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Abstract

We prove that every positive function in C1(Sn), n ≥ 6, can be approximated in the C1(Sn)
norm by a positive function K ∈ C1(Sn) such that the conformal scalar curvature equation

−∆u+
n(n− 2)

4
u = Ku

n+2
n−2 in Sn (0.1)

has a weak positive solution u whose singular set consists of a single point. Moreover, we prove
there does not exist an apriori bound on the rate at which such a solution u blows up at its
singular point.

Our result is in contrast to a result of Caffarelli, Gidas, and Spruck which states that equation
(0.1), with K identically a positive constant in Sn, n ≥ 3, does not have a weak positive solution
u whose singular set consists of a single point.

1 Introduction and statement of results

In this paper we study the existence of positive functions K ∈ C1(Sn) such that the conformal
scalar curvature equation

−∆u+
n(n− 2)

4
u = Kun

∗
in Sn, n ≥ 3, (1.1)

has a weak positive solution u whose singular set consists of a single point, where n∗ = (n+2)/(n−2).
Moreover, given any large continuous function ϕ : (0, 1) → (0,∞), we investigate when such a
solution u can be required to satisfy

u(P ) 6= O(ϕ(|P −Q|)) as P → Q, (1.2)

where {Q} is the singular set of u.
By a weak positive solution u of (1.1), we mean a positive function u ∈ Ln∗(Sn) such that

−
∫
Sn
u∆ζ +

n(n− 2)

4

∫
Sn
uζ =

∫
Sn
Kun

∗
ζ for all ζ ∈ C∞(Sn).

By the singular set of a weak positive solution u of (1.1), we mean the set of all points Q in Sn

such that u is unbounded in every neighborhood of Q. If Q does not belong to the singular set of a
weak positive soluton u of (1.1), then, by standard elliptic theory, u is C2 in a neighborhood of Q.

Our main result is the following theorem.
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Theorem 1. Let ϕ : (0, 1) → (0,∞) be a continuous function. Then every positive function κ ∈
C1(Sn), n ≥ 6, can be approximated in the C1(Sn) norm by a positive function K ∈ C1(Sn) such
that for some Q ∈ Sn there exists a weak positive solution u of (1.1) and (1.2) whose singular
set is {Q}. Furthermore, given a positive number ε, the function K can also be required to satisfy
K(P ) = κ(P ) for |P −Q| ≥ ε.

Theorem 1 is in contrast to a result of Caffarelli, Gidas, and Spruck [1] which states that
equation (1.1) with K identically a positive constant in Sn, n ≥ 3, does not have a weak positive
solution whose singular set consists of a single point. Moreover, the conclusion of Theorem 1 that
the function u can be required to satisfy (1.2) is in contrast to another result of theirs which states
that a C2 positive solution of

−∆u+
n(n− 2)

4
u = un

∗

in a punctured neighborhood of some point Q in Sn must satisfy

u(P ) = O
(
|P −Q|

−(n−2)
2

)
as P → Q. (1.3)

When K is identically a positive constant in Sn, Schoen [8] proved the existence of a weak
positive solution of (1.1) whose singular set is any prescribed finite subset of Sn consisting of at
least two points, and Chen and Lin [2] proved, when n ≥ 9, the existence of a weak positive solution
of (1.1) whose singular set is Sn. Later, Mazzeo and Pacard [7] gave another proof of Schoen’s
result.

Theorem 1 is not true when n is 3 or 4 because if u is a C2 positive solution of

−∆u+
n(n− 2)

4
u = Kun

∗
(1.4)

in some punctured neighborhood of some point Q ∈ Sn, then Chen and Lin [3] proved that u
satisfies (1.3) when n = 3 and K is positive and Hölder continuous with exponent α > 1/2 in some
neighborhood of Q, and Taliaferro and Zhang [10] proved that u satisfies (1.3) when n = 4 and
K is positive and C1 in some neighborhood of Q. An open question is whether Theorem 1 is true
when n = 5.

When κ ≡ 1 in Sn, n ≥ 3, the analog of Theorem 1 concerning the approximation of κ in the
C0(Sn) norm instead of the C1(Sn) norm is true. In fact, Taliaferro and Zhang [9] proved the
following much stronger result.

Theorem A. Let Q ∈ Sn, n ≥ 3, and let ϕ : (0, 1) → (0,∞) and k : Sn → (0, 1] be continuous
functions such that k(Q) = 1 and k is less than 1 on a sequence of points in Sn−{Q} which tends
to Q. Then there exists K ∈ C0(Sn) satisfying k ≤ K ≤ 1 such that (1.4) has a C2 positive solution
in Sn − {Q} satisfying (1.2).

Leung [5] proved a result very similar to Theorem A and he also proved the existence of a
positive Lipschitz continuous function K on Sn, n ≥ 5, such that (1.4) has a C2 positive solution
in Sn − {Q} not satisfying (1.3).

Lin [6] proved that if u is a C2 positive solution of (1.4) in some punctured neighborhood
of some point Q ∈ Sn, where K is a C1 positive function in some neighborhood of Q satisfying
∇K(Q) 6= 0, then u satisfies (1.3). Thus the point Q in Theorem 1 must be a critical point of K

when r
n−2
2 ϕ(r)→∞ as r → 0+.

Since the function u in Theorem 1 satisfies (1.2) where no bound is imposed on the size of ϕ
near 0, one might think that the largest subset of Sn in which u could be a weak positive solution

2



of (1.4) would be Sn − {Q} and therefore the conclusion of Theorem 1 that u is a weak positive
solution in Sn would be impossible. However this is not the case. Indeed, if u is any C2 positive
solution of (1.4) in some punctured neighborhood O of some point Q ∈ Sn then u ∈ Ln∗loc(O∪{Q})
and u is a weak solution of (1.4) in O ∪ {Q}. (See [1, Lemma 2.1] or [4, Lemma 1].)

