Existence of Large Singular Solutions of Conformal Scalar Curvature Equations in S^{n}

Steven D. Taliaferro
Mathematics Department
Texas A\&M University
College Station, TX 77843-3368
stalia@math.tamu.edu

Abstract

We prove that every positive function in $C^{1}\left(S^{n}\right), n \geq 6$, can be approximated in the $C^{1}\left(S^{n}\right)$ norm by a positive function $K \in C^{1}\left(S^{n}\right)$ such that the conformal scalar curvature equation $$
\begin{equation*} -\Delta u+\frac{n(n-2)}{4} u=K u^{\frac{n+2}{n-2}} \quad \text { in } \quad S^{n} \tag{0.1} \end{equation*}
$$ has a weak positive solution u whose singular set consists of a single point. Moreover, we prove there does not exist an apriori bound on the rate at which such a solution u blows up at its singular point.

Our result is in contrast to a result of Caffarelli, Gidas, and Spruck which states that equation (0.1), with K identically a positive constant in $S^{n}, n \geq 3$, does not have a weak positive solution u whose singular set consists of a single point.

1 Introduction and statement of results

In this paper we study the existence of positive functions $K \in C^{1}\left(S^{n}\right)$ such that the conformal scalar curvature equation

$$
\begin{equation*}
-\Delta u+\frac{n(n-2)}{4} u=K u^{n^{*}} \quad \text { in } \quad S^{n}, n \geq 3 \tag{1.1}
\end{equation*}
$$

has a weak positive solution u whose singular set consists of a single point, where $n^{*}=(n+2) /(n-2)$. Moreover, given any large continuous function $\varphi:(0,1) \rightarrow(0, \infty)$, we investigate when such a solution u can be required to satisfy

$$
\begin{equation*}
u(P) \neq O(\varphi(|P-Q|)) \quad \text { as } \quad P \rightarrow Q, \tag{1.2}
\end{equation*}
$$

where $\{Q\}$ is the singular set of u.
By a weak positive solution u of (1.1), we mean a positive function $u \in L^{n^{*}}\left(S^{n}\right)$ such that

$$
-\int_{S^{n}} u \Delta \zeta+\frac{n(n-2)}{4} \int_{S^{n}} u \zeta=\int_{S^{n}} K u^{n^{*}} \zeta \quad \text { for all } \quad \zeta \in C^{\infty}\left(S^{n}\right)
$$

By the singular set of a weak positive solution u of (1.1), we mean the set of all points Q in S^{n} such that u is unbounded in every neighborhood of Q. If Q does not belong to the singular set of a weak positive soluton u of (1.1), then, by standard elliptic theory, u is C^{2} in a neighborhood of Q.

Our main result is the following theorem.

Theorem 1. Let $\varphi:(0,1) \rightarrow(0, \infty)$ be a continuous function. Then every positive function $\kappa \in$ $C^{1}\left(S^{n}\right)$, $n \geq 6$, can be approximated in the $C^{1}\left(S^{n}\right)$ norm by a positive function $K \in C^{1}\left(S^{n}\right)$ such that for some $Q \in S^{n}$ there exists a weak positive solution u of (1.1) and (1.2) whose singular set is $\{Q\}$. Furthermore, given a positive number ε, the function K can also be required to satisfy $K(P)=\kappa(P)$ for $|P-Q| \geq \varepsilon$.

Theorem 1 is in contrast to a result of Caffarelli, Gidas, and Spruck [1] which states that equation (1.1) with K identically a positive constant in $S^{n}, n \geq 3$, does not have a weak positive solution whose singular set consists of a single point. Moreover, the conclusion of Theorem 1 that the function u can be required to satisfy (1.2) is in contrast to another result of theirs which states that a C^{2} positive solution of

$$
-\Delta u+\frac{n(n-2)}{4} u=u^{n^{*}}
$$

in a punctured neighborhood of some point Q in S^{n} must satisfy

$$
\begin{equation*}
u(P)=O\left(|P-Q|^{\frac{-(n-2)}{2}}\right) \quad \text { as } \quad P \rightarrow Q \tag{1.3}
\end{equation*}
$$

When K is identically a positive constant in S^{n}, Schoen [8] proved the existence of a weak positive solution of (1.1) whose singular set is any prescribed finite subset of S^{n} consisting of at least two points, and Chen and Lin [2] proved, when $n \geq 9$, the existence of a weak positive solution of (1.1) whose singular set is S^{n}. Later, Mazzeo and Pacard [7] gave another proof of Schoen's result.

Theorem 1 is not true when n is 3 or 4 because if u is a C^{2} positive solution of

$$
\begin{equation*}
-\Delta u+\frac{n(n-2)}{4} u=K u^{n^{*}} \tag{1.4}
\end{equation*}
$$

in some punctured neighborhood of some point $Q \in S^{n}$, then Chen and Lin [3] proved that u satisfies (1.3) when $n=3$ and K is positive and Hölder continuous with exponent $\alpha>1 / 2$ in some neighborhood of Q, and Taliaferro and Zhang [10] proved that u satisfies (1.3) when $n=4$ and K is positive and C^{1} in some neighborhood of Q. An open question is whether Theorem 1 is true when $n=5$.

When $\kappa \equiv 1$ in $S^{n}, n \geq 3$, the analog of Theorem 1 concerning the approximation of κ in the $C^{0}\left(S^{n}\right)$ norm instead of the $C^{1}\left(S^{n}\right)$ norm is true. In fact, Taliaferro and Zhang [9] proved the following much stronger result.
Theorem A. Let $Q \in S^{n}, n \geq 3$, and let $\varphi:(0,1) \rightarrow(0, \infty)$ and $k: S^{n} \rightarrow(0,1]$ be continuous functions such that $k(Q)=1$ and k is less than 1 on a sequence of points in $S^{n}-\{Q\}$ which tends to Q. Then there exists $K \in C^{0}\left(S^{n}\right)$ satisfying $k \leq K \leq 1$ such that (1.4) has a C^{2} positive solution in $S^{n}-\{Q\}$ satisfying (1.2).

Leung [5] proved a result very similar to Theorem A and he also proved the existence of a positive Lipschitz continuous function K on $S^{n}, n \geq 5$, such that (1.4) has a C^{2} positive solution in $S^{n}-\{Q\}$ not satisfying (1.3).

Lin [6] proved that if u is a C^{2} positive solution of (1.4) in some punctured neighborhood of some point $Q \in S^{n}$, where K is a C^{1} positive function in some neighborhood of Q satisfying $\nabla K(Q) \neq 0$, then u satisfies (1.3). Thus the point Q in Theorem 1 must be a critical point of K when $r^{\frac{n-2}{2}} \varphi(r) \rightarrow \infty$ as $r \rightarrow 0^{+}$.

Since the function u in Theorem 1 satisfies (1.2) where no bound is imposed on the size of φ near 0 , one might think that the largest subset of S^{n} in which u could be a weak positive solution
of (1.4) would be $S^{n}-\{Q\}$ and therefore the conclusion of Theorem 1 that u is a weak positive solution in S^{n} would be impossible. However this is not the case. Indeed, if u is any C^{2} positive solution of (1.4) in some punctured neighborhood \mathcal{O} of some point $Q \in S^{n}$ then $u \in L_{\text {loc }}^{n^{*}}(\mathcal{O} \cup\{Q\})$ and u is a weak solution of (1.4) in $\mathcal{O} \cup\{Q\}$. (See [1, Lemma 2.1] or [4, Lemma 1].)

To prove Theorem 1, choose $Q \in S^{n}$ such that $\nabla \kappa(Q)=0$ and let π be the stereographic projection of S^{n} onto $\mathbf{R}^{n} \cup\{\infty\}$ which takes Q to the origin in \mathbf{R}^{n}. It is well-known that u is a weak positive solution of (1.1) with singular set $\{Q\}$ if and only if

$$
v(x):=\left(\frac{2}{|x|^{2}+1}\right)^{\frac{n-2}{2}} u\left(\pi^{-1}(x)\right), \quad x \in \mathbf{R}^{n}-\{0\}
$$

is a C^{2} positive solution of

$$
\begin{aligned}
-\Delta v & =K(x) v^{n^{*}} \quad \text { in } \quad \mathbf{R}^{n}-\{0\} \\
v(x) & =O\left(|x|^{2-n}\right) \quad \text { as } \quad|x| \rightarrow \infty \\
v(x) & \neq O(1) \quad \text { as } \quad|x| \rightarrow 0^{+}
\end{aligned}
$$

Therefore, in order to prove Theorem 1, it suffices to prove the following theorem concerning the equation

$$
\begin{equation*}
-\Delta u=K(x) u^{n^{*}} \quad \text { in } \quad \mathbf{R}^{n}-\{0\}, \quad n \geq 6 \tag{1.5}
\end{equation*}
$$

where $n^{*}=(n+2) /(n-2)$.
Theorem 2. Suppose $\kappa: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a C^{1} function which is bounded between positive constants and satisfies $\nabla \kappa(0)=0$. Let ε be a positive number and let $\varphi:(0,1) \rightarrow(0, \infty)$ be a continuous function. Then there exists a C^{1} function $K: \mathbf{R}^{n} \rightarrow \mathbf{R}$ satisfying $\nabla K(0)=0, K(x)=\kappa(x)$ for $|x| \geq \varepsilon, K(0)=\kappa(0)$, and

$$
\begin{equation*}
\|K-\kappa\|_{C^{1}\left(\mathbf{R}^{n}\right)}<\varepsilon \tag{1.6}
\end{equation*}
$$

such that (1.5) has a C^{2} positive solution $u(x)$ satisfying

$$
\begin{equation*}
u(x)=O\left(|x|^{2-n}\right) \quad \text { as } \quad|x| \rightarrow \infty \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
u(x) \neq O(\varphi(|x|)) \quad \text { as } \quad|x| \rightarrow 0^{+} \tag{1.8}
\end{equation*}
$$

Theorem 2 is stronger than Theorem 1 because the function $\kappa: \mathbf{R}^{n} \rightarrow \mathbf{R}$ in Theorem 2 does not necessarily come from a function $\kappa \in C^{1}\left(S^{n}\right)$ via the stereographic projection.

