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Abstract

We study classical positive solutions of the biharmonic inequality
—A% > f(v) (0.1)

in exterior domains in R™ where f : (0,00) — (0,00) is continuous function. We give lower
bounds on the growth of f(s) at s = 0 and/or s = oo such that inequality (0.1) has no C* positive
solution in any exterior domain of R™. Similar results were obtained by Armstrong and Sirakov
[Nonezistence of positive supersolutions of elliptic equations via the maximum principle, Comm.
Partial Differential Equations 36 (2011) 2011-2047] for —Av > f(v) using a method which
depends only on properties related to the maximum principle. Since the maximum principle
does not hold for the biharmonic operator, we adopt a different approach which relies on a new
representation formula and an a priori pointwise bound for nonnegative solutions of —AZu > 0
in a punctured neighborhood of the origin in R™.

Keywords Nonexistence; Supersolution; Biharmonic equation; Critical exponent.

Mathematics Subject Classification 35A01; 35B09; 35B33; 35J91; 35R45.

1 Introduction

Using a method which depends only on properties related to the maximum principle, Armstrong
and Sirakov [1] proved the following two nonexistence results for positive solutions of

“Av ) (1.1)
in exterior domains in R"”.

Theorem 1.1 (Armstrong and Sirakov [1]). Assume that n > 3 and the nonlinearity f : (0,00) —
(0,00) is continuous and satisfies

lim inf > 0. (1.2)

s=0t g +7s

Then the inequality (1.1) has no positive solution in any exterior domain of R™.

The exponent 1 + % in (1.2) is optimal because, as pointed out in [1], for each constant
A > 1+ -2 there exists a positive constant C such that a solution of —Av = v* in R™\ {0}, which
-2
tends to zero as |y| — oo, is v(y) = Cly|>-T.

When v is a positive solution of (1.1) on the entire set R™, Theorem 1.1 was proved by
D’Ambrosio and Mitidieri [6].
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Theorem 1.2 (Armstrong and Sirakov [1]). Let f be a positive continuous function on (0,00)
which satisfies
lim e*f(s) =00 for every a > 0. (1.3)

5§—00

Then the inequality (1.1) has no positive solution in any exterior domain of R2.

Theorem 1.2 is also sharp as explained in [1].
In this paper we study the nonexistence of positive solutions of the biharmonic inequality

—A% > f(v) (1.4)
in exterior domains in R"™. When n > 3 we obtain the following result.

Theorem 1.3. Let f be a positive continuous function on (0,00) which satisfies

lim inf f(sz >0 and lim @:oo. (1.5)
s—0+t Sl‘l’m S§—00 S8

Then the inequality (1.4) has no C* positive solution in any exterior domain of R™, n > 3.

Remark 1. The exponent 14+ -2 in (1.5) is optimal because for each constant A € (1+-25, 14+ -2)
(resp. A> 1+ ﬁ) there exists a positive constant C' such that a solution of

A%y =" in R"\ {0}, n>5 (resp. n =3 or 4), (1.6)

-4
which tends to zero as |y| — oo, is v(y) = Cly|>-T.

Remark 2. The exponent —1 in (1.5) is optimal because for each constant A < —1, (resp. A €
(—=3,—1)), there exists a positive constant C' such that a solution of (1.6), which tends to infinity

—4
as |y| — oo, is v(y) = Cly|>-T1.

Remark 3. We conjecture that Theorem 1.3 is true when in (1.5) the condition on f at oo is
replaced with
lim inf le) > 0. (1.7)
s—00 ST

It can be shown that this conjecture is true under the added assumption in Theorem 1.3 that v is
radial.

By Remarks 1 and 2, we see, in strong contrast to Theorem 1.1, that a growth condition on
f at both s = 0 and s = oo is necessary for nonexistence of positive solutions of (1.4) in exterior
domains of R", n > 3.

Our two dimensional result for (1.4) is the following theorem. As is Theorem 1.2 and in contrast
to Theorem 1.3, a growth condition on f is only needed at s = oo for nonexistence of positive
solutions of (1.4) in exterior domains of R?

Theorem 1.4. Let f be a positive continuous function on (0,00) which satisfies

lim inf &

0. 1.8
s—oo s~1logs - (18)

Then the inequality (1.4) has no C* positive solution in any exterior domain of R2.