To prove Theorem 1, choose Q ∈ Sn such that ∇κ(Q) = 0 and let π be the stereographic
projection of Sn onto Rn ∪ {∞} which takes Q to the origin in Rn. It is well-known that u is a
weak positive solution of (1.1) with singular set {Q} if and only if

v(x) :=

(
2

|x|2 + 1

)n−2
2

u(π−1(x)), x ∈ Rn − {0},

is a C2 positive solution of

−∆v = K(x)vn
∗

in Rn − {0}
v(x) = O(|x|2−n) as |x| → ∞
v(x) 6= O(1) as |x| → 0+.

Therefore, in order to prove Theorem 1, it suffices to prove the following theorem concerning the
equation

−∆u = K(x)un
∗

in Rn − {0}, n ≥ 6, (1.5)

where n∗ = (n+ 2)/(n− 2).

Theorem 2. Suppose κ : Rn → R is a C1 function which is bounded between positive constants
and satisfies ∇κ(0) = 0. Let ε be a positive number and let ϕ : (0, 1) → (0,∞) be a continuous
function. Then there exists a C1 function K : Rn → R satisfying ∇K(0) = 0, K(x) = κ(x) for
|x| ≥ ε, K(0) = κ(0), and

‖K − κ‖C1(Rn) < ε (1.6)

such that (1.5) has a C2 positive solution u(x) satisfying

u(x) = O(|x|2−n) as |x| → ∞ (1.7)

and
u(x) 6= O(ϕ(|x|)) as |x| → 0+. (1.8)

Theorem 2 is stronger than Theorem 1 because the function κ : Rn → R in Theorem 2 does
not necessarily come from a function κ ∈ C1(Sn) via the stereographic projection.

We will prove Theorem 2 in the next section.

2 Proof of Theorem 2

For our proof of Theorem 2 we will need the following simple lemma.

Lemma 1. Suppose λ > 1, {ai}Ni=1 ⊂ (0,∞), and a1 ≥ ai for 2 ≤ i ≤ N . Then∑N
i=1 a

λ
i(∑N

i=1 ai

)λ ≤ 1 + a2
a1

1 + λa2a1
< 1.
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Proof. Using the hypothesises of the lemma we have

∑N
i=1 a

λ
i(∑N

i=1 ai

)λ =
1 +

∑N
i=2

(
ai
a1

)λ
(

1 +
∑N

i=2
ai
a1

)λ ≤ 1 +
∑N

i=2
ai
a1

1 + λ
(∑N

i=2
ai
a1

) ≤ 1 + a2
a1

1 + λ
(
a2
a1

) < 1.

Proof of Theorem 2. We can assume 0 < ε < 1, and by scaling (1.5), we can assume κ(0) = 1. Since
∇κ(0) = 0, there exits a C1 positive function κ̂ : Rn → R such that κ̂(x) ≡ 1 in some neighborhood
of the origin, κ̂(x) = κ(x) for |x| ≥ ε, and ‖κ̂ − κ‖C1(Rn) < ε/2. Hence we can assume κ ≡ 1 in
Bδ(0) for some δ ∈ (0, ε). Let

a =
1

2
inf
Rn

κ and b = sup
Rn

κ. (2.1)

Let

w(r, σ) =
[n(n− 2)]

n−2
4 σ

n−2
2

(σ2 + r2)
n−2
2

.

It is well-known that the function V (x) = w(|x|, σ), which is sometimes called a bubble, satisfies
−∆V = V n∗ in Rn for each positive constant σ. Thus letting

ν(x) = w(|x|, 1)/(2b)n/2

we have
−∆ν = (2b)n

∗+1νn
∗

in Rn. (2.2)

As σ → 0+, w(|x|, σ) and each of its partial derivatives with respect to the components of x converge
uniformly to zero on each closed subset of Rn − {0} and w(0, σ) tends to ∞.

Before continuing with the proof of Theorem 2, we roughly explain the idea behind it. If
ui(x) = w(|x−xi|, σi), where {xi}∞i=1 is a sequence of distinct points in Bδ(0)−{0} which tends to
the origin and {σi}∞i=1 is a sequence of positive numbers which tends sufficiently fast to zero, then
the function û :=

∑∞
i=1 ui will be C∞ in Rn − {0}, will satisfy û(x) 6= O(ϕ(|x|)) as |x| → 0+, and

will approximately satisfy

−∆û = κûn
∗

= ûn
∗

in Bδ(0)− {0}.

We will find a positive bounded function u0 : (Rn − {0})→ R such that

u := u0 + û and K :=
−∆u

un∗
(2.3)

satisfy the conclusion of Theorem 2. The function u0 will be obtained as a solution of

−∆u0 = H(x, u0) in Rn − {0} (2.4)

for some appropriate function H : Rn × [0,∞) → R. We will use the method of sub and super-
solutions to solve (2.4), using the identically zero function as a sub-solution. Thus we require that
H be nonnegative.

Also, in order to force K equal to κ for |x| ≥ δ and force K close to κ (at least in the C0 norm),
for 0 < |x| < δ, we will require that K satisfy

k ≤ K ≤ κ in Rn − {0} (2.5)
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for some function k ∈ C1(Rn) which is equal to κ for |x| ≥ δ and close to κ for |x| < δ. Since
−∆ui = un

∗
i , it follows from (2.3) and (2.4) that (2.5) holds if and only if

H(x, u0(x)) ≤ H(x, u0(x)) ≤ H̄(x, u0(x)) for x ∈ Rn − {0},

where H, H̄ : Rn × [0,∞)→ R are defined by

H(x, v) = k(x)

(
v +

∞∑
i=1

ui(x)

)n∗
−
∞∑
i=1

ui(x)n
∗
,

H̄(x, v) = κ(x)

(
v +

∞∑
i=1

ui(x)

)n∗
−
∞∑
i=1

ui(x)n
∗
.