We will prove Theorem 2 in the next section.

2 Proof of Theorem 2

For our proof of Theorem 2 we will need the following simple lemma.
Lemma 1. Suppose $\lambda>1,\left\{a_{i}\right\}_{i=1}^{N} \subset(0, \infty)$, and $a_{1} \geq a_{i}$ for $2 \leq i \leq N$. Then

$$
\frac{\sum_{i=1}^{N} a_{i}^{\lambda}}{\left(\sum_{i=1}^{N} a_{i}\right)^{\lambda}} \leq \frac{1+\frac{a_{2}}{a_{1}}}{1+\lambda \frac{a_{2}}{a_{1}}}<1
$$

Proof. Using the hypothesises of the lemma we have

$$
\frac{\sum_{i=1}^{N} a_{i}^{\lambda}}{\left(\sum_{i=1}^{N} a_{i}\right)^{\lambda}}=\frac{1+\sum_{i=2}^{N}\left(\frac{a_{i}}{a_{1}}\right)^{\lambda}}{\left(1+\sum_{i=2}^{N} \frac{a_{i}}{a_{1}}\right)^{\lambda}} \leq \frac{1+\sum_{i=2}^{N} \frac{a_{i}}{a_{1}}}{1+\lambda\left(\sum_{i=2}^{N} \frac{a_{i}}{a_{1}}\right)} \leq \frac{1+\frac{a_{2}}{a_{1}}}{1+\lambda\left(\frac{a_{2}}{a_{1}}\right)}<1 .
$$

Proof of Theorem 2. We can assume $0<\varepsilon<1$, and by scaling (1.5), we can assume $\kappa(0)=1$. Since $\nabla \kappa(0)=0$, there exits a C^{1} positive function $\hat{\kappa}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $\hat{\kappa}(x) \equiv 1$ in some neighborhood of the origin, $\hat{\kappa}(x)=\kappa(x)$ for $|x| \geq \varepsilon$, and $\|\hat{\kappa}-\kappa\|_{C^{1}\left(\mathbf{R}^{n}\right)}<\varepsilon / 2$. Hence we can assume $\kappa \equiv 1$ in $B_{\delta}(0)$ for some $\delta \in(0, \varepsilon)$. Let

$$
\begin{equation*}
a=\frac{1}{2} \inf _{\mathbf{R}^{n}} \kappa \quad \text { and } \quad b=\sup _{\mathbf{R}^{n}} \kappa . \tag{2.1}
\end{equation*}
$$

Let

$$
w(r, \sigma)=\frac{[n(n-2)]^{\frac{n-2}{4}} \sigma^{\frac{n-2}{2}}}{\left(\sigma^{2}+r^{2}\right)^{\frac{n-2}{2}}} .
$$

It is well-known that the function $V(x)=w(|x|, \sigma)$, which is sometimes called a bubble, satisfies $-\Delta V=V^{n^{*}}$ in \mathbf{R}^{n} for each positive constant σ. Thus letting

$$
\nu(x)=w(|x|, 1) /(2 b)^{n / 2}
$$

we have

$$
\begin{equation*}
-\Delta \nu=(2 b)^{n^{*}+1} \nu^{n^{*}} \quad \text { in } \quad \mathbf{R}^{n} . \tag{2.2}
\end{equation*}
$$

As $\sigma \rightarrow 0^{+}, w(|x|, \sigma)$ and each of its partial derivatives with respect to the components of x converge uniformly to zero on each closed subset of $\mathbf{R}^{n}-\{0\}$ and $w(0, \sigma)$ tends to ∞.

Before continuing with the proof of Theorem 2, we roughly explain the idea behind it. If $u_{i}(x)=w\left(\left|x-x_{i}\right|, \sigma_{i}\right)$, where $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a sequence of distinct points in $B_{\delta}(0)-\{0\}$ which tends to the origin and $\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ is a sequence of positive numbers which tends sufficiently fast to zero, then the function $\hat{u}:=\sum_{i=1}^{\infty} u_{i}$ will be C^{∞} in $\mathbf{R}^{n}-\{0\}$, will satisfy $\hat{u}(x) \neq O(\varphi(|x|))$ as $|x| \rightarrow 0^{+}$, and will approximately satisfy

$$
-\Delta \hat{u}=\kappa \hat{u}^{n^{*}}=\hat{u}^{n^{*}} \quad \text { in } \quad B_{\delta}(0)-\{0\} .
$$

We will find a positive bounded function $u_{0}:\left(\mathbf{R}^{n}-\{0\}\right) \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
u:=u_{0}+\hat{u} \quad \text { and } \quad K:=\frac{-\Delta u}{u^{n^{*}}} \tag{2.3}
\end{equation*}
$$

satisfy the conclusion of Theorem 2. The function u_{0} will be obtained as a solution of

$$
\begin{equation*}
-\Delta u_{0}=H\left(x, u_{0}\right) \quad \text { in } \quad \mathbf{R}^{n}-\{0\} \tag{2.4}
\end{equation*}
$$

for some appropriate function $H: \mathbf{R}^{n} \times[0, \infty) \rightarrow \mathbf{R}$. We will use the method of sub and supersolutions to solve (2.4), using the identically zero function as a sub-solution. Thus we require that H be nonnegative.

Also, in order to force K equal to κ for $|x| \geq \delta$ and force K close to κ (at least in the C^{0} norm), for $0<|x|<\delta$, we will require that K satisfy

$$
\begin{equation*}
k \leq K \leq \kappa \quad \text { in } \quad \mathbf{R}^{n}-\{0\} \tag{2.5}
\end{equation*}
$$

for some function $k \in C^{1}\left(\mathbf{R}^{n}\right)$ which is equal to κ for $|x| \geq \delta$ and close to κ for $|x|<\delta$. Since $-\Delta u_{i}=u_{i}^{n^{*}}$, it follows from (2.3) and (2.4) that (2.5) holds if and only if

$$
\underline{H}\left(x, u_{0}(x)\right) \leq H\left(x, u_{0}(x)\right) \leq \bar{H}\left(x, u_{0}(x)\right) \quad \text { for } \quad x \in \mathbf{R}^{n}-\{0\},
$$

where $\underline{H}, \bar{H}: \mathbf{R}^{n} \times[0, \infty) \rightarrow \mathbf{R}$ are defined by

$$
\begin{aligned}
& \underline{H}(x, v)=k(x)\left(v+\sum_{i=1}^{\infty} u_{i}(x)\right)^{n^{*}}-\sum_{i=1}^{\infty} u_{i}(x)^{n^{*}} \\
& \bar{H}(x, v)=\kappa(x)\left(v+\sum_{i=1}^{\infty} u_{i}(x)\right)^{n^{*}}-\sum_{i=1}^{\infty} u_{i}(x)^{n^{*}}
\end{aligned}
$$

Thus the nonnegative function H in (2.4) will be chosen such that $\underline{H} \leq H \leq \bar{H}$. After obtaining a solution u_{0} of (2.4), we check at the end of the proof that K as defined by (2.3) is C^{1} in \mathbf{R}^{n}. Only then does it become clear why we need $n \geq 6$. For everything to work out right, the sequences x_{i} and σ_{i} must be chosen very carefully, and a large part of the proof is devoted to explaining how this choice is made.

We now continue with the proof of Theorem 2. Elementary calculations establish the existence of numbers δ_{1} and δ_{2} satisfying

$$
\begin{equation*}
0<2 \delta_{2}<\delta_{1}<\delta / 2 \tag{2.6}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{1}{2}<\frac{w\left(\left|x-x_{1}\right|, \sigma\right)}{w\left(\left|x-x_{2}\right|, \sigma\right)}<2 \quad \text { when }\left|x_{1}\right|=\left|x_{2}\right|=\delta_{1}, 0<\sigma \leq \delta_{2}, \text { and either }|x| \leq \delta_{2} \text { or }|x| \geq \delta . \tag{2.7}
\end{equation*}
$$

Let $i_{0}=i_{0}(n, a)$ be the smallest integer greater than 2 such that

$$
\begin{equation*}
i_{0}^{n^{*}-1}>\frac{2^{2 n^{*}+1}}{(2 a)^{\frac{n^{*}}{n^{*}-1}}} . \tag{2.8}
\end{equation*}
$$

Choose a sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ of distinct points in \mathbf{R}^{n} and a sequence $\left\{r_{i}\right\}_{i=1}^{\infty}$ of positive numbers such that

$$
\begin{align*}
\left|x_{1}\right|=\left|x_{2}\right|=\cdots=\left|x_{i_{0}}\right|= & \delta_{1}, \quad r_{1}=r_{2}=\cdots=r_{i_{0}}=\delta_{2} / 2<\delta_{1} / 4, \tag{2.9}\\
B_{4 r_{i}}\left(x_{i}\right) \subset & B_{\delta_{2}}(0)-\{0\} \text { for } i>i_{0}, \tag{2.10}\\
& \lim _{i \rightarrow \infty}\left|x_{i}\right|=0, \tag{2.11}
\end{align*}
$$

and

$$
\begin{equation*}
\overline{B_{2 r_{i}}\left(x_{i}\right)} \cap \overline{B_{2 r_{j}}\left(x_{j}\right)}=\emptyset \quad \text { for } \quad j>i>i_{0} . \tag{2.12}
\end{equation*}
$$

In addition to $(2.9)_{1}$, we require that the union of the line segments $\overline{x_{1} x_{2}}, \overline{x_{2} x_{3}}, \ldots, \overline{x_{i_{0}-1} x_{i_{0}}}$, $\overline{x_{0} x_{1}}$ be a regular polygon. Later we will prescribe the perimeter of this polygon.