Remark 4. The exponent —1 in (1.8) is optimal because for each constant A € (—2,—1) there
exists a positive constant C such that a positive solution of

—AZy>0* in R?\ B,(0),
which tends to infinity as |y| — oo, is v(y) = 2C|y|?log |y| — |y|® where b = 2\ + 4 € (0,2).

Remark 5. We conjecture that Theorem 1.4 is true when (1.8) is replaced with (1.7). By Lemma
2.8 this conjecture is true under the added assumption in Theorem 1.4 that v is radial.

Since there are continuous functions f : (0,00) — (0,00) satisfying (1.5) (resp. (1.8)) which
are not bounded below by a convex function g : (0,00) — (0, 00) satisfying (1.5) (resp. (1.8)), one
cannot immediately reduce the the proof of Theorem 1.3 (resp. Theorem 1.4) to an ODE problem
by the standard method of averaging which consists of replacing f in (1.4) with such a g, averaging
the resulting inequality, and using Jensen’s inequality. In particular, obtaining nonexistence results
for (1.4) under assumption (1.5) (resp. (1.8)) is much more difficult than obtaining them, say, for

—AZy >, (1.9)

A

where A € R\ (0,1) is a constant, because the function f(v) = v* is convex. Our results when

applied to (1.9) give the following corollary.

Corollary 1.1. Suppose A € R, rg > 0 and n = 2 (resp. n > 3). Then (1.9) has C* positive
solutions in R™ \ By, (0) if and only if

4

n —

A< —1 (resp. A< —=1 or A>1+ 2).

Proof. The “if” part of the corollary follows by scaling, if necessary, the examples in Remarks 1,
2, and 4. The “only if” part of the corollary follows from Theorems 1.3 and 1.4 when A # —1 and
from Lemmas 2.8 and 2.10 when A = —1. ]

The result in Corollary 1.1 above is different from the study of (1.9) in the whole space R™.
Mitidieri and Pohozaev [15, Theorem 7.1, pg. 31] proved that (1.9) has no solution in R™ if
1 <A<1+4/(n—4). In particular, no entire solution exists for all A > 1 in dimensions n = 3 and
n = 4.

Let us briefly describe the methods we employ in this paper to deal with the biharmonic
inequality (1.4). The method used in [1] to prove Theorems 1.1 and 1.2 depends only on properties
related to the maximum principle. Since the maximum principle does not hold for the biharmonic
operator, we adopt a different approach to prove Theorems 1.3 and 1.4 which relies on a new
representation formula and an a priori pointwise bound for nonnegative solutions of —A2u > 0
in a punctured neighborhood of the origin in R™, which we state in Appendix A. We assume for
contradiction that there exists a positive solution v(y) of (1.4) in an exterior domain and apply
this representation formula (A.5) and pointwise bound (A.3) to the 2-Kelvin transform u(x) of the
function v(y). A crucial step in our approach is to show using (A.5) that the estimate (A.4) can
be improved to

/ —A?%u(z) dr < oo.
|z|<1

This will then imply that
/ u(z)de = o(r®) asr — 0T,
lz|<r

3



which will allow us to obtain with the help of Lemma 2.5 a refined representation formula for w,
the crucial term of which is, instead of (A.6),

~

= xTr — 2u .
N(x) = /B L H DAy

Here ® is the fundamental solution of A? in R™ given by

||~ ifn>5 (1.10)

log — if n =4 (1.11)
D(z) = A =]

— || ifn=3 (1.12)

—|z[?log % if = 2 (1.13)

where A = A(n) is a positive constant. Finally we are able to raise a contradiction by providing
with the help of Lemma 2.1 various estimates as r — 0T of expressions involving f‘x . N (x) dx.

The form and sign of the fundamental solution ® have a large influence on the proo%s of Theorems
1.3 and 1.4. The proofs in cases (1.10) and (1.11) are similar but very different from the proof in
case (1.13). The proof in case (1.12) is a hybrid of the proofs in the other three cases. We have
tried to avoid repetition of arguments which occur in two or more cases by giving them, without
repetition, in the proofs of some lemmas in Section 2. Also, since the first few paragraphs of the
proofs in cases (1.10)—(1.12) are the same, we have in Section 3 presented them only once.

For simplicity and to more easily compare our results to those in [1], we stated in Theorems 1.3
and 1.4 special cases of our more general results which are the following two theorems and which
address the nonexistence of positive solutions of the inequality

A% > [y f(w) (1.14)
in exterior domains in R, n > 2.

