol{R}^{n}-\{0\}, n \geq 3$, which does not satisfy (3.3). Thus the condition (3.2) on f in Theorem 3.1 is essentially optimal for (3.3) to hold, but too weak to imply (1.4) because for $0<\sigma \leq(n-2) / 2$ the function

$$
\begin{equation*}
u_{\sigma}(x):=\left(\frac{n-2}{\sqrt{2}}\right)^{n-2} \frac{1}{|x|^{n-2}\left(\log \frac{1}{\mid x}\right)^{\sigma}} \tag{3.6}
\end{equation*}
$$

is a C^{2} positive solution of $0 \leq-\Delta u \leq u^{\frac{n}{n-2}}$ in a punctured neighborhood of the origin and $u_{\sigma}(x)$ does not satisfy (1.4). This is in contrast to the situation in two dimensions as discussed in the paragraph following Theorem 2.1.

Proof of Theorem 3.1. Choose $r_{0}>0$ such that u is a C^{2} positive solution of (3.1) in $B_{2 r_{0}}(0)-\{0\}$ and let $\Omega=B_{r_{0}}(0)$. Since u is positive and superharmonic in $B_{2 r_{0}}(0)-\{0\}$, it is well-known (see Li [6]) that

$$
\begin{equation*}
u,-\Delta u \in L^{1}(\Omega) \tag{3.7}
\end{equation*}
$$

and that there exists a nonnegative constant m and a continuous function $h: \bar{\Omega} \rightarrow \boldsymbol{R}$, which is harmonic in Ω, such that

$$
\begin{equation*}
u(x)=\frac{m}{|x|^{n-2}}+N(x)+h(x) \quad \text { for } \quad x \in \bar{\Omega}-\{0\} \tag{3.8}
\end{equation*}
$$

where

$$
N(x)=\alpha_{n} \int_{\Omega} \frac{-\Delta u(y)}{|x-y|^{n-2}} d y, \quad x \in R^{n}
$$

is the Newtonian potential of $-\Delta u$ in Ω. Here $\alpha_{n}=1 /\left(n(n-2) \omega_{n}\right)$, where ω_{n} is the volume of the unit ball in \boldsymbol{R}^{n}.

Another consequence of the positivity and superharmonicity of u in $B_{2 r_{0}}(0)-\{0\}$ is that u is bounded below by a positive constant in $\Omega-\{0\}$, and thus by (3.1) and (3.2), there exists a positive constant K such that u is a C^{2} positive solution of

$$
\begin{equation*}
0 \leq-\Delta u \leq K u^{\frac{n}{n-2}} \quad \text { in } \quad \Omega-\{0\} \tag{3.9}
\end{equation*}
$$

It was proved in [11, Theorem 2.1] that

$$
\begin{equation*}
u(x)=O\left(|x|^{2-n}\right) \quad \text { as } \quad|x| \rightarrow 0^{+} . \tag{3.10}
\end{equation*}
$$

It therefore follows from (3.9) that

$$
\begin{equation*}
-\Delta u(x)=O\left(|x|^{-n}\right) \quad \text { as } \quad|x| \rightarrow 0^{+} . \tag{3.11}
\end{equation*}
$$

A portion of our proof of Theorem 3.1 will consist of two lemmas, the first of which is
Lemma 3.1. $N(x)=o\left(|x|^{2-n}\right)$ as $|x| \rightarrow 0^{+}$.
Proof. For $|x|$ small and positive we have

$$
N(x)=\alpha_{n}(I(x)+J(x))
$$

where

$$
\begin{aligned}
I(x) & :=\int_{\substack{|y-x|>|x| \\
y \in \Omega}} \frac{-\Delta u(y)}{|y-x|^{n-2}} d y \\
& =\int_{\substack{|x|}|y-x|<\sqrt{|x|}} \frac{-\Delta u(y)}{|y-x|^{n-2}} d y+\int_{\substack{|y-x|>\sqrt{|x|} \\
y \in \Omega}} \frac{-\Delta u(y)}{|x-y|^{n-2}} d y \\
& \leq\left(\frac{2}{|x|}\right)^{n-2} \int_{\substack{|y-x|<\sqrt{|x|}}}-\Delta u(y) d y+\frac{1}{|x|^{\frac{n-2}{2}}} \int_{\Omega}-\Delta u(y) d y \\
& =o\left(|x|^{2-n}\right) \quad \text { as } \quad|x| \rightarrow 0^{+}
\end{aligned}
$$

by (3.7), and where

$$
J(x):=\int_{|y-x|<\frac{|x|}{2}} \frac{-\Delta u(y)}{|y-x|^{n-2}} d y
$$

By (3.11), there exists $C>0$ such that

$$
\begin{equation*}
-\Delta u(y) \leq C|x|^{-n} \quad \text { for }|x| \text { small and positive and }|y-x|<\frac{|x|}{2} \tag{3.12}
\end{equation*}
$$

Let

$$
r(x)=\left(\frac{1}{C \omega_{n}} \int_{|y-x|<\frac{|x|}{2}}-\Delta u(y) d y\right)^{\frac{1}{n}}|x|
$$