It follows from (2.6) and (2.9) that

$$
\overline{B_{2 r_{i}}\left(x_{i}\right)} \subset B_{2 \delta_{1}}(0)-\overline{B_{\delta_{2}}(0)} \quad \text { for } \quad 1 \leq i \leq i_{0},
$$

and hence by (2.10),

$$
\begin{equation*}
\overline{B_{2 r_{i}}\left(x_{i}\right)} \cap \overline{B_{2 r_{j}}\left(x_{j}\right)}=\emptyset \quad \text { for } \quad 1 \leq i \leq i_{0}<j . \tag{2.13}
\end{equation*}
$$

Choose a sequence $\left\{\varepsilon_{i}\right\}_{i=1}^{\infty}$ of positive numbers such that

$$
\begin{equation*}
\varepsilon_{1}=\varepsilon_{2}=\cdots=\varepsilon_{i_{0}} \quad \text { and } \quad \varepsilon_{i} \leq 2^{-i} \quad \text { for } \quad i \geq 1 \tag{2.14}
\end{equation*}
$$

Define three functions $f:[0, \infty) \times(0, \infty) \times(0, \infty) \rightarrow \mathbf{R}$ and $M, Z:(0,1) \times(0, \infty) \rightarrow(0, \infty)$ by

$$
f(z, \psi, \zeta)=\psi(\zeta+z)^{n^{*}}-z^{n^{*}}, \quad M(\psi, \zeta)=\frac{\psi \zeta^{n^{*}}}{\left(1-\psi^{\frac{1}{n^{*}-1}}\right)^{n^{*}-1}}, \quad \text { and } \quad Z(\psi, \zeta)=\frac{\zeta \psi^{\frac{1}{n^{*}-1}}}{1-\psi^{\frac{1}{n^{*}-1}}}
$$

For each fixed $(\psi, \zeta) \in(0,1) \times(0, \infty)$, the function $f(\cdot, \psi, \zeta):[0, \infty) \rightarrow \mathbf{R}$ assumes its maximum value $M(\psi, \zeta)$ when $z=Z(\psi, \zeta)$. Also, $f(\cdot, \psi, \zeta)$ is strictly increasing on the interval $[0, Z(\psi, \zeta)]$, and strictly decreasing on the interval $[Z(\psi, \zeta), \infty)$. Define $\hat{f}:[0, \infty) \times(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ by

$$
\hat{f}(z, \psi, \zeta)= \begin{cases}f(z, \psi, \zeta), & \text { if } \psi \geq 1 \\ f(z, \psi, \zeta), & \text { if } 0<\psi<1 \text { and } 0 \leq z \leq Z(\psi, \zeta) \\ M(\psi, \zeta), & \text { if } 0<\psi<1 \text { and } z \geq Z(\psi, \zeta)\end{cases}
$$

Then f and \hat{f} are $C^{1}, f \leq \hat{f}$, and \hat{f} is non-decreasing in z, ψ and ζ.
Let N be the Newtonian potential operator over \mathbf{R}^{n} defined by

$$
(N g)(x)=\frac{1}{(n-2) n \omega_{n}} \int_{\mathbf{R}^{n}} \frac{g(y)}{|x-y|^{n-2}} d y
$$

where ω_{n} is the volume of the unit ball in \mathbf{R}^{n}.
We now introduce four sequences of real numbers

$$
\begin{equation*}
k_{i} \in\left(\frac{1}{2}, 1\right), \quad M_{i}>3^{i}, \quad \rho_{i} \in\left(0, r_{i}\right), \quad \text { and } \quad \sigma_{i} \in\left(0, \delta_{2}\right), \quad i=1,2, \ldots \tag{2.15}
\end{equation*}
$$

which will always be related as follows:

$$
\begin{gather*}
M_{i}=\frac{M\left(k_{i}, 2 \nu(0)\right)}{(2 \nu(0))^{n^{*}}}=\frac{k_{i}}{\left(1-k_{i}^{\frac{1}{n^{*}-1}}\right)^{n^{*}-1}} \tag{2.16}\\
\rho_{i}=\sup \left\{\rho>0: N\left(\chi_{B_{2 \rho}\left(x_{i}\right)}\right) \leq \frac{\nu}{2^{i+1}(2 \nu(0))^{n^{*}} M_{i}}\right\} \tag{2.17}\\
\sigma_{i}=\sup \left\{\sigma>0: w\left(\left|x-x_{i}\right|, \sigma\right) \leq \varepsilon_{i} a^{\frac{1}{n^{*}-1}} \nu(x) \quad \text { for } \quad\left|x-x_{i}\right|>\rho_{i}\right\} \tag{2.18}
\end{gather*}
$$

where $\chi_{B_{2 \rho}\left(x_{i}\right)}$ is the characteristic function of $B_{2 \rho}\left(x_{i}\right)$. We also always assume that $k_{1}=k_{2}=$ $\cdots=k_{i_{0}}$ and therefore the other three sequences will also always be constant for $1 \leq i \leq i_{0}$ by $(2.9)_{1},(2.14)_{1}$, and the fact that ρ_{i} and σ_{i} do not change as x_{i} moves on the sphere $|x|=\delta_{1}$.

Clearly there exist such sequences, and in what follows, we will repeatedly decrease σ_{i} for certain values of i while holding ε_{i} fixed. Because we always require (2.16), (2.17), and (2.18) to hold, this process of decreasing σ_{i} will cause ρ_{i} to decrease and cause M_{i} and k_{i} to increase. Nothing else will change when $i>i_{0}$. However, when performing this process of decreasing $\sigma_{i}, i=1,2, \ldots, i_{0}$ (recall that we always assume $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{i_{0}}$ and $\rho_{1}=\rho_{2}=\cdots=\rho_{i_{0}}$), we will change the location of the points $x_{1}, x_{2}, \ldots, x_{i_{0}}$ as follows: The distance δ_{1} of the points $x_{1}, x_{2}, \ldots, x_{i_{0}}$ from the origin (see (2.9)) will not change but they will become more bunched together because we will always require that the union of the line segments $\overline{x_{1} x_{2}}, \overline{x_{2} x_{3}}, \ldots, \overline{x_{i_{0}-1} x_{i_{0}}}, \overline{x_{i_{0}} x_{1}}$ be a regular
i_{0}-gon with side length $4 \rho_{1}$. Thus the pairwise disjoint balls $B_{2 \rho_{i}}\left(x_{i}\right), i=1,2, \ldots, i_{0}$, are like beads on a bracelet and decreasing $\sigma_{i}, i=1,2, \ldots, i_{0}$, causes the circumference of the bracelet, and the congruent beads on it, to get smaller. In particular,

$$
\begin{equation*}
\operatorname{dist}\left(B_{i}, B_{j}\right) \geq \rho_{i}+\rho_{j} \tag{2.19}
\end{equation*}
$$

for $1 \leq i<j \leq i_{0}$ where $B_{j}=B_{\rho_{j}}\left(x_{j}\right)$. Hence by (2.12), (2.13), and (2.15) $)_{3}$, inequality (2.19) holds for $1 \leq i<j$. Also, it is easy to check that

$$
\begin{equation*}
\min _{x \in B_{j}} \frac{w\left(\left|x-x_{j+1}\right|, \sigma_{j+1}\right)}{w\left(\left|x-x_{j-1}\right|, \sigma_{j-1}\right)}>\left(\frac{1}{3}\right)^{n-2} \quad \text { for } \quad 2 \leq j \leq i_{0}-1 \tag{2.20}
\end{equation*}
$$

and that a similar inequality holds when j is 1 or i_{0}.
It follows from (2.16), (2.17), and (2.18) that for $i \geq 1$ we have

$$
\begin{equation*}
1-k_{i} \sim \frac{1}{M_{i}^{\frac{1}{n^{*}-1}}}, \quad M_{i} \sim \frac{1}{2^{i} \rho_{i}^{2}}, \quad \text { and } \quad \varepsilon_{i}^{\frac{2}{n-2}} \rho_{i}^{2} \sim \sigma_{i} . \tag{2.21}
\end{equation*}
$$

(If \mathcal{S} is a finite or infinite set of positive integers, then by the statement $\alpha_{i} \sim \beta_{i}$ for $i \in \mathcal{S}$ we mean the sequence $\left\{\frac{\alpha_{i}}{\beta_{i}}\right\}_{i \in \mathcal{S}}$ is bounded between positive constants which depend at most on n, a, and b, where a and b are defined by (2.1).)