Thus the nonnegative function H in (2.4) will be chosen such that H ≤ H ≤ H̄. After obtaining a
solution u0 of (2.4), we check at the end of the proof that K as defined by (2.3) is C1 in Rn. Only
then does it become clear why we need n ≥ 6. For everything to work out right, the sequences xi
and σi must be chosen very carefully, and a large part of the proof is devoted to explaining how
this choice is made.

We now continue with the proof of Theorem 2. Elementary calculations establish the existence
of numbers δ1 and δ2 satisfying

0 < 2δ2 < δ1 < δ/2 (2.6)

such that

1

2
<
w(|x− x1|, σ)

w(|x− x2|, σ)
< 2 when |x1| = |x2| = δ1, 0 < σ ≤ δ2, and either |x| ≤ δ2 or |x| ≥ δ. (2.7)

Let i0 = i0(n, a) be the smallest integer greater than 2 such that

in
∗−1

0 >
22n

∗+1

(2a)
n∗
n∗−1

. (2.8)

Choose a sequence {xi}∞i=1 of distinct points in Rn and a sequence {ri}∞i=1 of positive numbers
such that

|x1| = |x2| = · · · = |xi0 | = δ1, r1 = r2 = · · · = ri0 = δ2/2 < δ1/4, (2.9)

B4ri(xi) ⊂ Bδ2(0)− {0} for i > i0, (2.10)

lim
i→∞
|xi| = 0, (2.11)

and
B2ri(xi) ∩B2rj (xj) = ∅ for j > i > i0. (2.12)

In addition to (2.9)1, we require that the union of the line segments x1x2, x2x3, . . . , xi0−1xi0 ,
xi0x1 be a regular polygon. Later we will prescribe the perimeter of this polygon.

It follows from (2.6) and (2.9) that

B2ri(xi) ⊂ B2δ1(0)−Bδ2(0) for 1 ≤ i ≤ i0,

and hence by (2.10),

B2ri(xi) ∩B2rj (xj) = ∅ for 1 ≤ i ≤ i0 < j. (2.13)
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Choose a sequence {εi}∞i=1 of positive numbers such that

ε1 = ε2 = · · · = εi0 and εi ≤ 2−i for i ≥ 1. (2.14)

Define three functions f : [0,∞)× (0,∞)× (0,∞)→ R and M,Z : (0, 1)× (0,∞)→ (0,∞) by

f(z, ψ, ζ) = ψ(ζ + z)n
∗ − zn∗ , M(ψ, ζ) =

ψζn
∗(

1− ψ
1

n∗−1

)n∗−1 , and Z(ψ, ζ) =
ζψ

1
n∗−1

1− ψ
1

n∗−1

.

For each fixed (ψ, ζ) ∈ (0, 1) × (0,∞), the function f(·, ψ, ζ) : [0,∞) → R assumes its maximum
value M(ψ, ζ) when z = Z(ψ, ζ). Also, f(·, ψ, ζ) is strictly increasing on the interval [0, Z(ψ, ζ)],
and strictly decreasing on the interval [Z(ψ, ζ),∞). Define f̂ : [0,∞) × (0,∞) × (0,∞) → (0,∞)
by

f̂(z, ψ, ζ) =


f(z, ψ, ζ), if ψ ≥ 1

f(z, ψ, ζ), if 0 < ψ < 1 and 0 ≤ z ≤ Z(ψ, ζ)

M(ψ, ζ), if 0 < ψ < 1 and z ≥ Z(ψ, ζ).

Then f and f̂ are C1, f ≤ f̂ , and f̂ is non-decreasing in z, ψ and ζ.
Let N be the Newtonian potential operator over Rn defined by

(Ng)(x) =
1

(n− 2)nωn

∫
Rn

g(y)

|x− y|n−2
dy

where ωn is the volume of the unit ball in Rn.
We now introduce four sequences of real numbers

ki ∈
(

1

2
, 1

)
, Mi > 3i, ρi ∈ (0, ri), and σi ∈ (0, δ2), i = 1, 2, . . . (2.15)

which will always be related as follows:

Mi =
M(ki, 2ν(0))

(2ν(0))n∗
=

ki(
1− k

1
n∗−1

i

)n∗−1 (2.16)

ρi = sup

{
ρ > 0 : N

(
χB2ρ(xi)

)
≤ ν

2i+1(2ν(0))n∗Mi

}
(2.17)

σi = sup
{
σ > 0 : w(|x− xi|, σ) ≤ εia

1
n∗−1 ν(x) for |x− xi| > ρi

}
(2.18)

where χB2ρ(xi) is the characteristic function of B2ρ(xi). We also always assume that k1 = k2 =
· · · = ki0 and therefore the other three sequences will also always be constant for 1 ≤ i ≤ i0 by
(2.9)1, (2.14)1, and the fact that ρi and σi do not change as xi moves on the sphere |x| = δ1.