Since

$$
\int_{|y-x|<r(x)} C|x|^{-n} d y=\int_{|y-x|<\frac{|x|}{2}}-\Delta u(y) d y
$$

it follows from (3.12) that

$$
\begin{aligned}
J(x) & \leq \int_{|y-x|<r|x|} \frac{C}{|x|^{n}} \frac{d y}{|y-x|^{n-2}}=\frac{C}{|x|^{n}} \int_{|\zeta|<r(x)} \frac{d \zeta}{|\zeta|^{n-2}} \\
& =\frac{C}{|x|^{n}} \frac{n \omega_{n}}{2} r(x)^{2}=o\left(|x|^{2-n}\right) \quad \text { as } \quad|x| \rightarrow 0^{+} .
\end{aligned}
$$

This proves Lemma 3.1.
By Lemma 3.1, Theorem 3.1 is true when the nonnegative constant m in (3.8) is positive. Hence we can assume $m=0$, which implies

$$
\begin{equation*}
u(x)=N(x)+h(x) \quad \text { for } \quad x \in \bar{\Omega}-\{0\} \tag{3.13}
\end{equation*}
$$

Thus, by Lemma 3.1,

$$
\begin{equation*}
u(x)=o\left(|x|^{2-n}\right) \quad \text { as } \quad|x| \rightarrow 0^{+} \tag{3.14}
\end{equation*}
$$

We will now prove (3.3). Let $\varepsilon \in(0,1 / 2)$ be fixed. For $x \in \Omega-\{0\}$ let

$$
\begin{gathered}
\Omega_{x}=\left\{y \in \boldsymbol{R}^{n}: \varepsilon|x| \leq|y| \leq|x| / \varepsilon\right\} \\
N_{1}(x)=\alpha_{n} \int_{\Omega_{x} \cap \Omega} \frac{-\Delta u(y)}{|y-x|^{n-2}} d y, \quad \text { and } \quad N_{2}(x)=\alpha_{n} \int_{\Omega-\Omega_{x}} \frac{-\Delta u(y)}{|y-x|^{n-2}} d y
\end{gathered}
$$

Lemma 3.2. For some positive constant $C=C(n, \Omega, \varepsilon)$ we have

$$
\sup _{y \in \Omega_{x}} u(y) \leq C \inf _{y \in \Omega_{x}} u(y) \quad \text { for } \quad|x| \quad \text { small and positive. }
$$

Proof. Choose $x_{0} \in \Omega$ such that $\Omega_{x_{0}} \subset \subset \Omega-\{0\}$. For $0<\delta<1$, define $v_{\delta}: \Omega_{x_{0}} \rightarrow \boldsymbol{R}$ by

$$
v_{\delta}(\xi)=u(y), \quad y=\delta \xi \in \Omega_{\delta x_{0}}
$$

Then for $\xi \in \Omega_{x_{0}}$,

$$
\begin{aligned}
\left|\frac{-\Delta v_{\delta}(\xi)}{v_{\delta}(\xi)}\right| & =\frac{-\delta^{2} \Delta u(y)}{u(y)} \leq \delta^{2} K u(y)^{\frac{2}{n-2}} \\
& =\frac{K}{|\xi|^{2}}\left(|y|^{n-2} u(y)\right)^{\frac{2}{n-2}} \leq \frac{K}{\left(\varepsilon\left|x_{0}\right|\right)^{2}}\left(|y|^{n-2} u(y)\right)^{\frac{2}{n-2}} .
\end{aligned}
$$

Hence

$$
\sup _{\xi \in \Omega_{x_{0}}}\left|\frac{-\Delta v_{\delta}(\xi)}{v_{\delta}(\xi)}\right| \leq \frac{K}{\left(\varepsilon\left|x_{0}\right|\right)^{2}} \sup _{y \in \Omega_{\delta x_{0}}}\left(|y|^{n-2} u(y)\right)^{\frac{2}{n-2}} \rightarrow 0 \quad \text { as } \quad \delta \rightarrow 0^{+}
$$

by (3.14). Thus by Harnack's inequality, there exists a constant $C=C\left(n, \Omega, \Omega_{x_{0}}\right)>0$ such that for δ small and positive we have

$$
\begin{aligned}
\sup _{y \in \Omega_{\delta x_{0}}} u(y) & =\sup _{\xi \in \Omega_{x_{0}}} v_{\delta}(\xi) \leq C \inf _{\xi \in \Omega_{x_{0}}} v_{\delta}(\xi) \\
& =C \inf _{y \in \Omega_{\delta x_{0}}} u(y) .
\end{aligned}
$$

This proves Lemma 3.2.
By (3.14), we find for $x \in \Omega-\{0\}$ that $g(x):=|x|^{2} \sup _{\Omega_{x} \cap \Omega} u^{\frac{2}{n-2}} \rightarrow 0$ as $|x| \rightarrow 0^{+}$. It follows therefore from (3.9) and Lemma 3.2 that for $|x|$ small and positive we have

$$
\begin{align*}
N_{1}(x) & \leq \alpha_{n} \int_{\Omega_{x} \cap \Omega} \frac{K u(y)^{\frac{2}{n-2}} u(y)}{|x-y|^{n-2}} d y \\
& \leq \alpha_{n} \frac{K g(x)}{|x|^{2}} C u(x) \int_{|y|<\frac{|x|}{\varepsilon}}|y|^{2-n} d y \\
& =\alpha_{n} \frac{n \omega_{n}}{2 \varepsilon^{2}} K C g(x) u(x) \\
& =o(u(x)) \quad \text { as } \quad|x| \rightarrow 0^{+} . \tag{3.15}
\end{align*}
$$