By sufficiently decreasing each term of the sequence σ_{i} (or equivalently by sufficiently increasing each term of the sequence M_{i} or k_{i}), we can assume that

$$
\begin{equation*}
\sigma_{i}<\left(\frac{\varepsilon_{i}^{\frac{2}{n-2}}}{2^{i}}\right)^{\frac{1}{\alpha}}, \quad \frac{1}{M_{i}^{\frac{\alpha}{n^{*}-1}}}<\varepsilon_{i}, \quad k_{i}^{\frac{n^{*}}{n^{*}-1}}>\frac{1+\left(\frac{1}{3}\right)^{n-2}}{1+n^{*}\left(\frac{1}{3}\right)^{n-2}}, \quad M_{i}^{\alpha}>2^{i}, \quad \text { for } i \geq 1, \tag{2.22}
\end{equation*}
$$

where $\alpha \in(0,1 / 2)$ is an absolute constant to be specified later. (Actually, we will eventually take $\alpha=1 / 8$, but it makes things clearer to just call it α for now.)

By (2.21) and $(2.22)_{2}$ we have for $1 \leq j \leq i_{0}$ that

$$
\begin{array}{rl}
\min _{x \in B_{2 \rho_{j}}\left(x_{j}\right)} Z & Z\left(k_{j}^{\frac{n^{*}}{n^{*}-1}}, \sum_{i=1, i \neq j}^{i_{0}} w\left(\left|x-x_{i}\right|, \sigma_{i}\right)\right) \\
& =\min _{x \in B_{2 \rho_{1}}\left(x_{1}\right)} Z\left(k_{1}^{\frac{n^{*}}{n^{*}-1}}, \sum_{i=2}^{i_{0}} w\left(\left|x-x_{i}\right|, \sigma_{i}\right)\right) \geq \min _{x \in B_{2 \rho_{1}}\left(x_{1}\right)} Z\left(k_{1}^{\frac{n^{*}}{n^{*}-1}}, w\left(\left|x-x_{2}\right|, \sigma_{2}\right)\right) \\
& \geq Z\left(k_{1}^{\frac{n^{*}}{n^{*}-1}}, w\left(6 \rho_{2}, \sigma_{2}\right)\right) \sim \frac{1}{1-k_{1}}\left(\frac{\sigma_{1}}{\left(6 \rho_{1}\right)^{2}+\sigma_{1}^{2}}\right)^{\frac{n-2}{2}} \sim \frac{1}{1-k_{1}}\left(\frac{\sigma_{1}}{\rho_{1}^{2}}\right)^{\frac{n-2}{2}} \\
& \sim \frac{\varepsilon_{1}}{1-k_{1}} \geq \frac{1}{\left(1-k_{1}\right) M_{1}^{\frac{\alpha}{n^{*}-1}}} \sim M_{1}^{\frac{1-\alpha}{n^{*}-1}}=M_{j}^{\frac{1-\alpha}{n^{*}-1}} . \tag{2.23}
\end{array}
$$

Thus by sufficiently decreasing each of the equal numbers $\sigma_{1}, \ldots, \sigma_{i_{0}}$ (or equivalently by sufficiently increasing each of the equal numbers $M_{1}, \ldots, M_{i_{0}}$), we obtain

$$
\begin{equation*}
\min _{x \in B_{2 \rho_{j}}\left(x_{j}\right)} Z\left(k_{j}^{\frac{n^{*}}{n^{*}-1}}, \sum_{i=1, i \neq j}^{i_{0}} w\left(\left|x-x_{i}\right|, \sigma_{i}\right)\right)>\nu(0) \quad \text { for } \quad 1 \leq j \leq i_{0} \tag{2.24}
\end{equation*}
$$

Also, by (2.21) we have

$$
\begin{equation*}
Z\left(k_{j}^{\frac{n^{*}}{n^{*}-1}}, \frac{1}{2 M_{j}^{\frac{\alpha}{n^{*}-1}}}\right) \sim \frac{1}{1-k_{j}} \frac{1}{M_{j}^{\frac{\alpha}{n^{*}-1}}} \sim M_{j}^{\frac{1-\alpha}{n^{*}-1}} \quad \text { for } \quad j \geq 1 \tag{2.25}
\end{equation*}
$$

Hence, by sufficiently decreasing each term of the sequence σ_{j} (or equivalently by sufficiently increasing each term of the sequence M_{j}), we can assume

$$
Z\left(k_{j}^{\frac{n^{*}}{n^{*}-1}}, \frac{1}{2 M_{j}^{\frac{\alpha}{n^{*}-1}}}\right)>\nu(0) \quad \text { for } \quad j \geq 1
$$

and therefore for $j \geq 1$ and $\left|x-x_{j}\right| \geq \rho_{j}$ we have by (2.18) that

$$
\begin{align*}
w\left(\left|x-x_{j}\right|, \sigma_{j}\right) & \leq w\left(\rho_{j}, \sigma_{j}\right) \leq \varepsilon_{j} a^{\frac{1}{n^{*}-1}} \nu(0) \\
& <\nu(0)<Z\left(k^{\frac{n^{*}}{n^{*}-1}}, \frac{1}{2 M_{j}^{\frac{\alpha}{n^{*}-1}}}\right) . \tag{2.26}
\end{align*}
$$

It follows from (2.21) that

$$
\begin{equation*}
\max _{s \geq \rho_{j}}\left|\frac{d}{d s}\left(w\left(s, \sigma_{j}\right)\right)\right| \sim \varepsilon_{j} 2^{\frac{j}{2}} M_{j}^{\frac{1}{2}}<M_{j}^{\frac{1}{2}} \quad \text { for } \quad j \geq 1 \tag{2.27}
\end{equation*}
$$

by $(2.14)_{2}$.
We obtain from (2.21) that

$$
\begin{equation*}
\frac{1-k_{i}}{\rho_{i}} \sim \frac{2^{i / 2}}{M_{i}^{\frac{n-4}{4}}} \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty \tag{2.28}
\end{equation*}
$$

because $n \geq 6$ and $M_{i}>3^{i}$.
Let $\psi:[0, \infty) \rightarrow[0,1]$ be a C^{∞} cut-off function satisfying $\psi(t)=1$ for $0 \leq t \leq 1$ and $\psi(t)=0$ for $t \geq 3 / 2$. Define

$$
\begin{equation*}
k(x)=\kappa(x)+\sum_{i=1}^{\infty}\left(k_{i}-\kappa(x)\right) \psi_{i}(x) \tag{2.29}
\end{equation*}
$$

where $\psi_{i}(x)=\psi\left(\frac{\left|x-x_{i}\right|}{\rho_{i}}\right)$. Since the functions ψ_{i} have disjoint supports contained in $B_{2 \delta_{1}}(0)-\{0\}$, it follows that k is well defined and finite for each $x \in \mathbf{R}^{n}, k(0)=\kappa(0)=1$, and $k(x)=\kappa(x)$ for $|x| \geq 2 \delta_{1}$. By (2.15) $)_{1}$ and (2.1) we have

$$
\begin{equation*}
\inf _{\mathbf{R}^{n}} k>a \tag{2.30}
\end{equation*}
$$

Since

$$
\begin{equation*}
\nabla k(x)=\sum_{i=1}^{\infty} \frac{\left(k_{i}-1\right)}{\rho_{i}} \psi^{\prime}\left(\frac{\left|x-x_{i}\right|}{\rho_{i}}\right) \frac{x-x_{i}}{\left|x-x_{i}\right|} \quad \text { for } \quad 0<|x|<\delta, \tag{2.31}
\end{equation*}
$$

it follows from (2.28) that $k \in C^{1}\left(\mathbf{R}^{n}\right)$ and $\nabla k(0)=0$.
Letting $u_{i}(x)=w\left(\left|x-x_{i}\right|, \sigma_{i}\right)$, we obtain from (2.18) and (2.14) $)_{2}$ that

$$
\begin{equation*}
u_{i} \leq \varepsilon_{i} a^{\frac{1}{n^{*-1}}} \nu \quad \text { in } \quad \mathbf{R}^{n}-B_{i}, \quad i \geq 1 \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\infty} u_{i} \leq a^{\frac{1}{n^{*}-1}} \nu \quad \text { in } \quad \mathbf{R}^{n}-\bigcup_{i=1}^{\infty} B_{i} \tag{2.33}
\end{equation*}
$$

Furthermore, by sufficiently decreasing each term of the sequence $\left\{\sigma_{i}\right\}_{i=1}^{\infty}$ and being mindful of the remark after equation (2.2), we can force the functions u_{i} to satisfy

$$
\begin{gather*}
u_{i}\left(x_{i}\right)>i \varphi\left(\left|x_{i}\right|\right) \quad \text { for } \quad i \geq 1, \tag{2.34}\\
\sum_{i=1}^{\infty} u_{i} \in C^{\infty}\left(\mathbf{R}^{n}-\{0\}\right), \\
-\Delta\left(\sum_{i=1}^{\infty} u_{i}\right)=\sum_{i=1}^{\infty} u_{i}^{n^{*}} \quad \text { in } \quad \mathbf{R}^{n}-\{0\}, \tag{2.35}
\end{gather*}
$$

and $u_{i}+\left|\nabla u_{i}\right|<2^{-i}$ in $\mathbf{R}^{n}-B_{2 r_{i}}\left(x_{i}\right), i \geq 1$. Thus by (2.12) and (2.13) we have

$$
\begin{equation*}
u_{i}+\left|\nabla u_{i}\right|<2^{-i} \quad \text { in } \quad B_{2 r_{j}}\left(x_{j}\right) \tag{2.36}
\end{equation*}
$$

when $i \neq j$ and either $\left(j>i_{0}\right.$ and $\left.i \geq 1\right)$ or $\left(1 \leq j \leq i_{0}\right.$ and $\left.i>i_{0}\right)$. Similarly, by decreasing again each term of the subsequence $\left\{\sigma_{i}\right\}_{i=i_{0}+1}^{\infty}$ of $\left\{\sigma_{i}\right\}_{i=1}^{\infty}$, we can also force the functions u_{i} and the constants M_{i} to satisfy

$$
\begin{align*}
& \sum_{i=i_{0}+1}^{\infty} u_{i}(x)<\frac{1}{2} \min _{1 \leq i \leq i_{0}} u_{i}(x) \quad \text { for } \quad|x| \geq \delta_{2}, \tag{2.37}\\
& \sum_{i=i_{0}+1, i \neq j}^{\infty} u_{i}<u_{1} / 2 \quad \text { in } \quad B_{2 r_{j}}\left(x_{j}\right), \quad j>i_{0} \tag{2.38}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{M_{j}^{\frac{\alpha}{n^{*}-1}}} \leq \min _{|x| \leq \delta} u_{1}(x) \quad \text { for } \quad j>i_{0} \tag{2.39}
\end{equation*}
$$