Clearly there exist such sequences, and in what follows, we will repeatedly decrease σi for certain
values of i while holding εi fixed. Because we always require (2.16), (2.17), and (2.18) to hold, this
process of decreasing σi will cause ρi to decrease and cause Mi and ki to increase. Nothing else
will change when i > i0. However, when performing this process of decreasing σi, i = 1, 2, . . . , i0
(recall that we always assume σ1 = σ2 = · · · = σi0 and ρ1 = ρ2 = · · · = ρi0), we will change
the location of the points x1, x2, . . . , xi0 as follows: The distance δ1 of the points x1, x2, . . . , xi0
from the origin (see (2.9)) will not change but they will become more bunched together because we
will always require that the union of the line segments x1x2, x2x3, . . . , xi0−1xi0 , xi0x1 be a regular
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i0-gon with side length 4ρ1. Thus the pairwise disjoint balls B2ρi(xi), i = 1, 2, . . . , i0, are like beads
on a bracelet and decreasing σi, i = 1, 2, . . . , i0, causes the circumference of the bracelet, and the
congruent beads on it, to get smaller. In particular,

dist(Bi, Bj) ≥ ρi + ρj (2.19)

for 1 ≤ i < j ≤ i0 where Bj = Bρj (xj). Hence by (2.12), (2.13), and (2.15)3, inequality (2.19) holds
for 1 ≤ i < j. Also, it is easy to check that

min
x∈Bj

w(|x− xj+1|, σj+1)

w(|x− xj−1|, σj−1)
>

(
1

3

)n−2
for 2 ≤ j ≤ i0 − 1 (2.20)

and that a similar inequality holds when j is 1 or i0.
It follows from (2.16), (2.17), and (2.18) that for i ≥ 1 we have

1− ki ∼
1

M
1

n∗−1

i

, Mi ∼
1

2iρ2i
, and ε

2
n−2

i ρ2i ∼ σi. (2.21)

(If S is a finite or infinite set of positive integers, then by the statement αi ∼ βi for i ∈ S we mean
the sequence {αiβi }i∈S is bounded between positive constants which depend at most on n, a, and b,
where a and b are defined by (2.1).)

By sufficiently decreasing each term of the sequence σi (or equivalently by sufficiently increasing
each term of the sequence Mi or ki), we can assume that

σi <

ε 2
n−2

i

2i

 1
α

,
1

M
α

n∗−1

i

< εi, k
n∗
n∗−1

i >
1 +

(
1
3

)n−2
1 + n∗

(
1
3

)n−2 , Mα
i > 2i, for i ≥ 1, (2.22)

where α ∈ (0, 1/2) is an absolute constant to be specified later. (Actually, we will eventually take
α = 1/8, but it makes things clearer to just call it α for now.)

By (2.21) and (2.22)2 we have for 1 ≤ j ≤ i0 that

min
x∈B2ρj

(xj)
Z

k n∗
n∗−1

j ,

i0∑
i=1,i 6=j

w(|x− xi|, σi)


= min

x∈B2ρ1 (x1)
Z

(
k

n∗
n∗−1

1 ,

i0∑
i=2

w(|x− xi|, σi)

)
≥ min

x∈B2ρ1 (x1)
Z

(
k

n∗
n∗−1

1 , w(|x− x2|, σ2)
)

≥ Z
(
k

n∗
n∗−1

1 , w(6ρ2, σ2)

)
∼ 1

1− k1

(
σ1

(6ρ1)2 + σ21

)n−2
2

∼ 1

1− k1

(
σ1
ρ21

)n−2
2

∼ ε1
1− k1

≥ 1

(1− k1)M
α

n∗−1

1

∼M
1−α
n∗−1

1 = M
1−α
n∗−1

j . (2.23)

Thus by sufficiently decreasing each of the equal numbers σ1, . . . , σi0 (or equivalently by sufficiently
increasing each of the equal numbers M1, . . . ,Mi0), we obtain

min
x∈B2ρj

(xj)
Z

k n∗
n∗−1

j ,

i0∑
i=1,i 6=j

w(|x− xi|, σi)

 > ν(0) for 1 ≤ j ≤ i0. (2.24)

7



Also, by (2.21) we have

Z

k n∗
n∗−1

j ,
1

2M
α

n∗−1

j

 ∼ 1

1− kj
1

M
α

n∗−1

j

∼M
1−α
n∗−1

j for j ≥ 1. (2.25)

Hence, by sufficiently decreasing each term of the sequence σj (or equivalently by sufficiently in-
creasing each term of the sequence Mj), we can assume

Z

k n∗
n∗−1

j ,
1

2M
α

n∗−1

j

 > ν(0) for j ≥ 1,

and therefore for j ≥ 1 and |x− xj | ≥ ρj we have by (2.18) that

w(|x− xj |, σj) ≤ w(ρj , σj) ≤ εja
1

n∗−1 ν(0)

< ν(0) < Z

k n∗
n∗−1

j ,
1

2M
α

n∗−1

j

 . (2.26)

It follows from (2.21) that

max
s≥ρj

∣∣∣∣ dds(w(s, σj))

∣∣∣∣ ∼ εj2 j2M 1
2
j < M

1
2
j for j ≥ 1 (2.27)

by (2.14)2.
We obtain from (2.21) that

1− ki
ρi

∼ 2i/2

M
n−4
4

i

→ 0 as i→∞ (2.28)

because n ≥ 6 and Mi > 3i.
Let ψ : [0,∞)→ [0, 1] be a C∞ cut-off function satisfying ψ(t) = 1 for 0 ≤ t ≤ 1 and ψ(t) = 0

for t ≥ 3/2. Define

k(x) = κ(x) +

∞∑
i=1

(ki − κ(x))ψi(x) (2.29)

where ψi(x) = ψ
(
|x−xi|
ρi

)
. Since the functions ψi have disjoint supports contained in B2δ1(0)−{0},

it follows that k is well defined and finite for each x ∈ Rn, k(0) = κ(0) = 1, and k(x) = κ(x) for
|x| ≥ 2δ1. By (2.15)1 and (2.1) we have

inf
Rn

k > a. (2.30)

Since

∇k(x) =

∞∑
i=1

(ki − 1)