By (3.13), (3.15), and the fact that u is bounded below by a positive constant in $\Omega-\{0\}$, there exists a positive constant c such that

$$
\begin{equation*}
N_{2}(x)+h(x)=u(x)-N_{1}(x) \geq c \quad \text { for } \quad|x| \quad \text { small and positive. } \tag{3.16}
\end{equation*}
$$

For $x, \xi \in \boldsymbol{R}^{n}-\{0\}$ and $|x|=|\xi|$ it is easy to check that

$$
\left|\frac{|y-\xi|}{|y-x|}-1\right| \leq \frac{2 \varepsilon}{1-\varepsilon}<4 \varepsilon \quad \text { for } \quad y \in \boldsymbol{R}^{n}-\Omega_{x}
$$

by considering separately the two cases $|y|<\varepsilon|x|$ and $|y|>|x| / \varepsilon$. Thus

$$
\begin{equation*}
\left|N_{2}(x)-N_{2}(\xi)\right|<\left[(1+4 \varepsilon)^{n-2}-1\right] N_{2}(\xi) \quad \text { for } \quad x, \xi \in \Omega-\{0\} \quad \text { and } \quad|x|=|\xi| . \tag{3.17}
\end{equation*}
$$

Also, for $x, \xi \in \Omega-\{0\}$ we have

$$
\begin{align*}
\frac{N_{2}(x)+h(x)}{N_{2}(\xi)+h(\xi)}-1 & =\frac{\left(N_{2}(x)-N_{2}(\xi)\right)+(h(x)-h(\xi))}{N_{2}(\xi)+h(\xi)} \tag{3.18}\\
& =\frac{\frac{N_{2}(x)-N_{2}(\xi)}{N_{2}(\xi)}+\frac{h(x)-h(\xi)}{N_{2}(\xi)}}{1+\frac{h(\xi)}{N_{2}(\xi)}} \tag{3.19}
\end{align*}
$$

where the last equation holds if and only if $N_{2}(\xi) \neq 0$. Using (3.16), (3.17), (3.18), and (3.19) it is easy to check by considering separately the three cases $h(0)=0, N_{2}(\xi)>2|h(0)|>0$, and $N_{2}(\xi) \leq 2|h(0)|>0$ that

$$
\limsup _{|x|=|\xi| \rightarrow 0^{+}}\left|\frac{N_{2}(x)+h(x)}{N_{2}(\xi)+h(\xi)}-1\right| \leq \delta
$$

where

$$
\begin{equation*}
\delta=2\left[(1+4 \varepsilon)^{n-2}-1\right] \max \left(1, \frac{|h(0)|}{c}\right) . \tag{3.20}
\end{equation*}
$$

Thus, since

$$
\frac{u(x)}{u(\xi)}=\frac{N_{2}(x)+h(x)}{N_{2}(\xi)+h(\xi)} B(x, \xi),
$$

where

$$
B(x, \xi):=\frac{1-\frac{N_{1}(\xi)}{u(\xi)}}{1-\frac{N_{1}(x)}{u(x)}} \rightarrow 1 \quad \text { as } \quad|x|=|\xi| \rightarrow 0^{+}
$$

we have

$$
\limsup _{|x|=|\xi| \rightarrow 0^{+}}\left|\frac{u(x)}{u(\xi)}-1\right| \leq \delta
$$

Hence, since ε is an arbitrary number in the interval ($0,1 / 2$), it follows from the definition (3.20) of δ that (3.3) holds.

Averaging (3.9), increasing the constant K if necessary, and using (3.3) and the positivity of u in $B_{2 r_{0}}(0)-\{0\}$ we see that

$$
0 \leq-\Delta \bar{u} \leq K \bar{u}^{\frac{n}{n-2}} \quad \text { in } \quad \Omega-\{0\} .
$$

Furthermore, it follows from (3.14) that $r^{n-2} \bar{u}(r) \rightarrow 0$ as $r \rightarrow 0^{+}$. Thus, applying Lemma 6.1 to \bar{u}, and using (3.3), (3.9), (3.13), and the fact that N has a C^{1} extension to the origin when $-\Delta u$ is bounded in Ω, we see that either (i) of Theorem 3.1 holds or (iii) of Theorem 3.1 holds with ℓ replaced with K. However, if ε is any positive number and (3.5) holds with ℓ replaced with K then by sufficiently decreasing the radius r_{0} of Ω and using (3.3) and (3.2) we see that u is a C^{2} positive solution of

$$
0 \leq-\Delta u \leq(\ell+\varepsilon) u^{\frac{n}{n-2}} \quad \text { in } \quad \Omega-\{0\}
$$

and thus u satisfies (3.5) with ℓ replaced with $\ell+\varepsilon$. Since $\varepsilon>0$ is arbitrary, (3.5) holds as stated. This completes the proof of Theorem 3.1.

4 Asymptotically harmonic solutions in three and higher dimensions

As discussed in the paragraph following Theorem 3.1, the condition (3.2) on f in Theorem 3.1 is too weak to imply (1.4). In the following theorem, we strengthen the condition (3.2) on f in Theorem 3.1 in order to strengthen the conclusion (3.3) of Theorem 3.1 to (1.4), or equivalently, to rule out possibility (iii) of Theorem 3.1.