It follows from (2.36), (2.32), and, (2.27) that

$$
\begin{equation*}
\sum_{i=1, i \neq j}^{\infty} u_{i}+u_{i}^{n^{*}} \leq C \quad \text { in } \quad B_{j}, j \geq 1, \tag{2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1, i \neq j}^{\infty}\left|\nabla u_{i}\right|+u_{i}^{n^{*}-1}\left|\nabla u_{i}\right| \leq C M_{j}^{1 / 2} \quad \text { in } \quad B_{j}, j \geq 1, \tag{2.41}
\end{equation*}
$$

where C is a positive constant depending at most on n, a, and b, whose value may change from line to line. (By (2.36), inequality (2.41) holds with the factor $M_{j}^{1 / 2}$ omitted, when $j>i_{0}$.)

By (2.17),

$$
\begin{equation*}
N \widehat{M}<\nu / 2 \quad \text { in } \quad \mathbf{R}^{n}, \tag{2.42}
\end{equation*}
$$

where

$$
\widehat{M}(x):= \begin{cases}(2 \nu(0))^{n^{*}} M_{i}, & \text { in } B_{\rho_{i}}\left(x_{i}\right), i \geq 1 \\ 0, & \text { in } \mathbf{R}^{n}-\bigcup_{i=1}^{\infty} B_{2 \rho_{i}}\left(x_{i}\right) \\ \left(2-\frac{\left|x-x_{i}\right|}{\rho_{i}}\right)(2 \nu(0))^{n^{*}} M_{i}, & \text { in } B_{2 \rho_{i}}\left(x_{i}\right)-B_{\rho_{i}}\left(x_{i}\right), i \geq 1\end{cases}
$$

Since \widehat{M} is locally Lipschitz continuous in $\mathbf{R}^{n}-\{0\}$ we have $\bar{v}:=\nu /(2 b)+N \widehat{M} \in C^{2}\left(\mathbf{R}^{n}-\{0\}\right)$ and

$$
\begin{equation*}
-\Delta \bar{v}=(2 b)^{n^{*}} \nu^{n^{*}}+\widehat{M} \quad \text { in } \quad \mathbf{R}^{n}-\{0\} \tag{2.43}
\end{equation*}
$$

by (2.2). It follows from (2.42) that

$$
\begin{equation*}
\frac{\nu}{2 b}<\bar{v}<\nu \quad \text { in } \quad \mathbf{R}^{n} . \tag{2.44}
\end{equation*}
$$

Define $\underline{H}: \mathbf{R}^{n} \times[0, \infty) \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
\underline{H}(x, v)=k(x)\left(v+\sum_{i=1}^{\infty} u_{i}(x)\right)^{n^{*}}-\sum_{i=1}^{\infty} u_{i}(x)^{n^{*}} . \tag{2.45}
\end{equation*}
$$

Then

$$
\begin{equation*}
\underline{H}(x, v)=f(U(x), k(x), \zeta(x, v)) \tag{2.46}
\end{equation*}
$$

where

$$
U(x):=\left(\sum_{i=1}^{\infty} u_{i}(x)^{n^{*}}\right)^{1 / n^{*}} \quad \text { and } \quad \zeta(x, v):=v+\sum_{i=1}^{\infty} u_{i}(x)-U(x) .
$$

Define $H: \mathbf{R}^{n} \times[0, \infty) \rightarrow(0, \infty)$ by

$$
\begin{equation*}
H(x, v)=\hat{f}(U(x), k(x), \zeta(x, v)) \tag{2.47}
\end{equation*}
$$

Then

$$
\begin{equation*}
H(x, v) \leq M(k(x), \zeta(x, v))=\frac{k(x) \zeta(x, v)^{n^{*}}}{\left(1-k(x)^{\frac{1}{n^{*}-1}}\right)^{n^{*}-1}} \quad \text { when } \quad k(x)<1 \text { and } v \geq 0 \tag{2.48}
\end{equation*}
$$

Also $H(x, v)=\underline{H}(x, v)$ if and only if either $k(x)<1$ and $U(x) \leq Z(k(x), \zeta(x, v))$ or $k(x) \geq 1$.
For $x \in \mathbf{R}^{n}-\bigcup_{i=1}^{\infty} B_{i}$ and $k(x)<1$ we have

$$
\begin{aligned}
U(x) & \leq \sum_{i=1}^{\infty} u_{i}(x) \leq a^{\frac{1}{n^{*}-1}} \nu(x) \quad \text { by }(2.33) \\
& \leq \frac{\nu(x) k(x)^{\frac{1}{n^{*}-1}}}{1-k(x)^{\frac{1}{n^{*}-1}}} \quad \text { by }(2.30) \\
& \leq \frac{\zeta(x, \nu(x)) k(x)^{\frac{1}{n^{*}-1}}}{1-k(x)^{\frac{1}{n^{*}-1}}}=Z(k(x), \zeta(x, \nu(x)))
\end{aligned}
$$

and hence

$$
H(x, \nu(x))=\underline{H}(x, \nu(x)) \quad \text { for } \quad x \in \mathbf{R}^{n}-\bigcup_{i=1}^{\infty} B_{i} .
$$

Thus for $x \in\left(\mathbf{R}^{n}-\{0\}\right)-\bigcup_{i=1}^{\infty} B_{i}$ and $0 \leq v \leq \nu(x)$ we have

$$
\begin{align*}
H(x, v) & \leq H(x, \nu(x))=\underline{H}(x, \nu(x)) \leq k(x)\left(\nu(x)+\sum_{i=1}^{\infty} u_{i}(x)\right)^{n^{*}} \\
& \leq b(2 \nu(x))^{n^{*}} \leq-\Delta \bar{v}(x) \tag{2.49}
\end{align*}
$$

by (2.33) and (2.43).
Since $k(x) \equiv k_{j}<1$ for $x \in B_{j}$, it follows from (2.48) that for $x \in B_{j}$ and $0 \leq v \leq \nu(x)$ we have

$$
\begin{align*}
H(x, v) & \leq \frac{k_{j} \zeta(x, v)^{n^{*}}}{\left(1-k_{j}^{\frac{1}{n^{*}-1}}\right)^{n^{*}-1}} \\
& \leq M_{j}(2 \nu(x))^{n^{*}} \quad \text { by }(2.16) \text { and }(2.32) \\
& \leq M_{j}(2 \nu(0))^{n^{*}}=\widehat{M}(x) \leq-\Delta \bar{v}(x) \tag{2.50}
\end{align*}
$$

by (2.43). We therefore obtain from (2.49) that

$$
H(x, v) \leq-\Delta \bar{v}(x) \quad \text { for } x \in \mathbf{R}^{n}-\{0\} \text { and } 0 \leq v \leq \nu(x)
$$

Hence by (2.44), for each integer $i \geq 2$ we can use $\underline{v} \equiv 0$ and \bar{v} as sub and super-solutions of the problem

$$
\begin{aligned}
-\Delta v & =H(x, v) & & \text { in } \quad \frac{1}{i}<|x|<i \\
v & =0 \quad & & \text { for } \quad|x|=\frac{1}{i} \quad \text { or } \quad|x|=i
\end{aligned}
$$

to conclude that this problem has a C^{2} solution v_{i} satisfying $0 \leq v_{i} \leq \nu$. It follows from standard elliptic theory that some subsequence of v_{i} converges to a C^{2} solution u_{0} of

$$
\left.\begin{array}{c}
-\Delta u_{0}=H\left(x, u_{0}\right) \tag{2.51}\\
0 \leq u_{0} \leq \nu
\end{array}\right\} \quad \text { in } \quad \mathbf{R}^{n}-\{0\}
$$

Define $\bar{H}: \mathbf{R}^{n} \times[0, \infty) \rightarrow(0, \infty)$ by $\bar{H}(x, v)=\hat{f}(U(x), \kappa(x), \zeta(x, v))$. Then $\underline{H} \leq H \leq \bar{H}$ because $k \leq \kappa$. In particular,

$$
\begin{equation*}
\underline{H}\left(x, u_{0}(x)\right) \leq H\left(x, u_{0}(x)\right) \leq \bar{H}\left(x, u_{0}(x)\right) \quad \text { for } \quad x \in \mathbf{R}^{n}-\{0\} \tag{2.52}
\end{equation*}
$$