Theorem 1.5. Suppose o < 2 is a constant, §) is a compact subset of R", n >3, and f : (0,00) —
(0,00) is a continuous function satisfying

s=0F ¢ +5=5 s—o0 g—1t+3

lim inf lf(i 20 and  lm 28 o (1.15)

Then there does not exist a C* positive solution v(y) of (1.14) in R™\ Q.

Theorem 1.6. Suppose o € [0,2) is a constant, Q is a compact subset of R?, and f : (0,00) —
(0,00) is a continuous function satisfying

& .
Y log?

lim inf fgs)a [l (ig US >0

s—oo g—1t3 (]Ogs) -2

(1.16)

for some integer k > 2 where log? = logolog, log® = logologolog, etc. Then there does not exist
a C* positive solution v(y) of (1.14) in R?\ Q.

Remark 6. Theorems 1.5 and 1.6 with ¢ = 0 immediately imply Theorems 1.3 and 1.4, respec-
tively.



Remark 7. Similar to Remarks 1, 2, and 4, the exponents 1+ % and —1+ 7§ in (1.15) are optimal
and so is the exponent —1 + ¢ in (1.16).

Mitidieri and Pohozaev [15, Remark 9.1] have shown that the problem
£A™u > |22 ul?, @ € R\ {0},

has no nontrivial weak solution if m,n > 1 and ¢ > 1. Also, nonnegative solutions of problems of
the form
—A"y = f(z,u) or —A"u> f(x,u) (1.17)

when f is a nonnegative function have been studied in [4, 5, 11, 12, 13, 14, 18, 19, 20] and elsewhere.
These problems arise naturally in conformal geometry and in the study of the Sobolev embedding
of H?™ into L%

Nonexistence results for entire solutions u of problems (1.17) can be used to obtain, via scaling
methods, estimates of solutions of boundary value problems associated with (1.17), see e.g. [16, 17].
An excellent reference for polyharmonic boundary value problems is [9].

Also, weak solutions of A™wu = p, where p is a measure on a subset of R™, have been studied
in [3, 7, 8], and removable isolated singularities of A™u = 0 have been studied in [13].

2 Preliminary results

In this section we provide some results needed for the proofs of Theorems 1.5 and 1.6.

Lemma 2.1. Suppose m > 1 and n > 2 are integers and I'(z) = I'(|z]) is a radial solution of
A™T =0 in R™\ {0}. For each r >0, let

1
_|8Br| |

u(x;r) I'(lx —y|)dSy for x e R™. (2.1)

yl=r

Then

St AL 20 e ) s

1=0 o ’

_1 AT o
u(z;r) = {ZZO ai(r)’xFZ’ if x| <r

where ag = 1 and
= Az)? =il2inn+2)(n+4)---(n+2—2)] fori=1,2,...,m—1.

Proof. Since u(x;r) is radial in x, we can define v : [0,00) % (0,00) — R by v(|z|,r) = u(x;r) and
to prove Lemma 2.1 it suffices to prove

’ Z?:ol —Azi(p) r2 if p >
Since
1
dS,
W) = gy [ vl o)




we see that
v(p,r) =wv(r,p) for (p,r) € (0,00) x (0, 00). (2.4)

Since u(z;r) is a C* radial solution of A™u = 0 in B,(x) there are constants ¢; such that

m—1 '
u(z;r) = Z cilz|* for |z <.
i=0

Hence (AJu)(0;7) = ¢;AJ|z|¥ = cja; for j = 0,1,...,m — 1. On the other hand, it follows from
(2.1) that (AJu)(0;7) = AJT(r) and hence
J
C; :M for j=0,1,2,...,m — 1.
J
@
Thus (2.2), and hence (2.3), holds for |z| = p < r and by (2.4) we have (2.3) also holds for p > r. O