We use the following notation:

$$
\log _{1}:=\log \quad \log _{2}:=\log \circ \log \quad \log _{3}:=\log \circ \log \circ \log \quad \text { etc. }
$$

Theorem 4.1. Let u be a C^{2} positive solution of

$$
\begin{equation*}
0 \leq-\Delta u \leq \frac{u^{\frac{n}{n-2}}}{\left(\log _{1} u\right)\left(\log _{2} u\right) \ldots\left(\log _{q-1} u\right)\left(\log _{q} u\right)^{\beta}} \tag{4.1}
\end{equation*}
$$

in a punctured neighborhood of the origin in $\boldsymbol{R}^{n}(n \geq 3)$ where $\beta \in(1, \infty)$ and q is a positive integer. Then either (i) or (ii) of Theorem 3.1 hold.

Theorem 4.1 is essentially optimal because a solution of (4.1) when $\beta=1$ is

$$
u(|x|)=\frac{1}{|x|^{n-2} \log _{q+2} \frac{1}{|x|}}
$$

which satisfies neither (i) nor (ii) of Theorem 3.1.
Proof of Theorem 4.1. By Theorem 3.1, u satisfies (3.3). Thus, by averaging (4.1), we see that it suffices to prove Theorem 4.1 when u is radial.

Under the change of variables (6.3) and (6.8) used in the proof of Lemma 6.1, we have

$$
\begin{equation*}
0 \leq-\left(v^{\prime \prime}(t)+v^{\prime}(t)\right) \leq \frac{v(t)^{\frac{n}{n-2}}}{\left(\log _{1} e^{t} v(t)\right) \ldots\left(\log _{q-1} e^{t} v(t)\right)\left(\log _{q} e^{t} v(t)\right)^{\beta}} \tag{4.2}
\end{equation*}
$$

for t large and positive.
Suppose for contradiction that u satisfies (iii) of Theorem 3.1 with $\ell=1$. Then

$$
\begin{equation*}
v(t)>\frac{1}{2}\left(\frac{n-2}{2 t}\right)^{\frac{n-2}{2}} \quad \text { for } t \text { large and positive } \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} v(t)=0 . \tag{4.4}
\end{equation*}
$$

Hence, for $j=1,2, \ldots, q$,

$$
\log _{j}\left(e^{t} v(t)\right)=\left(\log _{j-1} t\right)(1+o(1)) \quad \text { as } \quad t \rightarrow \infty .
$$

It follows therefore from (4.2) that

$$
\begin{equation*}
0 \leq-\left(v^{\prime \prime}(t)+v^{\prime}(t)\right) \leq g(t) v(t)^{\frac{n}{n-2}} \tag{4.5}
\end{equation*}
$$

for t large and positive, where

$$
g(t)=\frac{2}{t\left(\log _{1} t\right) \ldots\left(\log _{q-2} t\right)\left(\log _{q-1} t\right)^{\beta}}
$$

Multiplying (4.5) by e^{t} and integrating the resulting inequalities from t_{0} to t, where t_{0} is positive and large, we obtain

$$
\begin{equation*}
0 \leq-v^{\prime}(t) \leq e^{-t} I(t)+C e^{-t} \quad \text { for } \quad t \geq t_{0} \tag{4.6}
\end{equation*}
$$

where C is a positive constant and

$$
I(t):=\int_{t_{0}}^{t} e^{\tau} g(\tau) v(\tau)^{\frac{n}{n-2}} d \tau .
$$

Integrating $I(t)$ by parts we get

$$
\begin{equation*}
I(t)=\left.\left(e^{\tau} g(\tau) v(\tau)^{\frac{n}{n-2}}\right)\right|_{\tau=t_{0}} ^{\tau=t}+J(t) \tag{4.7}
\end{equation*}
$$

where

$$
\begin{align*}
J(t) & :=-\int_{t_{0}}^{t} e^{\tau}\left(g(\tau) v(\tau)^{\frac{n}{n-2}}\right)^{\prime} d \tau \\
& =-\int_{t_{0}}^{t} e^{\tau} g(\tau) \frac{g^{\prime}(\tau)}{g(\tau)} v(\tau)^{\frac{n}{n-2}} d \tau-\frac{n}{n-2} \int_{t_{0}}^{t} e^{\tau} g(\tau) v(\tau)^{\frac{n}{n-2}} \frac{v^{\prime}(\tau)}{v(\tau)} d \tau \tag{4.8}
\end{align*}
$$

But $g^{\prime}(\tau) / g(\tau)=O(1 / \tau)$ as $\tau \rightarrow \infty$ and by Remark 6.1 and equation (4.4) we have

$$
\frac{v^{\prime}(\tau)}{v(\tau)}=O\left(v(\tau)^{\frac{2}{n-2}}\right)=o(1) \quad \text { as } \quad \tau \rightarrow \infty
$$

Hence, by increasing t_{0},

$$
\begin{equation*}
J(t) \leq \frac{1}{2} I(t) \quad \text { for } \quad t \geq t_{0} \tag{4.9}
\end{equation*}
$$