Since, for $|x|>\delta$,

$$
\begin{aligned}
U(x)^{n^{*}} & =\sum_{i=1}^{\infty} u_{i}(x)^{n^{*}} \\
& \leq i_{0} 2^{n^{*}} u_{1}(x)^{n^{*}}+u_{1}(x)^{n^{*}} \quad \text { by }(2.7) \text { and }(2.37) \\
& \leq i_{0} 2^{n^{*}+1} u_{1}(x)^{n^{*}}=\frac{i_{0}^{n^{*}}}{i_{0}^{n^{*}-1}} 2^{n^{*}+1} u_{1}(x)^{n^{*}} \\
& \leq \frac{(2 a)^{\frac{n^{*}}{n^{*}-1}}}{2^{2 n^{*}+1}} i_{0}^{n^{*}} 2^{n^{*}+1} u_{1}(x)^{n^{*}} \quad \text { by }(2.8) \\
& \leq \kappa(x)^{\frac{n^{*}}{n^{*}-1}}\left(\frac{i_{0}}{2} u_{1}(x)\right)^{n^{*}} \quad \text { by }(2.1) \\
& \leq \kappa(x)^{\frac{n^{*}}{n^{*}-1}}\left(\sum_{i=1}^{\infty} u_{i}(x)\right)^{n^{*}} \quad \text { by }(2.7)
\end{aligned}
$$

we have for $\kappa(x)<1$ and $v \geq 0$ that

$$
\begin{aligned}
U(x) & \leq \frac{\left(\sum_{i=1}^{\infty} u_{i}(x)-U(x)\right) \kappa(x)^{\frac{1}{n^{*}-1}}}{1-\kappa(x)^{\frac{1}{n^{*}-1}}} \\
& \leq Z(\kappa(x), \zeta(x, v))
\end{aligned}
$$

(Recall, from the first paragraph of this proof, that $\kappa(x)<1$ implies $|x|>\delta$.) Thus, for $x \in \mathbf{R}^{n}$ and $v \geq 0$, we have

$$
\begin{aligned}
\bar{H}(x, v) & =f(U(x), \kappa(x), \zeta(x, v)) \\
& =\kappa(x)\left(v+\sum_{i=1}^{\infty} u_{i}(x)\right)^{n^{*}}-\sum_{i=1}^{\infty} u_{i}(x)^{n^{*}},
\end{aligned}
$$

which together with (2.45), (2.35), (2.51), and (2.52) implies that $u:=u_{0}+\sum_{i=1}^{\infty} u_{i}$ is a C^{2} positive solution of

$$
\begin{equation*}
k(x) u^{n^{*}} \leq-\Delta u \leq \kappa(x) u^{n^{*}} \quad \text { in } \quad \mathbf{R}^{n}-\{0\} . \tag{2.53}
\end{equation*}
$$

It follows from (2.34) and (2.11) that u satisfies (1.8). We see from (2.37) and (2.51) that u satisfies (1.7).

Define $K: \mathbf{R}^{n} \rightarrow(0, \infty)$ by

$$
\begin{equation*}
K(x)=\frac{-\Delta u(x)}{u(x)^{n^{*}}} \quad \text { for } \quad x \in \mathbf{R}^{n}-\{0\} \tag{2.54}
\end{equation*}
$$

and $K(0)=1$. Then

$$
\begin{equation*}
K(x)=\frac{H\left(x, u_{0}(x)\right)+\sum_{i=1}^{\infty} u_{i}(x)^{n^{*}}}{\left(u_{0}(x)+\sum_{i=1}^{\infty} u_{i}(x)\right)^{n^{*}}} \text { for } x \in \mathbf{R}^{n}-\{0\} \tag{2.55}
\end{equation*}
$$

and hence $K \in C^{1}\left(\mathbf{R}^{n}-\{0\}\right)$. It follows from (2.53) and (2.54) that

$$
\begin{equation*}
k(x) \leq K(x) \leq \kappa(x) \quad \text { for } \quad x \in \mathbf{R}^{n}-\{0\} . \tag{2.56}
\end{equation*}
$$

Hence, by the properties of k stated in the paragraph containing inequality (2.30), we have $K \in$ $C^{0}\left(\mathbf{R}^{n}\right)$,

$$
\begin{equation*}
K(0)=k(0)=\kappa(0)=1, \quad \nabla K(0)=\nabla k(0)=\nabla \kappa(0)=0, \tag{2.57}
\end{equation*}
$$

and

$$
\begin{equation*}
K(x)=k(x)=\kappa(x) \quad \text { for } \quad|x| \geq 2 \delta_{1} . \tag{2.58}
\end{equation*}
$$

We now show that $K \in C^{1}\left(\mathbf{R}^{n}\right)$ by showing that

$$
\begin{equation*}
\lim _{|x| \rightarrow 0} \nabla K(x)=0 \tag{2.59}
\end{equation*}
$$

Let $S=\left\{x \in \mathbf{R}^{n}-\{0\}: \underline{H}\left(x, u_{0}(x)\right)<H\left(x, u_{0}(x)\right)\right\}$. It follows from (2.55) and (2.45) that

$$
\begin{equation*}
S=\left\{x \in \mathbf{R}^{n}-\{0\}: k(x)<K(x)\right\} \tag{2.60}
\end{equation*}
$$

and it follows from (2.46) and (2.47) that

$$
\left.\begin{array}{l}
H\left(x, u_{0}(x)\right)=M\left(k(x), \zeta_{0}(x)\right) \tag{2.61}\\
U(x)>Z\left(k(x), \zeta_{0}(x)\right)
\end{array}\right\} \quad \text { for } \quad x \in S
$$

where $\zeta_{0}(x):=\zeta\left(x, u_{0}(x)\right)$. In particular, since $k(x) \geq k_{j}$ in $B_{2 \rho_{j}}\left(x_{j}\right)$, we have

$$
\begin{align*}
U(x) & >Z\left(k_{j}, \zeta_{0}(x)\right) \\
& =M_{j}^{\frac{1}{n^{*}-1}} \zeta_{0}(x) \quad \text { for } \quad x \in S \cap B_{2 \rho_{j}}\left(x_{j}\right), \quad j \geq 1 \tag{2.62}
\end{align*}
$$

We have by (2.56), (2.60), and (2.57) that

$$
\begin{equation*}
\nabla k(x)=\nabla K(x) \quad \text { for } \quad x \in \mathbf{R}^{n}-S \tag{2.63}
\end{equation*}
$$

and thus (2.59) holds for $x \in\left(\mathbf{R}^{n}-\{0\}\right)-S$. We now show the limit (2.59) holds for $x \in S$. For $x \in\left(\mathbf{R}^{n}-\{0\}\right)-\bigcup_{i=1}^{\infty} B_{2 \rho_{i}}\left(x_{i}\right)$ we have $k(x)=\kappa(x)$ and it therefore follows from (2.56) and (2.60) that $x \notin S$. Thus

$$
\begin{equation*}
S \subset \bigcup_{i=1}^{\infty} B_{2 \rho_{i}}\left(x_{i}\right) \tag{2.64}
\end{equation*}
$$

For $x \in S \cap B_{2 \rho_{j}}\left(x_{j}\right)$ we have by (2.62) that

$$
U(x)>\frac{k_{j}^{\frac{1}{n^{*}-1}}\left(\sum_{i=1}^{\infty} u_{i}(x)-U(x)\right)}{1-k_{j}^{\frac{1}{n^{*}-1}}}
$$

and thus

$$
U(x) \geq k_{j}^{\frac{1}{n^{*}-1}} \sum_{i=1}^{\infty} u_{i}(x)
$$

Hence

$$
\begin{equation*}
\sum_{i=1, i \neq j}^{\infty} u_{i}(x)^{n^{*}} \geq f\left(u_{j}(x), k_{j}^{\frac{n^{*}}{n^{*-1}}}, \sum_{i=1, i \neq j}^{\infty} u_{i}(x)\right) \quad \text { for } \quad x \in S \cap B_{2 \rho_{j}}\left(x_{j}\right), \quad j \geq 1 \tag{2.65}
\end{equation*}
$$

However, for $1 \leq j \leq i_{0}$ and $x \in B_{2 \rho_{j}}\left(x_{j}\right)$ we have

$$
\frac{\sum_{i=1, i \neq j}^{\infty} u_{i}(x)^{n^{*}}}{f\left(0, k_{j}^{\frac{n^{*}}{n^{*}-1}}, \sum_{i=1, i \neq j}^{\infty} u_{i}(x)\right)}=\frac{\sum_{i=1, i \neq j}^{\infty} u_{i}(x)^{n^{*}}}{k_{j}^{\frac{n^{*}}{n^{*}-1}}\left(\sum_{i=1, i \neq j}^{\infty} u_{i}(x)\right)^{n^{*}}} \leq \frac{1+\left(\frac{1}{3}\right)^{n-2}}{k_{j}^{\frac{n^{*}}{n^{*}-1}}\left(1+n^{*}\left(\frac{1}{3}\right)^{n-2}\right)}<1
$$

by (2.37), Lemma $1,(2.20)$, and $(2.22)_{3}$. Thus by (2.65) and (2.24),

$$
\begin{equation*}
u_{j}(x)>Z\left(k_{j}^{\frac{n^{*}}{n^{*}-1}}, \sum_{i=1, i \neq j}^{\infty} u_{i}(x)\right)>\nu(0) \quad \text { for } \quad 1 \leq j \leq i_{0} \text { and } x \in S \cap B_{2 \rho_{j}}\left(x_{j}\right) . \tag{2.66}
\end{equation*}
$$

Hence, by (2.26),

$$
\begin{equation*}
S \cap B_{2 \rho_{j}}\left(x_{j}\right)=S \cap B_{j} \quad \text { for } \quad 1 \leq j \leq i_{0}, \tag{2.67}
\end{equation*}
$$

and it follows from (2.23) and (2.66) that

$$
\begin{equation*}
u_{j} \geq C M_{j}^{\frac{1-\alpha}{n^{*}-1}} \quad \text { in } \quad S \cap B_{2 \rho_{j}}\left(x_{j}\right), 1 \leq j \leq i_{0} \tag{2.68}
\end{equation*}
$$

where C is a positive constant depending at most on n, a, and b whose value may change from line to line.