ρi
ψ′
(
|x− xi|
ρi

)
x− xi
|x− xi|

for 0 < |x| < δ, (2.31)

it follows from (2.28) that k ∈ C1(Rn) and ∇k(0) = 0.
Letting ui(x) = w(|x− xi|, σi), we obtain from (2.18) and (2.14)2 that

ui ≤ εia
1

n∗−1 ν in Rn −Bi, i ≥ 1, (2.32)
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and
∞∑
i=1

ui ≤ a
1

n∗−1 ν in Rn −
∞⋃
i=1

Bi. (2.33)

Furthermore, by sufficiently decreasing each term of the sequence {σi}∞i=1 and being mindful of the
remark after equation (2.2), we can force the functions ui to satisfy

ui(xi) > iϕ(|xi|) for i ≥ 1, (2.34)
∞∑
i=1

ui ∈ C∞(Rn − {0}),

−∆

( ∞∑
i=1

ui

)
=
∞∑
i=1

un
∗
i in Rn − {0}, (2.35)

and ui + |∇ui| < 2−i in Rn −B2ri(xi), i ≥ 1. Thus by (2.12) and (2.13) we have

ui + |∇ui| < 2−i in B2rj (xj) (2.36)

when i 6= j and either (j > i0 and i ≥ 1) or (1 ≤ j ≤ i0 and i > i0). Similarly, by decreasing
again each term of the subsequence {σi}∞i=i0+1 of {σi}∞i=1, we can also force the functions ui and
the constants Mi to satisfy

∞∑
i=i0+1

ui(x) <
1

2
min

1≤i≤i0
ui(x) for |x| ≥ δ2, (2.37)

∞∑
i=i0+1,i 6=j

ui < u1/2 in B2rj (xj), j > i0, (2.38)

and
1

M
α

n∗−1

j

≤ min
|x|≤δ

u1(x) for j > i0. (2.39)

It follows from (2.36), (2.32), and, (2.27) that

∞∑
i=1,i 6=j

ui + un
∗
i ≤ C in Bj , j ≥ 1, (2.40)

and
∞∑

i=1,i 6=j
|∇ui|+ un

∗−1
i |∇ui| ≤ CM1/2

j in Bj , j ≥ 1, (2.41)

where C is a positive constant depending at most on n, a, and b, whose value may change from

line to line. (By (2.36), inequality (2.41) holds with the factor M
1/2
j omitted, when j > i0.)

By (2.17),

NM̂ < ν/2 in Rn, (2.42)

where

M̂(x) :=


(2ν(0))n

∗
Mi, in Bρi(xi), i ≥ 1

0, in Rn −
∞⋃
i=1

B2ρi(xi)(
2− |x−xi|ρi

)
(2ν(0))n

∗
Mi, in B2ρi(xi)−Bρi(xi), i ≥ 1.
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Since M̂ is locally Lipschitz continuous in Rn − {0} we have v̄ := ν/(2b) + NM̂ ∈ C2(Rn − {0})
and

−∆v̄ = (2b)n
∗
νn
∗

+ M̂ in Rn − {0} (2.43)

by (2.2). It follows from (2.42) that

ν

2b
< v̄ < ν in Rn. (2.44)

Define H : Rn × [0,∞)→ R by

H(x, v) = k(x)

(
v +

∞∑
i=1

ui(x)

)n∗
−
∞∑
i=1

ui(x)n
∗
. (2.45)

Then
H(x, v) = f(U(x), k(x), ζ(x, v)) (2.46)

where

U(x) :=

( ∞∑
i=1

ui(x)n
∗

)1/n∗

and ζ(x, v) := v +
∞∑
i=1

ui(x)− U(x).

Define H : Rn × [0,∞)→ (0,∞) by

H(x, v) = f̂(U(x), k(x), ζ(x, v)). (2.47)

Then

H(x, v) ≤M(k(x), ζ(x, v)) =
k(x)ζ(x, v)n

∗(
1− k(x)

1
n∗−1

)n∗−1 when k(x) < 1 and v ≥ 0. (2.48)

Also H(x, v) = H(x, v) if and only if either k(x) < 1 and U(x) ≤ Z(k(x), ζ(x, v)) or k(x) ≥ 1.
For x ∈ Rn −

⋃∞
i=1Bi and k(x) < 1 we have

U(x) ≤
∞∑
i=1

ui(x) ≤ a
1

n∗−1 ν(x) by (2.33)

≤ ν(x)k(x)
1

n∗−1

1− k(x)
1

n∗−1

by (2.30)

≤ ζ(x, ν(x))k(x)
1

n∗−1

1− k(x)
1

n∗−1

= Z(k(x), ζ(x, ν(x)))

and hence

H(x, ν(x)) = H(x, ν(x)) for x ∈ Rn −
∞⋃
i=1

Bi.

Thus for x ∈ (Rn − {0})−
⋃∞
i=1Bi and 0 ≤ v ≤ ν(x) we have

H(x, v) ≤ H(x, ν(x)) = H(x, ν(x)) ≤ k(x)

(
ν(x) +

∞∑
i=1

ui(x)

)n∗
≤ b(2ν(x))n

∗ ≤ −∆v̄(x), (2.49)
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by (2.33) and (2.43).
Since k(x) ≡ kj < 1 for x ∈ Bj , it follows from (2.48) that for x ∈ Bj and 0 ≤ v ≤ ν(x) we have

H(x, v) ≤ kjζ(x, v)n
∗(

1− k
1

n∗−1

j

)n∗−1
≤Mj(2ν(x))n

∗
by (2.16) and (2.32)

≤Mj(2ν(0))n
∗

= M̂(x) ≤ −∆v̄(x) (2.50)

by (2.43). We therefore obtain from (2.49) that

H(x, v) ≤ −∆v̄(x) for x ∈ Rn − {0} and 0 ≤ v ≤ ν(x).