It follows from (4.3) that $e^{\tau} g(\tau) v(\tau)^{\frac{n}{n-2}} \rightarrow \infty$ as $\tau \rightarrow \infty$. Thus, by (4.9) and (4.7), there exists $t_{1}>t_{0}$ such that

$$
\frac{1}{2} I(t) \leq 2 e^{t} g(t) v(t)^{\frac{n}{n-2}} \quad \text { for } \quad t \geq t_{1}
$$

and it follows therefore from (4.6) and (4.3) that

$$
\begin{align*}
0<-v^{\prime}(t) & \leq 4 g(t) v(t)^{\frac{n}{n-2}}+C e^{-t} \\
& \leq 8 g(t) v(t)^{\frac{n}{n-2}} \tag{4.10}
\end{align*}
$$

for $t \geq t_{1}$, by increasing t_{1} if necessary. Multiplying (4.10) by $v(t)^{-\frac{n}{n-2}}$ and integrating from t_{1} to t we get

$$
\infty \leftarrow \frac{n-2}{2}\left(\frac{1}{v(t)^{\frac{2}{n-2}}}-\frac{1}{v\left(t_{1}\right)^{\frac{2}{n-2}}}\right) \leq 8 \int_{t_{1}}^{\infty} g(t) d t<\infty .
$$

This contradiction shows that u does not satisfy (iii) of Theorem 3.1 with $\ell=1$ and thus by Theorem 3.1, u satisfies either (i) or (ii) of Theorem 3.1.

5 Oscillating solutions in three and higher dimensions

Possibilities (i) and (ii) in Theorem 3.1 give a more precise description of the behavior of u near the origin than possibility (iii) does and it is natural to ask whether (iii) in Theorem 3.1 can be replaced with a more precise statement. The answer, by the following theorem, is essentially no.

Theorem 5.1. Let $\varphi:(0,1) \rightarrow(0, \infty)$ be a continuous function such that $\varphi(r)$ tends to zero (perhaps very slowly) as $r \rightarrow 0^{+}$. Then there exists a C^{2} positive radial solution u of

$$
\begin{equation*}
0 \leq-\Delta u \leq u^{\frac{n}{n-2}} \tag{5.1}
\end{equation*}
$$

in a punctured neighborhood of the origin in $\boldsymbol{R}^{n}(n \geq 3)$ which satisfies (3.4),

$$
\limsup _{|x| \rightarrow 0^{+}} \frac{|x|^{n-2} u(x)}{\varphi(|x|)} \geq 1
$$

and

$$
\liminf _{|x| \rightarrow 0^{+}}\left(\log \frac{1}{|x|}\right)^{\frac{n-2}{2}}|x|^{n-2} u(x)=\left(\frac{n-2}{\sqrt{2}}\right)^{n-2}
$$

Less precisely, but perhaps more clearly, Theorem 5.1 says there exists a C^{2} positive solution of (5.1) in a punctured neighborhood of the origin in $R^{n}(n \geq 3)$ which oscillates between the upper and lower bounds (3.4) and (3.5) of possibility (iii) of Theorem 3.1 as $|x| \rightarrow 0^{+}$.

Proof of Theorem 5.1. Under the change of variables (6.3) and (6.8) used in the proof of Lemma 6.1, proving Theorem 5.1 is equivalent to proving the existence of a positive C^{1} solution $w(v)$ of (6.14), (6.15) such that some positive solution of

$$
-\frac{d v}{d t}=w(v), \quad t \text { large and positive }
$$

satisfies $\lim _{t \rightarrow \infty} v(t)=0$,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{v(t)}{g(t)} \geq 1, \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} t^{\frac{n-2}{2}} v(t)=\left(\frac{n-2}{2}\right)^{\frac{n-2}{2}} \tag{5.3}
\end{equation*}
$$

where $g:[1, \infty) \rightarrow(0, \infty)$ is any prescribed continuous function which tends to zero (perhaps very slowly) as $t \rightarrow \infty$.

We can assume g is $C^{2}, g(1)>1$, and

$$
\begin{equation*}
0<g^{\prime \prime}(t)<-g^{\prime}(t)<2 g(t)^{\frac{n}{n-2}} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{5.4}
\end{equation*}
$$

because there exist functions g satisfying these conditions which are larger at ∞ than any given positive continuous function which tends to 0 as $t \rightarrow \infty$.

Let $\varepsilon \in(0,1)$. We inductively define a strictly decreasing sequence $\left\{v_{j}\right\}_{j=0}^{\infty}$ of positive real numbers which converges to zero and a continuous piecewise smooth function $w:(0,1] \rightarrow(0,1]$ as follows:

Let $v_{0}=1$ and $w(1)=1$. Then $w\left(v_{0}\right)=v_{0}^{\frac{n}{n-2}}$. Assume inductively that $v_{0}>v_{1}>\cdots>v_{4 j}>0$ have been defined, $w(v)$ has been defined for $v_{4 j} \leq v \leq 1$, and $w\left(v_{4 j}\right)=v_{4 j}^{\frac{n}{n-2}}$. We now proceed to define $v_{4 j+1}, v_{4 j+2}, v_{4 j+3}, v_{4(j+1)}$, and $w(v)$ for $v_{4(j+1)} \leq v \leq v_{4 j}$.