Also, by (2.38), Lemma 1 , and (2.7) we have for $x \in B_{2 \rho_{j}}\left(x_{j}\right), j>i_{0}$, that

$$
\frac{\sum_{i=1, i \neq j}^{\infty} u_{i}(x)^{n^{*}}}{f\left(0, k_{j}^{\frac{n^{*}}{n^{*}-1}}, \sum_{i=1, i \neq j}^{\infty} u_{i}(x)\right)}=\frac{\sum_{i=1, i \neq j}^{\infty} u_{i}(x)^{n^{*}}}{k_{j}^{\frac{n^{*}}{n^{*}-1}}\left(\sum_{i=1, i \neq j}^{\infty} u_{i}(x)\right)^{n^{*}}} \leq \frac{1+\frac{1}{2}}{k_{j}^{n^{*}-1}\left(1+\frac{n^{*}}{2}\right)}<1
$$

by $(2.22)_{3}$. Thus, by (2.65) and (2.39),

$$
u_{j}(x)>Z\left(k_{j}^{\frac{n^{*}}{n^{*}-1}}, \sum_{i=1, i \neq j}^{\infty} u_{i}(x)\right)>Z\left(k_{j}^{\frac{n^{*}}{n^{*}-1}}, \frac{1}{2 M_{j}^{\frac{\alpha}{n^{*}-1}}}\right) \quad \text { for } \quad x \in S \cap B_{2 \rho_{j}}\left(x_{j}\right), j>i_{0} .
$$

Hence it follows from (2.26) and (2.67) that

$$
\begin{equation*}
S \cap B_{2 \rho_{j}}\left(x_{j}\right)=S \cap B_{j} \quad \text { for } \quad j \geq 1, \tag{2.69}
\end{equation*}
$$

and it follows from (2.25) and (2.68) that

$$
\begin{equation*}
u_{j} \geq C M_{j}^{\frac{1-\alpha}{n^{*}-1}} \quad \text { in } \quad S \cap B_{2 \rho_{j}}\left(x_{j}\right), \quad j \geq 1 \tag{2.70}
\end{equation*}
$$

We see from (2.55) and (2.61) that

$$
K(x)=\frac{M_{j} \zeta_{0}(x)^{n^{*}}+U(x)^{n^{*}}}{\left(\zeta_{0}(x)+U(x)\right)^{n^{*}}}=\frac{M_{j}\left(\frac{\zeta_{0}(x)}{U(x)}\right)^{n^{*}}+1}{\left(\frac{\zeta_{0}(x)}{U(x)}+1\right)^{n^{*}}} \quad \text { for } \quad x \in S \cap B_{j}, \quad j \geq 1 .
$$

Thus

$$
\nabla K=n^{*}\left(\frac{M_{j}\left(\frac{\zeta_{0}}{U}\right)^{n^{*}-1}-1}{\left(\frac{\zeta_{0}}{U}+1\right)^{n^{*}+1}}\right)\left(\nabla \frac{\zeta_{0}}{U}\right) \quad \text { in } \quad S \cap B_{j}, \quad j \geq 1,
$$

and hence, by (2.62),

$$
\begin{align*}
|\nabla K| & \leq n^{*}\left|\nabla \frac{\zeta_{0}}{U}\right| \\
& \leq n^{*}| | \nabla \frac{u_{0}}{U}\left|+\left|\nabla \frac{\sum_{i=1, i \neq j}^{\infty} u_{i}}{U}\right|+\left|\nabla \frac{u_{j}}{U}\right|\right] \quad \text { in } \quad S \cap B_{j}, \quad j \geq 1 . \tag{2.71}
\end{align*}
$$

We now estimate each of the three terms on the right side of (2.71). Since

$$
\begin{aligned}
\nabla \frac{u_{j}}{U} & =\nabla\left(\frac{\sum_{i=1}^{\infty} u_{i}^{n^{*}}}{u_{j}^{n^{*}}}\right)^{-\frac{1}{n^{*}}}=\nabla\left(1+\frac{\sum_{i=1, i \neq j}^{\infty} u_{i}^{n^{*}}}{u_{j}^{n^{*}}}\right)^{-\frac{1}{n^{*}}} \\
& =-\frac{1}{n^{*}}\left(1+\frac{\sum_{i=1, i \neq j}^{\infty} u_{i}^{n^{*}}}{u_{j}^{n^{*}}}\right)^{-\frac{1}{n^{*}-1}}\left[\frac{\nabla \sum_{i=1, i \neq j}^{\infty} u_{i}^{n^{*}}}{u_{j}^{n^{*}}}-n^{*}\left(\frac{\nabla u_{j}}{u_{j}^{n^{*}+1}}\right) \sum_{i=1, i \neq j}^{\infty} u_{i}^{n^{*}}\right],
\end{aligned}
$$

it follows from (2.40), (2.41), and (2.70) that

$$
\begin{equation*}
\left|\nabla \frac{u_{j}}{U}\right| \leq C\left(\frac{M_{j}^{1 / 2}}{M_{j}^{\frac{(1-\alpha) n^{*}}{n^{*}-1}}}+\frac{\left|\nabla u_{j}\right|}{u_{j}^{n^{*}+1}}\right) \quad \text { in } \quad S \cap B_{j}, \quad j \geq 1 \tag{2.72}
\end{equation*}
$$

Since, by (2.41) and (2.70),

$$
\begin{aligned}
\left|\nabla \frac{1}{U}\right| & =\left|\nabla\left(U^{n^{*}}\right)^{-\frac{1}{n^{*}}}\right|=\left|\frac{1}{n^{*}}\left(U^{n^{*}}\right)^{-\frac{1}{n^{*}}-1} \nabla U^{n^{*}}\right|=\left|\frac{\sum_{i=1, i \neq j}^{\infty} u_{i}^{n^{*}-1} \nabla u_{i}+u_{j}^{n^{*}-1} \nabla u_{j}}{U^{n^{*}+1}}\right| \\
& \leq C\left(\frac{M_{j}^{1 / 2}}{M_{j}^{\frac{(1-\alpha)\left(n^{*}+1\right)}{n^{*}-1}}}+\frac{\left|\nabla u_{j}\right|}{u_{j}^{2}}\right) \quad \text { in } \quad S \cap B_{j}, \quad j \geq 1,
\end{aligned}
$$

we have by (2.40), (2.41), (2.70), and (2.51) that

$$
\begin{align*}
\left|\nabla \frac{\sum_{i=1, i \neq j}^{\infty} u_{i}}{U}\right| & \leq C\left(\left|\nabla \frac{1}{U}\right|+\frac{M_{j}^{1 / 2}}{U}\right) \leq C\left(\left|\nabla \frac{1}{U}\right|+\frac{M_{j}^{1 / 2}}{u_{j}}\right) \\
& \leq C\left(\frac{M_{j}^{1 / 2}}{M_{j}^{\frac{1-\alpha}{n^{*}-1}}}+\frac{\left|\nabla u_{j}\right|}{u_{j}^{2}}\right) \quad \text { in } \quad S \cap B_{j}, \quad j \geq 1 \tag{2.73}
\end{align*}
$$

and

$$
\begin{align*}
\left|\nabla \frac{u_{0}}{U}\right| & =\left|\frac{\nabla u_{0}}{U}+u_{0} \nabla \frac{1}{U}\right| \\
& \leq C\left(\frac{\left|\nabla u_{0}\right|}{M_{j}^{\frac{1-\alpha}{n^{*}-1}}}+\frac{M_{j}^{1 / 2}}{M_{j}^{\frac{(1-\alpha)\left(x^{*}+1\right)}{n^{*}-1}}}+\frac{\left|\nabla u_{j}\right|}{u_{j}^{2}}\right) \quad \text { in } \quad S \cap B_{j}, \quad j \geq 1 . \tag{2.74}
\end{align*}
$$

We now estimate ∇u_{0} in B_{j}. Since, by (2.51), u_{0} is bounded and superharmonic in $\mathbf{R}^{n}-\{0\}$, it is well known that

$$
u_{0}(x)=\frac{1}{(n-2) n \omega_{n}} \int_{|y|<4} \frac{H\left(y, u_{0}(y)\right)}{|x-y|^{n-2}} d y+h(x) \quad \text { for } \quad 0<|x| \leq 2
$$

for some continuous function $h: \overline{B_{2}(0)} \rightarrow \mathbf{R}$ which is harmonic in $B_{2}(0)$. By (2.50), (2.49), and (2.51),

$$
H\left(x, u_{0}(x)\right) \leq \begin{cases}(2 \nu(0))^{n^{*}} M_{j} & \text { in } B_{j} \\ b(2 \nu(0))^{n^{*}} & \text { in }\left(\mathbf{R}^{n}-\{0\}\right)-\bigcup_{i=1}^{\infty} B_{i} .\end{cases}
$$