Lemma 2.2. Suppose r € (0, %] and o > 1. Then

ely| \* 91 ely \“
(log—) yl z—(log—) for r<lyl<1.
r 4 r

Proof. Case 1. Suppose r < |y| <1 and |y| < 3/4. Then

3 e|y| “ 3 2
— [ log —= > —(1 @ > .
4<0g r> _4(0ge) > |yl

Case II. Suppose r < |y| <1 and |y| > 3/4. Then

3 e’y‘ “ 3 [} 3 a 2
e g1 > > — > .
1 <log . > > 4(log?)e) > 42 > |y|

Lemma 2.3. Suppose f: (0,00) — (0,00) is a continuous function satisfying

lim s*f(s) =00 for some constant o > 0.
S$—00

Then there exists a continuous function f:(0,00) = (0,00) such that f < f on (0,00), f = f on
(0,1}, f is decreasing on [1,00), and

Slggo s¥f(s) = oo. (2.5)
Proof. Define f : (0,00) — (0, 00) by
f(s):{f(.s), %f0<8§1
minj<¢<s f(¢), if1<s <o0.

Clearly f is continuous, f§ f, and f is decreasing onA[l, 00). Let M > 1. Choose sy > 1 such that
C*f(¢) > M for ¢ > sg. Choose s; > sp such that s§ f(sg) > M. Then for s > s; we have

s*f(s) = s*min{ f(s0), min ()}
> min{s{ f(s0), min ¢*f(()} > M

50<(¢<s

which proves (2.5). O



Lemma 2.4. Suppose h is a solution of
A’h =0 in B(0)\ {0} CR", n>3. (2.6)
Then there exist constants ¢;, 1 = 1,...,5, such that for 0 < r <1 we have
4 ar" 2 et 4 eglogr+car 245 ifn=3o0rn>5
|| h(z) do = ) 5 s )
<|z|<1 cr® +cglogr + es(logr)® +car™* +c¢5  if n =4.

Proof. 1t follows from (2.6) that there exist constants ¢;,i = 1,2,3,4, such that for 0 < p < 1 we
have

hp) o= ot / h(z)dS, = Gip?+épte3ptM g™ ifn=3o0rn>5
P 0B, lz|=p ¢ G1p*+ e+ é3logp+ép 2 ifn=4.

Thus

1 1
/ |z~ *h(z) dz = / pt ( / h(m)dSm> dp = 0B / p"5Rh(p) dp
r<|z|<1 r |z|=p r

|0B1 | fl Cip" B Feopt P i3ptHéup ) dp ifn=3orn>5
0B1| [} (19 + eop™" + ésp~ log p+ éap~)dp ifn =4

from which we obtain Lemma 2.4. O
Lemma 2.5. Suppose v € L}, (B), where B = B1(0) C R", n > 2. If

A*v =0 inD'(B\{0})
and

/x<r lv(z)|dz = o(r®) as r— 0T (2.7)

then for some constant a and some C* solution H of A’H =0 in B we have

v=a®+H iin B\{0}
where ® is given by (1.10)—(1.13).

Proof. Since the support of A%v is a single point we have A2v is a finite linear combination of the
delta function and its derivatives:

A’v =Y agD’ in D'(B).
|B1<k

We now use a method of Brezis and Lions [2] to show ag = 0 for |3| > 1. Choose ¢ € C5°(B) such
that (—1)%/(DP¢)(0) = ag for |B| < k. Let w.(z) = @(%). Then, for 0 <e < 1, . € C§°(B), and

/wv%z@vwwa=§j%uﬁ®%

|B]<k
= ag(-D)VI5(DPpe) = D ag(—1)I(DP.)(0)
18|<k |B]1<k
1
_ Z ag( )\6| uE] DB Z aﬁ IB\
|81<k |B|<k



On the other hand,

2, LAz, (%
/UA ©Oe —/v(x)€4A @(8) dz
§g lv(z)|dz = o(e™') as e— 0T
lz|<e

by (2.7). Hence ag = 0 for |8] > 1 and consequently, letting a = ag, we have A%(v — a®) = 0 in
D'(B). Thus the lemma follows from the fact that weakly biharmonic functions are C'. O

Lemma 2.6. Suppose u(x) is a C* positive solution of

20—4n

—A%u > alz| 72 u(@) in By(0)\ {0} CR", n>3, (2.8)

where o > 0 and o < 4 are constants and A =1 + %. Then

lim inf u(r)

e 2y = (29)

where u(r) is the average of u on the sphere |x| =r and
J(r) = / Iyl (=A%u(y))dy  for 0<7r<1.
<lyl<1

Proof. Suppose for contradiction that there exists €,79 € (0,1) such that @(r) > er?J(r) for
0 < r < rg. Then, letting C denote a positive constant whose value may change from line to line,
we have for 0 < r < rg that