Let $w(v)=v^{\frac{n}{n-2}}$ for $v_{4 j+1} \leq v \leq v_{4 j}$, where $v_{4 j+1} \in\left(0, v_{4 j}\right)$ will be specified momentarily.
The inverse $t(v)$ of the unique solution $v(t)$ of the initial value problem

$$
\begin{equation*}
-\frac{d v}{d t}=w(v), \quad v(1)=v_{0}=1 \tag{5.5}
\end{equation*}
$$

is

$$
t(v)=1+\int_{v}^{v_{0}} \frac{d \bar{v}}{w(\bar{v})}, \quad v_{4 j+1} \leq v \leq v_{0}
$$

and hence

$$
\begin{align*}
t\left(v_{4 j+1}\right) & =t\left(v_{4 j}\right)+\int_{v_{4 j+1}}^{v_{4 j}} \frac{d \bar{v}}{\bar{v}^{\frac{n}{n-2}}} \tag{5.6}\\
& =t\left(v_{4 j}\right)+\frac{n-2}{2}\left(\frac{1}{v_{4 j+1}^{\frac{2}{n-2}}}-\frac{1}{v_{4 j}^{\frac{2}{n-2}}}\right) .
\end{align*}
$$

Thus by choosing $v_{4 j+1} \in\left(0, v_{4 j} / 2\right)$ sufficiently small and letting $t_{4 j+1}=t\left(v_{4 j+1}\right)$ we have $t_{4 j+1}>$ $4 j+1$ and

$$
t_{4 j+1} \leq \frac{(n-2)(1+\varepsilon)}{2} \frac{1}{v_{4 j+1}^{\frac{2}{n-2}}}
$$

Hence

$$
\begin{equation*}
v\left(t_{4 j+1}\right) \leq\left(\frac{(n-2)(1+\varepsilon)}{2}\right)^{\frac{n-2}{2}} \frac{1}{t_{4 j+1}^{\frac{n-2}{2}}} \tag{5.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\hat{w}(v)=\frac{-1}{2 G^{\prime}(v)} \tag{5.8}
\end{equation*}
$$

where $t=G(v)$ is the inverse of $v=g(t)$. Thanks to (5.4) we have for $0<v \leq 1$ that

$$
\begin{equation*}
0<\hat{w}(v)<v^{\frac{n}{n-2}} \quad \text { and } \quad 0<\hat{w}^{\prime}(v)<\frac{1}{2} \tag{5.9}
\end{equation*}
$$

which imply $\hat{w}(v)$ is a solution of (6.14), (6.15).
Let $v_{4 j+2} \in\left(0, v_{4 j+1}\right)$ be the v-coordinate of a point of intersection of the graph of $\hat{w}(v)$ with the line in the $v w$-plane of slope one passing through $\left(v_{4 j+1}, v_{4 j+1}^{\frac{n}{n-2}}\right)$. By (5.9) there exists such a point of intersection. For $v_{4 j+2} \leq v \leq v_{4 j+1}$, define

$$
w(v)=v_{4 j+1}^{\frac{n}{n-2}}+v-v_{4 j+1} .
$$

Thus the graph of $w(v), v_{4 j+2} \leq v \leq v_{4 j+1}$, in the $v w$-plane is a line segment of slope one and $w\left(v_{4 j+2}\right)=\hat{w}\left(v_{4 j+2}\right)$.

Let $w(v)=\hat{w}(v)$ for $v_{4 j+3} \leq v \leq v_{4 j+2}$ where $v_{4 j+3}$ will be specified momentarily. Analogous to (5.6), the inverse $t(v)$ of the unique solution $v(t)$ of the initial value problem (5.5) satisfies

$$
\begin{aligned}
t\left(v_{4 j+3}\right) & =t\left(v_{4 j+2}\right)+\int_{v_{4 j+3}}^{v_{4 j+2}} \frac{d \bar{v}}{\hat{w}(\bar{v})} \\
& =t\left(v_{4 j+2}\right)+2 G\left(v_{4 j+3}\right)-2 G\left(v_{4 j+2}\right)
\end{aligned}
$$

because of (5.8). By choosing $v_{4 j+3} \in\left(0, v_{4 j+2} / 2\right)$ sufficiently small and letting $t_{4 j+3}=t\left(v_{4 j+3}\right)$ we have $t_{4 j+3}>4 j+3$ and $t_{4 j+3} \geq G\left(v_{4 j+3}\right)$. Hence

$$
\begin{equation*}
g\left(t_{4 j+3}\right) \leq v_{4 j+3}=v\left(t_{4 j+3}\right) \tag{5.10}
\end{equation*}
$$

For $v_{4 j+4} \leq v \leq v_{4 j+3}$ let the graph of $w(v)$ be the line segment of the slope zero joining the point $\left(v_{4 j+3}, \hat{w}\left(v_{4 j+3}\right)\right)$ on the graph of $\hat{w}(v)$ to a point $\left(v_{4 j+4}, v_{4 j+4}^{\frac{n}{n-2}}\right)$.

Since $\hat{w}(v)$ is a solution of (6.14), (6.15), so is $w(v)$, and it follows from (5.10) that (5.2) holds. Furthermore, by (5.7) equation (5.3) holds with the equal sign replaced with \leq. But by Theorem 3.1, equation (5.3) holds with the equal sign replaced with \geq. Thus (5.3) holds as stated.

The function $w(v), 0<v<1$, is continuous and $w^{\prime}(v)$ is piecewise continuous. But we need w to be C^{1} and this can be achieved by rounding off the corners of the graph of $w(v)$ in any one of several standard ways. This completes the proof of Theorem 5.1.

6 Radial solutions in three and higher dimensions

In Sections 3, 4, and 5 we will need the following lemma concerning positive radial solutions of (1.3) when $f(t)$ is a positive multiple of $t^{\frac{n}{n-2}}$.