It follows therefore from (2.17) and (2.51) that $|h(x)|<C$ for $|x| \leq 2$. Thus $|\nabla h(x)|<C$ for $|x| \leq 1$ and hence, for $x \in B_{j}$, we have

$$
\begin{aligned}
\left|\nabla u_{0}(x)\right| & \leq \frac{1}{n \omega_{n}} \int_{|y|<4} \frac{H\left(y, u_{0}(y)\right)}{|x-y|^{n-1}} d y+C \\
& \leq C\left[I_{1}(x)+I_{2}(x)+I_{3}(x)\right]+C
\end{aligned}
$$

where

$$
I_{1}(x)=\int_{B_{j}} \frac{M_{j}}{|x-y|^{n-1}} d y \leq C M_{j} \rho_{j} \leq C \sqrt{M_{j}} \quad \text { for } \quad x \in B_{j}
$$

by (2.21), and

$$
\begin{aligned}
I_{2}(x) & =\sum_{i=1, i \neq j}^{\infty} \int_{B_{i}} \frac{M_{i}}{|x-y|^{n-1}} d y \leq C \sum_{i=1, i \neq j}^{\infty} \frac{M_{i} \rho_{i}^{n}}{\left(\operatorname{dist}\left(B_{j}, B_{i}\right)\right)^{n-1}} \\
& \leq C \sum_{i=1, i \neq j}^{\infty} \frac{\rho_{i}^{n-2}}{2^{i}\left(\rho_{i}+\rho_{j}\right)^{n-1}} \leq \frac{C}{\rho_{j}} \sim C 2^{j / 2} \sqrt{M_{j}} \leq C M_{j}^{\alpha+1 / 2} \quad \text { for } \quad x \in B_{j}
\end{aligned}
$$

by $(2.21),(2.19)$, and $(2.22)_{4}$, and

$$
I_{3}(x)=\int_{\substack{B_{4}(0)-\bigcup_{i=1}^{\infty} B_{i}}} \frac{1}{|x-y|^{n-1}} d y \leq C \quad \text { for } \quad x \in B_{j} .
$$

Thus

$$
\begin{equation*}
\left|\nabla u_{0}\right|<C M_{j}^{\alpha+1 / 2} \quad \text { in } \quad B_{j}, \quad j \geq 1 \tag{2.75}
\end{equation*}
$$

Since $n \geq 6$, we have $n^{*}-1 \leq 1$ and it therefore follows from (2.75) that

$$
\begin{equation*}
\frac{\left|\nabla u_{0}\right|}{M_{j}^{\frac{1-\alpha}{n^{*}-1}}} \leq \frac{C M_{j}^{\alpha+1 / 2}}{M_{j}^{1-\alpha}}=\frac{C}{M_{j}^{1 / 2-2 \alpha}} \quad \text { in } \quad B_{j}, \quad j \geq 1 \tag{2.76}
\end{equation*}
$$

In order to estimate $\left|\nabla u_{j}\right| / u_{j}^{2}$ in $S \cap B_{j}$, let

$$
s_{j}=\inf \left\{s>0: S \cap B_{j} \subset B_{s}\left(x_{j}\right)\right\}
$$

and $\hat{u}_{j}(s)=w\left(s, \sigma_{j}\right)$. Then $s_{j} \leq \rho_{j}$ and $\hat{u}_{j}(s)=u_{j}(x)$ when $\left|x-x_{j}\right|=s$. Also, by (2.70) we have

$$
\hat{u}_{j}(s) \geq C M_{j}^{\frac{1-\alpha}{n^{*}-1}} \quad \text { for } \quad 0 \leq s \leq s_{j}, \quad j \geq 1 .
$$

It follows therefore from (2.21) that

$$
\left(\frac{\sigma_{j}}{\sigma_{j}^{2}+s_{j}^{2}}\right)^{2} \geq C \hat{u}_{j}\left(s_{j}\right)^{n^{*}-1} \geq C M_{j}^{1-\alpha} \geq C\left(\frac{\varepsilon_{j}^{\frac{2}{n-2}}}{2^{j} \sigma_{j}}\right)^{1-\alpha}
$$

and thus by $(2.22)_{1}$ we have

$$
\begin{equation*}
s_{j} \leq C\left(\frac{2^{j}}{\varepsilon_{j}^{\frac{2}{n-2}}}\right)^{\frac{1}{4}} \sigma_{j}^{\frac{3-\alpha}{4}} \leq C \sigma_{j}^{\frac{3-2 \alpha}{4}} \text { for } j \geq 1 \tag{2.77}
\end{equation*}
$$

Also, for $0 \leq s \leq s_{j}$ and $j \geq 1$, we have

$$
\begin{align*}
\frac{-\hat{u}_{j}^{\prime}(s)}{\hat{u}_{j}(s)^{2}} & =\frac{(n-2)}{[n(n-2)]^{\frac{n-2}{4}}} \frac{s\left(\sigma_{j}^{2}+s^{2}\right)^{\frac{n-4}{2}}}{\sigma_{j}^{\frac{n-2}{2}}} \\
& \leq \frac{(n-2)}{[n(n-2)]^{\frac{n-2}{4}}} \frac{s_{j}\left(\sigma_{j}^{2}+s_{j}^{2}\right)^{\frac{n-4}{2}}}{\sigma_{j}^{\frac{n-2}{2}}} \\
& \leq C \frac{\sigma_{j}^{\frac{3-2 \alpha}{4}}\left(\sigma_{j}^{2}+\sigma_{j}^{\frac{3-2 \alpha}{2}}\right)^{\frac{n-4}{2}}}{\sigma_{j}^{\frac{n-2}{2}}} \text { by }(2.77) \\
& \leq C \frac{\sigma_{j}^{\frac{3-2 \alpha}{4}} \sigma_{j}^{\frac{(3-2 \alpha)(n-4)}{4}}}{\sigma_{j}^{\frac{n-2}{2}}}=C \sigma_{j}^{\frac{n-5-2 \alpha(n-3)}{4}} \leq C \sigma_{j}^{\frac{1-6 \alpha}{4}} \tag{2.78}
\end{align*}
$$

because $n \geq 6$ and $\alpha<1 / 2$. Thus taking $\alpha=1 / 8$, it follows from (2.76) and (2.78) that

$$
\frac{\left|\nabla u_{0}\right|}{M_{j}^{\frac{1-\alpha}{n^{*}-1}}} \leq \frac{C}{M_{j}^{1 / 4}} \quad \text { in } \quad B_{j}, \quad j \geq 1,
$$

and

$$
\frac{\left|\nabla u_{j}\right|}{u_{j}^{2}} \leq C \sigma_{j}^{1 / 16} \quad \text { in } \quad S \cap B_{j}, \quad j \geq 1
$$

and hence, by (2.71), (2.72), (2.73), and (2.74), we have

$$
\begin{equation*}
|\nabla K| \leq C\left(\frac{1}{M_{j}^{1 / 4}}+\sigma_{j}^{1 / 16}\right) \quad \text { in } \quad S \cap B_{j}, \quad j \geq 1 \tag{2.79}
\end{equation*}
$$

We see therefore from (2.22), (2.69), and (2.64) that the limit (2.59) holds for $x \in S$. However, we have already shown that the limit (2.59) holds for $x \in\left(\mathbf{R}^{n}-\{0\}\right)-S$. Thus the limit (2.59) holds with no restriction on x, and hence $K \in C^{1}\left(\mathbf{R}^{n}\right)$.

By sufficiently decreasing σ_{i} for each $i \geq 1$, we can force k to satisfy

$$
\begin{equation*}
\|k-\kappa\|_{C^{1}\left(\mathbf{R}^{n}\right)}<\frac{\varepsilon}{4} \tag{2.80}
\end{equation*}
$$

by $(2.28),(2.29),(2.31),(2.57)$, and (2.58); and we can therefore also force K to satisfy

$$
|\nabla(K-k)|=|\nabla(K-(k-\kappa))| \leq|\nabla K|+\frac{\varepsilon}{4} \leq \frac{\varepsilon}{2} \quad \text { in } \quad \bigcup_{j=1}^{\infty}\left(S \cap B_{2 \rho_{j}}\left(x_{j}\right)\right)=S
$$

by (2.79), (2.69), and (2.64). Thus by (2.63), $|\nabla(K-k)|<\frac{\varepsilon}{2}$ in \mathbf{R}^{n}. It therefore follows from (2.56) and (2.80) that K satisfies (1.6).

References

[1] L. A. CAFFARELLI - B. GIDAS - J. SPRUCK, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.
[2] C. C. CHEN - C. S. LIN, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal. 9 (1999), 221-246.
[3] C. C. CHEN - C. S. LIN, Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math. 50 (1997), 971-1017.
[4] N. KOREVAAR - R. MAZZEO - F. PACARD - R. SCHOEN, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math. 135 (1999), 233-272.
[5] M. C. LEUNG, Blow-up solutions of nonlinear elliptic equations in \mathbf{R}^{n} with critical exponent, Math. Ann. 327 (2003), 723-744.
[6] C. S. LIN, Estimates of the scalar curvature equation via the method of moving planes,III, Comm. Pure Appl. Math. 53 (2000), 611-646.
[7] R. MAZZEO - F. PACARD, Constant scalar curvature metrics with isolated singularities, Duke Math. J. 99 (1999), 353-418.
[8] R. SCHOEN, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math. 41 (1988), 317-392.
[9] S. TALIAFERRO - Lei ZHANG, Arbitrarily large solutions of the conformal scalar curvature problem at an isolated singularity, Proc. Amer. Math. Soc. 131 (2003), 2895-2902.
[10] S. TALIAFERRO - Lei ZHANG, Asymptotic symmetries for conformal scalar curvature equations with singularity, preprint.