= [ WAt as,

= 1?08, |r" T (— Au(r))
= Cr(—AZu(r))

> Cr (r57 (a(n)*)

> Or' I (er 2 ()

— ot §"+2AJ( »

= Cr ()M

Consequently —J'(r)J(r)~* > Cr~! for 0 < r < ro which implies

1 S 1 1 _
= DJ(ro) L = A—1 [ J(ro) T TPt

zClogr—0—>oo
r

as r — 07, a contradiction, which proves the lemma. O

Lemma 2.7. Suppose u is a C* positive solution of

—A%u >0 in By(0)\ {0} CR", n>2,



such that
/ e(x)u(r)dr < oo (2.10)
|z|<1

where ¢ : B1(0) \ {0} — (0,00) is a continuous radial function satisfying

/| - o(z)dr = co. (2.11)

Then
/ ~A?u(z) dr < co. (2.12)
|z|<1

Proof. Let F(p) = —A2u(p) = —A2i(p). Then for some constants cjand ¢y we have for 0 < r < 1
that
_ c1 4 cologl — (NF)(r) itn=2
Au(r) = o )
1+ cr "= (NF)(r)<0 ifn>3

where (NF)(r) = frl s~ (n=1) fsl PV IF(p)dpds.
Suppose for contradiction that (2.12) is false. Then fol p""LF(p)dp = oo and hence as r — 0"
we have

logl ifn=2
NF)(r) >> "
o> {5 )

Thus for small » > 0 we have Au(r) < 0. Hence the positivity of @ implies u > ¢ > 0 for small
r > 0, which together with (2.10) and (2.11) gives a contradiction and completes the proof of
Lemma 2.7. O

Lemma 2.8. There does not exist a positive radial solution of
SA% W) in B2\ By, (0) (213)
where 1o > 2 and o € [0,2) are constants and f : (0,00) — (0,00) is a continuous function such

that
lim inf - 53)(, > 0. (2.14)
§—00 g 2

Proof. Suppose for contradiction that v(r) is a positive radial solution of (2.13). Let F(r) =
—(A%v)(r) and (NF)(r) = f:o 1 frso pF(p)dpds. Then for some constants cy, ..., c4 we have

v(r) = ¢1 + calogr + c3r® + cqr?logr — (N2F)(r). (2.15)

If frso pF(p)dp — o0 as s — oo then (NF)(r) >> logr as r — oo and hence (N2F)(r) >> r2logr
as  — oo which together with (2.15) contradicts the positivity of v. Thus

/ pF(p)dp < oco. (2.16)
ro
We claim that

lin_l)infv(r) = 0. (2.17)



To see this, suppose for contradiction that (2.17) is false. Then for some £ > 0 we have v(r) > ¢
for ro <r < oco. Thus by (2.13), (2.14) and (2.15) we have

> . 5
Crov(r)t=2

1 1

> s 2 =
Cro(r2logr)t=2 — Cr?logr

F(r) = =A%(r) > r77 f(u(r))

for r large

which contradicts (2.16) and proves (2.17).
By (2.16),

(NF)(r) := /T % /OO pF(p)dpds =o(logr) as r— o0

and thus R
(NNF)(r) =o(r*logr) as r— oo. (2.18)

Since v(r) solves (2.13), there exist constants ¢1, ..., ¢, such that
v(r) = é1 + o logr + é3r? + ér?logr + (NNF)(r). (2.19)
Since v > 0, it follows from (2.18) and (2.19) that
) (2.20)

If (NF)(r) — oo then (NNF)(r) >> 12 as 7 — o0 which together with (2.19) and (2.20) implies
v(r) — oo as r — oo which contradicts (2.17). Hence (N F)(r) is bounded. Thus

N o0 1 [e.9]
(NF)(r) = / —/ pF(p)dpds =o(1) asr— oo
T S S
which implies
(NNF)(r) =o(r?) as r— oco. (2.21)
Since v solves (2.13) there exist constants ¢y, ..., ¢4 such that
v(r) = é + éalogr + é3r? + éqrlogr — (NNF)(r). (2.22)

By (2.21) and (2.22) and the positivity of v we have ¢4 > 0 and then by (2.17), ¢4 = 0. Hence
by (2.21) and (2.22) and the positivity of v we have ¢3 > 0 and then by (2.17), ¢3 = 0. Thus by
(2.22)

w(r) = & + & logr — (NNF)(r)

and so —Av = NF > 0 which together with the positivity of v contradicts (2.17) and completes
the proof of Lemma 2.8. O

Lemma 2.9. Suppose z,y € R? and y # 0. Then

' ly| |
I(x,y) ::/0 (1 —1t)log - ] dt§2/0 loggds<oo.