Lemma 6.1. Let $u(|x|)$ be a C^{2} positive radial solution of

$$
\begin{equation*}
0 \leq-\Delta u \leq \ell u^{\frac{n}{n-2}} \tag{6.1}
\end{equation*}
$$

in a punctured neighborhood of the origin in $\boldsymbol{R}^{n}(n \geq 3)$ where ℓ is a positive number. Then either
(i) $u(r)$ tends to some finite positive number as $r \rightarrow 0^{+}$,
(ii) $r^{n-2} u(r)$ tends to some finite positive number as $r \rightarrow 0^{+}$, or
(iii) u satisfies the following two conditions:

$$
\lim _{r \rightarrow 0^{+}} r^{n-2} u(r)=0
$$

and

$$
\begin{equation*}
\liminf _{r \rightarrow 0^{+}}\left(\log \frac{1}{r}\right)^{\frac{n-2}{2}} r^{n-2} u(r) \geq\left(\frac{n-2}{\sqrt{2 \ell}}\right)^{n-2} \tag{6.2}
\end{equation*}
$$

Proof. By scaling u we see that it suffices to prove Lemma 6.1 when $\ell=1$.
Making the change of independent variable

$$
\begin{equation*}
s=\left(\frac{n-2}{r}\right)^{n-2} \tag{6.3}
\end{equation*}
$$

in inequalities (6.1) we find that $u(s)$ is a positive solution of

$$
\begin{equation*}
0 \leq-\frac{d^{2} u}{d s^{2}} \leq \frac{1}{s}\left(\frac{u}{s}\right)^{\frac{n}{n-2}} \quad \text { for large } s>0 \tag{6.4}
\end{equation*}
$$

Thus, for some $m_{0} \in[0, \infty), u^{\prime}(s) \searrow m_{0}$ as $s \rightarrow \infty$. In particular $u^{\prime}(s) \geq 0$ for large $s>0$. Hence, for some $u_{0} \in(0, \infty], \lim _{s \rightarrow \infty} u(s)=u_{0}$. If $u_{0} \in(0, \infty)$ then (i) holds. Consequently we can assume

$$
\begin{equation*}
\lim _{s \rightarrow \infty} u(s)=\infty \tag{6.5}
\end{equation*}
$$

Thus, by L'Hospital's rule,

$$
\lim _{s \rightarrow \infty} \frac{u(s)}{s}=\lim _{s \rightarrow \infty} u^{\prime}(s)=m_{0} .
$$

If $m_{0} \in(0, \infty)$ then (ii) holds. So we can assume

$$
\begin{equation*}
\lim _{s \rightarrow \infty} \frac{u(s)}{s}=\lim _{s \rightarrow \infty} u^{\prime}(s)=0 . \tag{6.6}
\end{equation*}
$$

Hence, to complete the proof of Lemma 6.1, it suffices to show u satisfies (6.2), which written in terms of s is

$$
\begin{equation*}
\liminf _{s \rightarrow \infty}(\log s)^{\frac{n-2}{2}} \frac{u(s)}{s} \geq\left(\frac{n-2}{2}\right)^{\frac{n-2}{2}} \tag{6.7}
\end{equation*}
$$

Making the change of variables

$$
\begin{equation*}
u(s)=s v(t), \quad t=\log s \tag{6.8}
\end{equation*}
$$

in (6.4), (6.5), and (6.6) we find that $v(t)$ is a positive solution of

$$
\begin{align*}
0 \leq-\left(v^{\prime \prime}(t)+v^{\prime}(t)\right) & \leq v(t)^{\frac{n}{n-2}} \quad \text { for large } t>0 \tag{6.9}\\
\lim _{t \rightarrow \infty} e^{t} v(t) & =\infty \tag{6.10}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} v(t)=0=\lim _{t \rightarrow \infty} v^{\prime}(t) \tag{6.11}
\end{equation*}
$$

and to complete the proof of Lemma 6.1 it suffices to prove

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} t^{\frac{n-2}{2}} v(t) \geq\left(\frac{n-2}{2}\right)^{\frac{n-2}{2}} \tag{6.12}
\end{equation*}
$$

which is equivalent to (6.7) under the change of variables (6.8).
It follows from the first equation of (6.11) and the positivity of v that $v^{\prime}\left(t_{0}\right)<0$ for some $t_{0}>0$ and it follows from the first inequality of (6.9) that

$$
v^{\prime}(t) \leq e^{t_{0}} v^{\prime}\left(t_{0}\right) e^{-t}<0 \quad \text { for } \quad t \geq t_{0} .
$$

Thus

$$
\begin{equation*}
w:=-\frac{d v}{d t} \tag{6.13}
\end{equation*}
$$

can be viewed as a function of v instead of t and it follows from (6.9) and (6.11) that w is a positive solution of

$$
\begin{align*}
1-\frac{v^{\frac{n}{n-2}}}{w} & \leq \frac{d w}{d v} \leq 1 \quad \text { for small } v>0 \tag{6.14}\\
\lim _{v \rightarrow 0^{+}} w & =0 \tag{6.15}
\end{align*}
$$

To complete the proof of Lemma 6.1, we need the following lemma.
Lemma 6.2. Let A and q be fixed positive constants. Suppose, for some strictly decreasing sequence v_{j} of real numbers tending to zero we have $w\left(v_{j}\right)=A v_{j}^{q}$. If $q=1$ then $A=1$. If $q=n /(n-2)$ then $A \leq 1$.