Hence by (2.44), for each integer i ≥ 2 we can use v ≡ 0 and v̄ as sub and super-solutions of
the problem

−∆v = H(x, v) in
1

i
< |x| < i

v = 0 for |x| = 1

i
or |x| = i

to conclude that this problem has a C2 solution vi satisfying 0 ≤ vi ≤ ν. It follows from standard
elliptic theory that some subsequence of vi converges to a C2 solution u0 of

−∆u0 = H(x, u0)
0 ≤ u0 ≤ ν

}
in Rn − {0}. (2.51)

Define H̄ : Rn×[0,∞)→ (0,∞) by H̄(x, v) = f̂(U(x), κ(x), ζ(x, v)). Then H ≤ H ≤ H̄ because
k ≤ κ. In particular,

H(x, u0(x)) ≤ H(x, u0(x)) ≤ H̄(x, u0(x)) for x ∈ Rn − {0}. (2.52)

Since, for |x| > δ,

U(x)n
∗

=
∞∑
i=1

ui(x)n
∗

≤ i02n
∗
u1(x)n

∗
+ u1(x)n

∗
by (2.7) and (2.37)

≤ i02n
∗+1u1(x)n

∗
=

in
∗

0

in
∗−1

0

2n
∗+1u1(x)n

∗

≤ (2a)
n∗
n∗−1

22n∗+1
in
∗

0 2n
∗+1u1(x)n

∗
by (2.8)

≤ κ(x)
n∗
n∗−1

(
i0
2
u1(x)

)n∗
by (2.1)

≤ κ(x)
n∗
n∗−1

( ∞∑
i=1

ui(x)

)n∗
by (2.7)
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we have for κ(x) < 1 and v ≥ 0 that

U(x) ≤
(
∑∞

i=1 ui(x)− U(x))κ(x)
1

n∗−1

1− κ(x)
1

n∗−1

≤ Z(κ(x), ζ(x, v)).

(Recall, from the first paragraph of this proof, that κ(x) < 1 implies |x| > δ.) Thus, for x ∈ Rn

and v ≥ 0, we have

H̄(x, v) = f(U(x), κ(x), ζ(x, v))

= κ(x)

(
v +

∞∑
i=1

ui(x)

)n∗
−
∞∑
i=1

ui(x)n
∗
,

which together with (2.45), (2.35), (2.51), and (2.52) implies that u := u0+
∑∞

i=1 ui is a C2 positive
solution of

k(x)un
∗ ≤ −∆u ≤ κ(x)un

∗
in Rn − {0}. (2.53)

It follows from (2.34) and (2.11) that u satisfies (1.8). We see from (2.37) and (2.51) that u satisfies
(1.7).

Define K : Rn → (0,∞) by

K(x) =
−∆u(x)

u(x)n∗
for x ∈ Rn − {0} (2.54)

and K(0) = 1. Then

K(x) =

H(x, u0(x)) +
∞∑
i=1

ui(x)n
∗

(
u0(x) +

∞∑
i=1

ui(x)

)n∗ for x ∈ Rn − {0} (2.55)

and hence K ∈ C1(Rn − {0}). It follows from (2.53) and (2.54) that

k(x) ≤ K(x) ≤ κ(x) for x ∈ Rn − {0}. (2.56)

Hence, by the properties of k stated in the paragraph containing inequality (2.30), we have K ∈
C0(Rn),

K(0) = k(0) = κ(0) = 1, ∇K(0) = ∇k(0) = ∇κ(0) = 0, (2.57)

and
K(x) = k(x) = κ(x) for |x| ≥ 2δ1. (2.58)

We now show that K ∈ C1(Rn) by showing that

lim
|x|→0

∇K(x) = 0. (2.59)

Let S = {x ∈ Rn − {0} : H(x, u0(x)) < H(x, u0(x))}. It follows from (2.55) and (2.45) that

S = {x ∈ Rn − {0} : k(x) < K(x)}, (2.60)
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and it follows from (2.46) and (2.47) that

H(x, u0(x)) = M(k(x), ζ0(x))
U(x) > Z(k(x), ζ0(x))

}
for x ∈ S (2.61)

where ζ0(x) := ζ(x, u0(x)). In particular, since k(x) ≥ kj in B2ρj (xj), we have

U(x) > Z(kj , ζ0(x))

= M
1

n∗−1

j ζ0(x) for x ∈ S ∩B2ρj (xj), j ≥ 1. (2.62)

We have by (2.56), (2.60), and (2.57) that

∇k(x) = ∇K(x) for x ∈ Rn − S, (2.63)

and thus (2.59) holds for x ∈ (Rn − {0})− S. We now show the limit (2.59) holds for x ∈ S. For

x ∈ (Rn − {0})−
∞⋃
i=1

B2ρi(xi) we have k(x) = κ(x) and it therefore follows from (2.56) and (2.60)

that x /∈ S. Thus

S ⊂
∞⋃
i=1

B2ρi(xi). (2.64)

For x ∈ S ∩B2ρj (xj) we have by (2.62) that

U(x) >

k
1

n∗−1

j

( ∞∑
i=1

ui(x)− U(x)

)
1− k

1
n∗−1

j

and thus

U(x) ≥ k
1

n∗−1

j

∞∑
i=1

ui(x).