10



Proof. Since I(0,y) = 0 we can assume x # 0. Under the change of variables 7 = %t we have

I(z,y) = ]y\ m < ]y\ )log 71 dr
ol Jo ol ) BT =z

IEd|

1
< M v <1 |y| > log dr
=] Jo [] 1=

where ¢ : (0,00) — R is given by

o) = 3 [ (13 )oerpen

1 fmin{p,2} 1
< - / log =——
P Jo 11— T’

112 1
<{§f010g|1?d7', lprZ

1 1 :

;foplog T dr, f0<p<2

2 1 LS|
§/ log dr :2/ log — ds.
0 [1—7] o 8

O
Lemma 2.10. There does not exist a C* positive solution of
~A’v >0l i R? \m, n >3, (2.23)
where R is a positive constant.
Proof. By averaging (2.23) we can assume v is radial. Let F(r) = —A2uv(r). Then
v(r) =1 + cor? + e3r e ®(r) — (N2F)(r) forr >R (2.24)

where ®(r) is given by (1.10)—(1.12) and

:/ sl_”/ P LE(p)dpds > 0.
R R

Thus for some positive constant C' we have v(r) < Cr? for » > R, which implies

F(r) = —A%(r) > v(r)™' > for r > R.

1
Cr?
Hence (NF)(r) — oo as r — oo. Thus (N2F)(r) >> r? as r — oo which together with (2.24)
contradicts the positivity of v(r). O

11



3 Beginning of the Proof of Theorem 1.5

In this section we begin the proof of Theorem 1.5. In Sections 4, 5, and 6, we will complete the
proof of Theorem 1.5 when n > 5, n = 4, and n = 3, respectively.

Beginning of the proof of Theorem 1.5. Suppose for contradiction that v(y) is a C* positive solution
of (1.14) in R™ \ Q. By restricting the domain of v to the complement of a large ball centered at
the origin and then scaling this restricted domain, we can assume (2 = By (0) and

f(s) > sTRE for 0<s <1 (3.1)
Moreover, by Lemma 2.3, we can assume
f is decreasing on [1,00). (3.2)

Let u(z) = |y|"*v(y), y = % be the 2-Kelvin transform of v(y). Then

[2]?
v(y) = |3:|"_4u(:13) and AQU(y) = |:E|"+4A2u(:13).

(See [19] and [20].) It follows therefore from (1.14) and (3.1) that u(z) is a C* positive solution of

20—4n 4—0c
|lz| 2 u(z) e, if 0 < u(z) < |zt

A e, it > 0 O 6

—A%u(z) > {

Let ¥ and N be as defined in Appendix A. Since u is a C* positive solution of (A.2), it follows
from Theorem A.1 that u satisfies (A.3), (A.4), and (A.5).
By (A.5) and Lemma 2.4, there exist constants ¢;,i = 1,...,5, such that for 0 < r < 1 we have

/ [~ hu(z) do = / [N () da
r<|z|<1 r<|z|<1

n {clr"_Z + cor™ ™t 4 ¢ log% +ear24¢ ifn=3orn>5

3.4
cir? 4 co log £ + c3(log 5)2 +er 245 ifn=4. (34)

4 Completion of the Proof of Theorem 1.5 when n > 5

When n > 5, we complete in this section the proof of Theorem 1.5 which we began in Section 3.

Completion of the proof of Theorem 1.5 when n > 5. For x € R™, n > 5, we see by Lemma 2.1
that

(4.1)

1 1 iS. — rd-n _ "7_47’2_"]3:\2, if x| <7
|0B:| Jjyj=r |7 —y["* Y |z|*" — %17‘2|3:|2_", if || > 7.