Proof. For some subsequences \hat{v}_{j} and \bar{v}_{j} of v_{j} we have

$$
\begin{equation*}
w^{\prime}\left(\hat{v}_{j}\right) \geq A q \hat{v}_{j}^{q-1} \tag{6.16}
\end{equation*}
$$

and

$$
\begin{equation*}
A q \bar{v}_{j}^{q-1} \geq w^{\prime}\left(\bar{v}_{j}\right) \geq 1-\frac{\bar{v}_{j}^{\frac{n}{n-2}}}{w\left(\bar{v}_{j}\right)}=1-\frac{\bar{v}_{j}^{\frac{n}{n-2}-q}}{A} \tag{6.17}
\end{equation*}
$$

by (6.14).
If $q=1$ then by (6.14), (6.16), and (6.17),

$$
1 \geq w^{\prime}\left(\hat{v}_{j}\right) \geq A \geq 1-\frac{\bar{v}_{j}^{\frac{2}{n-2}}}{A} \rightarrow 1 \quad \text { as } \quad j \rightarrow \infty
$$

and thus $A=1$.
If $q=\frac{n}{n-2}$ then by (6.17), $1-\frac{1}{A} \leq 0$ and thus $A \leq 1$.
Continuing with the proof of Lemma 6.1, let $\varepsilon \in(0,1 / 2)$. By Lemma 6.2 , one and only one of the following three possibilities holds:

$$
\begin{array}{ll}
(1-\varepsilon) v<w(v) \leq v & \text { for small } v>0 \\
\frac{v^{\frac{n}{n-2}}}{1-\varepsilon}<w(v)<(1-\varepsilon) v & \text { for small } v>0 \tag{6.19}
\end{array}
$$

or

$$
\begin{equation*}
0<w(v)<\frac{v^{\frac{n}{n-2}}}{1-\varepsilon} \quad \text { for small } v>0 \tag{6.20}
\end{equation*}
$$

We now show neither (6.18) nor (6.19) can hold. Suppose for contradiction (6.18) holds. Then by (6.14)

$$
\frac{d w}{d v}>1-\frac{v^{\frac{n}{n-2}}}{(1-\varepsilon) v}>1-2 v^{\frac{2}{n-2}} \quad \text { for small } v>0
$$

Integrating from 0 to v and using (6.15) we get

$$
-\frac{d v}{d t}=w \geq v-\frac{2(n-2)}{n} v^{\frac{n}{n-2}} \quad \text { for large } t>0
$$

which together with (6.11) implies $v(t)=O\left(e^{-t}\right)$ as $t \rightarrow \infty$ which in turn contradicts (6.10). Hence (6.18) is impossible.

Suppose for contradiction (6.19) holds. Then by (6.14), $\frac{d w}{d v} \geq \varepsilon$ for small $v>0$ and thus by (6.15), $w>\varepsilon v$ for small $v>0$ and hence again by (6.14)

$$
\frac{d w}{d v} \geq 1-\frac{v^{\frac{n}{n-2}-1}}{\varepsilon} \rightarrow 1 \quad \text { as } \quad v \rightarrow 0^{+}
$$

which contradicts the second inequality of (6.19). Thus (6.20) holds. Replacing $w(v)$ with $-\frac{d v}{d t}$ in (6.20) we obtain

$$
\begin{equation*}
0<-\frac{d v}{d t}<\frac{v^{\frac{n}{n-2}}}{1-\varepsilon} \quad \text { for large } t>0 \tag{6.21}
\end{equation*}
$$

from which we easily deduce that

$$
\liminf _{t \rightarrow \infty} \frac{v(t)}{\left(\frac{n-2}{2} \frac{1}{t}\right)^{\frac{n-2}{2}}} \geq(1-\varepsilon)^{\frac{n-2}{2}}
$$

Since $\varepsilon \in(0,1 / 2)$ is arbitrary we obtain (6.12) and the proof of Lemma 6.1 is complete.
Remark 6.1. The proof of Lemma 6.1 shows that if $u(|x|)$ is a C^{2} positive radial solution of (6.1) with $\ell=1$ in a punctured neighborhood of the origin in $R^{n}(n \geq 3)$ which satisfies neither (i) nor (ii), and $v(t)$ is defined in terms of u by (6.3) and (6.8) then $v(t)$ satisfies (6.21). This fact is used in the proof of Theorem 4.1.

References

[1] P. Aviles, Local behavior of solutions of some elliptic equations, Comm. Math. Phys. 108 (1987), 177-192.
[2] L. A. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.
[3] K.-S. Cheng and W.-M. Ni, On the structure of the conformal Gaussian curvature equation on \mathbf{R}^{2}. I, Duke Math. J. 62 (1991), 721-737.
[4] K. S. Chou and T. Y. H. Wan, Asymptotic radial symmetry for solutions of $\Delta u+e^{u}=0$ in a punctured disc, Pacific J. Math. 163 (1994), 269-276.
[5] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598.
[6] C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math. 123 (1996), 221-231.
[7] C. S. Lin, Estimates of the scalar curvature equation via the method of moving planes III, Comm. Pure Appl. Math. 53 (2000), 611-646.
[8] P. L. Lions, Isolated singularities in semilinear problems, J. Differential Equations 38 (1980), 441-450.
[9] S. D. Taliaferro, On the growth of superharmonic functions near an isolated singularity I, J. Differential Equations 158 (1999), 28-47.
[10] S. D. Taliaferro, On the growth of superharmonic functions near an isolated singularity II, Comm. Partial Differential Equations 26 (2001), 1003-1026.
[11] S. D. Taliaferro, Isolated singularities of nonlinear elliptic inequalities, Indiana Univ. Math. J. 50 (2001), 1885-1897.