Hence

∞∑
i=1,i 6=j

ui(x)n
∗ ≥ f

uj(x), k
n∗
n∗−1

j ,
∞∑

i=1,i 6=j
ui(x)

 for x ∈ S ∩B2ρj (xj), j ≥ 1. (2.65)

However, for 1 ≤ j ≤ i0 and x ∈ B2ρj (xj) we have∑∞
i=1,i 6=j ui(x)n

∗

f

(
0, k

n∗
n∗−1

j ,
∑∞

i=1,i 6=j ui(x)

) =

∑∞
i=1,i 6=j ui(x)n

∗

k
n∗
n∗−1

j

(∑∞
i=1,i 6=j ui(x)

)n∗ ≤ 1 +
(
1
3

)n−2
k

n∗
n∗−1

j

(
1 + n∗

(
1
3

)n−2) < 1

by (2.37), Lemma 1, (2.20), and (2.22)3. Thus by (2.65) and (2.24),

uj(x) > Z

k n∗
n∗−1

j ,

∞∑
i=1,i 6=j

ui(x)

 > ν(0) for 1 ≤ j ≤ i0 and x ∈ S ∩B2ρj (xj). (2.66)

Hence, by (2.26),
S ∩B2ρj (xj) = S ∩Bj for 1 ≤ j ≤ i0, (2.67)
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and it follows from (2.23) and (2.66) that

uj ≥ CM
1−α
n∗−1

j in S ∩B2ρj (xj), 1 ≤ j ≤ i0, (2.68)

where C is a positive constant depending at most on n, a, and b whose value may change from line
to line.

Also, by (2.38), Lemma 1, and (2.7) we have for x ∈ B2ρj (xj), j > i0, that∑∞
i=1,i 6=j ui(x)n

∗

f

(
0, k

n∗
n∗−1

j ,
∑∞

i=1,i 6=j ui(x)

) =

∑∞
i=1,i 6=j ui(x)n

∗

k
n∗
n∗−1

j

(∑∞
i=1,i 6=j ui(x)

)n∗ ≤ 1 + 1
2

k
n∗
n∗−1

j

(
1 + n∗

2

) < 1

by (2.22)3. Thus, by (2.65) and (2.39),

uj(x) > Z

k n∗
n∗−1

j ,

∞∑
i=1,i 6=j

ui(x)

 > Z

k n∗
n∗−1

j ,
1

2M
α

n∗−1

j

 for x ∈ S ∩B2ρj (xj), j > i0.

Hence it follows from (2.26) and (2.67) that

S ∩B2ρj (xj) = S ∩Bj for j ≥ 1, (2.69)

and it follows from (2.25) and (2.68) that

uj ≥ CM
1−α
n∗−1

j in S ∩B2ρj (xj), j ≥ 1. (2.70)

We see from (2.55) and (2.61) that

K(x) =
Mjζ0(x)n

∗
+ U(x)n

∗

(ζ0(x) + U(x))n∗
=
Mj

(
ζ0(x)
U(x)

)n∗
+ 1(

ζ0(x)
U(x) + 1

)n∗ for x ∈ S ∩Bj , j ≥ 1.

Thus

∇K = n∗

Mj

(
ζ0
U

)n∗−1
− 1(

ζ0
U + 1

)n∗+1

(∇ζ0
U

)
in S ∩Bj , j ≥ 1,

and hence, by (2.62),

|∇K| ≤ n∗
∣∣∣∣∇ζ0U

∣∣∣∣
≤ n∗

∣∣∣∇u0U ∣∣∣+

∣∣∣∣∣∣∣∣∣∇
∞∑

i=1,i 6=j
ui

U

∣∣∣∣∣∣∣∣∣+
∣∣∣∇uj

U

∣∣∣
 in S ∩Bj , j ≥ 1. (2.71)
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We now estimate each of the three terms on the right side of (2.71). Since

∇uj
U

= ∇


∞∑
i=1

un
∗
i

un
∗
j


− 1
n∗

= ∇

1 +

∞∑
i=1,i 6=j

un
∗
i

un
∗
j


− 1
n∗

= − 1

n∗

1 +

∞∑
i=1,i 6=j

un
∗
i

un
∗
j


− 1
n∗−1


∇

∞∑
i=1,i 6=j

un
∗
i

un
∗
j

− n∗
(
∇uj
un
∗+1
j

) ∞∑
i=1,i 6=j

un
∗
i

 ,
it follows from (2.40), (2.41), and (2.70) that

∣∣∣∇uj
U

∣∣∣ ≤ C
 M

1/2
j

M
(1−α)n∗
n∗−1

j

+
|∇uj |
un
∗+1
j

 in S ∩Bj , j ≥ 1. (2.72)

Since, by (2.41) and (2.70),

∣∣∣∣∇ 1

U

∣∣∣∣ =
∣∣∣∇(Un

∗
)−

1
n∗
∣∣∣ =

∣∣∣∣ 1

n∗
(Un

∗
)−

1
n∗−1∇Un∗

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∞∑

i=1,i 6=j
un
∗−1
i ∇ui + un

∗−1
j ∇uj

Un∗+1

∣∣∣∣∣∣∣∣∣
≤ C

 M
1/2
j

M
(1−α)(n∗+1)

n∗−1

j

+
|∇uj |
u2j

 in S ∩Bj , j ≥ 1,

we have by (2.40), (2.41), (2.70), and (2.51) that∣∣∣∣∣∣∣∣∣∇
∞∑

i=1,i 6=j
ui

U

∣∣∣∣∣∣∣∣∣ ≤ C
(∣∣∣∣∇ 1

U

∣∣∣∣+
M

1/2
j

U

)
≤ C

(∣∣∣∣∇ 1

U

∣∣∣∣+
M

1/2
j

uj

)

≤ C

 M
1/2
j

M
1−α
n∗−1

j

+
|∇uj |
u2j

 in S ∩Bj , j ≥ 1 (2.73)

and ∣∣∣∇u0
U

∣∣∣ =

∣∣∣∣∇u0U + u0∇
1

U

∣∣∣∣
≤ C

 |∇u0|
M

1−α
n∗−1

j

+
M

1/2
j

M
(1−α)(n∗+1)

n∗−1

j

+
|∇uj |
u2j

 in S ∩Bj , j ≥ 1. (2.74)

We now estimate ∇u0 in Bj . Since, by (2.51), u0 is bounded and superharmonic in Rn − {0},
it is well known that

u0(x) =
1

(n− 2)nωn

∫
|y|<4

H(y, u0(y))

|x− y|n−2
dy + h(x) for 0 < |x| ≤ 2
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for some continuous function h : B2(0) → R which is harmonic in B2(0). By (2.50), (2.49), and
(2.51),

H(x, u0(x)) ≤

(2ν(0))n
∗
Mj in Bj

b(2ν(0))n
∗

in (Rn − {0})−
∞⋃
i=1

Bi.

It follows therefore from (2.17) and (2.51) that |h(x)| < C for |x| ≤ 2. Thus |∇h(x)| < C for |x| ≤ 1
and hence, for x ∈ Bj , we have

|∇u0(x)| ≤ 1

nωn

∫
|y|<4

H(y, u0(y))

|x− y|n−1
dy + C

≤ C[I1(x) + I2(x) + I3(x)] + C,

where

I1(x) =

∫
Bj

Mj

|x− y|n−1
dy ≤ CMjρj ≤ C

√
Mj for x ∈ Bj

by (2.21), and

I2(x) =

∞∑
i=1,i 6=j

∫
Bi

Mi

|x− y|n−1
dy ≤ C

∞∑
i=1,i 6=j

Miρ
n
i

(dist(Bj , Bi))n−1

≤ C
∞∑

i=1,i 6=j

ρn−2i

2i(ρi + ρj)n−1
≤ C

ρj
∼ C2j/2

√
Mj ≤ CMα+1/2

j for x ∈ Bj

by (2.21), (2.19), and (2.22)4, and

I3(x) =

∫
B4(0)−

∞⋃
i=1

Bi

1

|x− y|n−1
dy ≤ C for x ∈ Bj .

Thus
|∇u0| < CM

α+1/2
j in Bj , j ≥ 1. (2.75)

Since n ≥ 6, we have n∗ − 1 ≤ 1 and it therefore follows from (2.75) that

|∇u0|

M
1−α
n∗−1

j

≤
CM

α+1/2
j

M1−α
j

=
C

M
1/2−2α
j

in Bj , j ≥ 1. (2.76)

In order to estimate |∇uj |/u2j in S ∩Bj , let

sj = inf{s > 0: S ∩Bj ⊂ Bs(xj)}

and ûj(s) = w(s, σj). Then sj ≤ ρj and ûj(s) = uj(x) when |x− xj | = s. Also, by (2.70) we have

ûj(s) ≥ CM
1−α
n∗−1

j for 0 ≤ s ≤ sj , j ≥ 1.

It follows therefore from (2.21) that(
σj

σ2j + s2j

)2

≥ Cûj(sj)n
∗−1 ≥ CM1−α

j ≥ C

ε 2
n−2

j

2jσj

1−α
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and thus by (2.22)1 we have

sj ≤ C

 2j

ε
2

n−2

j

 1
4

σ
3−α
4

j ≤ Cσ
3−2α

4
j for j ≥ 1. (2.77)

Also, for 0 ≤ s ≤ sj and j ≥ 1, we have

−û′j(s)
ûj(s)2

=
(n− 2)

[n(n− 2)]
n−2
4

s(σ2j + s2)
n−4
2

σ
n−2
2

j

≤ (n− 2)

[n(n− 2)]
n−2
4

sj(σ
2
j + s2j )

n−4
2

σ
n−2
2

j

≤ C
σ

3−2α
4

j

(
σ2j + σ

3−2α
2

j

)n−4
2

σ
n−2
2

j

by (2.77)

≤ C
σ

3−2α
4

j σ
(3−2α)(n−4)

4
j

σ
n−2
2

j

= Cσ
n−5−2α(n−3)

4
j ≤ Cσ

1−6α
4

j (2.78)

because n ≥ 6 and α < 1/2. Thus taking α = 1/8, it follows from (2.76) and (2.78) that

|∇u0|

M
1−α
n∗−1

j

≤ C

M
1/4
j

in Bj , j ≥ 1,

and
|∇uj |
u2j

≤ Cσ1/16j in S ∩Bj , j ≥ 1,

and hence, by (2.71), (2.72), (2.73), and (2.74), we have

|∇K| ≤ C

(
1

M
1/4
j

+ σ
1/16
j

)
in S ∩Bj , j ≥ 1. (2.79)

We see therefore from (2.22), (2.69), and (2.64) that the limit (2.59) holds for x ∈ S. However, we
have already shown that the limit (2.59) holds for x ∈ (Rn−{0})− S. Thus the limit (2.59) holds
with no restriction on x, and hence K ∈ C1(Rn).

By sufficiently decreasing σi for each i ≥ 1, we can force k to satisfy

‖k − κ‖C1(Rn) <
ε

4
(2.80)

by (2.28), (2.29), (2.31), (2.57), and (2.58); and we can therefore also force K to satisfy

|∇(K − k)| = |∇(K − (k − κ))| ≤ |∇K|+ ε

4
≤ ε

2
in

∞⋃
j=1

(S ∩B2ρj (xj)) = S

by (2.79), (2.69), and (2.64). Thus by (2.63), |∇(K − k)| < ε
2 in Rn. It therefore follows from

(2.56) and (2.80) that K satisfies (1.6).
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