It therefore follows from equations (1.10) and (A.1) that for » > 0 we have

—Ee By, iy <o

\I’(ﬂj,y) dS; = n_n r .
{—r4 p<m> , iflyl >

1
A|8B7‘| lz|=r

where p(t) ;== 1 — "% + "T_A‘t"_z is bounded between positive constants for 0 <t < 1. Hence

2rly|?, if
—/ U(z,y)dS, ~ §|y| ’ 1 lyl<r for  (r,y) € (0,00) x R™.
|z|=r 7, if [y| >

12



(If f and g are nonnegative functions defined on a set S then when we write “f(X) ~ g(X) for
X € S” we mean there exist positive constants C and Cy such that C1g(X) < f(X) < Cag(X) for
all X € S.) Thus by (A.6), for 0 <r < %, we have

[, e [ L [ v s an- )y
~/T<|y<1 </|y1 2p‘3lyl2dp+/r|y p‘ld,o> (—A%u(y)) dy
; 20 dp ) (~A%u(y) dy
/y|<r </r )

e
- (log M) (—A2u(y)) dy + g(r) (42)
r<ly|<1 r
by Lemma 2.2 with o« = 1 where
1 1
0<g(r):= <—2 — 1> / ly2(—A%u(y)) dy = o <—2> as r— 0" (4.3)
r lyl<r r

by (A.4).
Let o(t,r) =t~?log £. Since @4(t,7) < 0 for t > r > 0, we see for 0 < r < 1 that

og €|y| 2 _ . 2 2u
[ (o=t catutmay= [ ot luf- ) ay
<o) [ Pty o) [ P ARu()dy
r<|yl<vr

Vr<lyl<1

1 - O -
L st (o) [ wPata

=o(r /% as r—o0"

IN

by (A.4). It follows therefore from (4.2) and (4.3) that
/ |z| N (z)dz = o(r™?) as r—0T.
<|z|<1

Hence, by (3.4) and the positivity of u we see that the constant ¢4 in (3.4) is nonnegative and thus
by (3.4), (4.2), and the positivity of g we have

r

/ |z~ u(z) do > —/ < e“") (—A2u(y))dy — Clog & for 0<r<> (44)
<|z|<1 <lyl<1 T 4

where C is a positive constant independent of 7.
By (A.3) there exists a constant M > 1 such that 0 < u(z) < M|z|>~" for 0 < |z| < 1. Define
I, 15 : (0, 1) — [0,00) by

Li(r)=M lz| ™" 2dz and IL(r):= / |z| " u(z) dz
zeS(r) z€S2(r)
where

Si(r) :={r € R":r <|z| < 1and |z < u(z) < M|z|* "}

13



and
So(r):={z €R":r < |z|] <1and 0 < u(z) < |z[*"}.

Then Sy (r) U Sa(r) = B1(0) — B,-(0),

1
Iy(r)=0 <log ;) as r— 0%,
and for 0 < r < i we have

Li(r)+ Ix(r) > / 2|~ tu(x) da

r<|z|<1

> o [ (10 (a%u)ay - con
r<|y|<1 r

,
by (4.4).
By (3.3) we have

/ <10g %> (=A%u(y))dy > Ji(r) + Jo(r) for 0<r<1
r<|y|<1 r

where

J L 20:3” 1+% d
2(r) = S()\y! 2 u(y) T2 dy
> (T

and

= [ . <1og e'y') Iy F (b)) dy.

r

Before continuing with the proof of Theorem 1.5, we prove the following lemma.

1
IOg _> )

T

1

Lemma 4.1. Asr — 0T we have
Ji(r)

I
Q
N

and

Proof. By (4.8), (4.7), and (4.5) we have
Ji(r) < Ji(r) + Ja(r) < C [11 (r) + Iy(r) + log ;]

:Cll(r)—i-O(log%) as r— 0.

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

If S1(0) = 0 then I(r) = Ji(r) =0 for 0 < r < 1 and thus (4.10) follows from (4.12). Hence we

can assume S1(0) # (. So for r small and positive, S1(r) # 0, I1(r) > 0, and

Ji(r) > Leisl.llf(r) <10g #) ‘y’—2+af(’y‘n—4u(y)):| %
> | nt (1o B2 2y any )| A

14



by (3.2) and because 1 < |y|"u(y) < M|y|~2 for y € S1(r). Thus

M2~ (r)

Ii(r)
> min inf  (Mly|~2)'"=2f(M|y|~2), <10 i) inf  (Mlul=2)1=9/2 £( M _2}
>min{ it (M), (s =) it () ()
—~o00 asr—0F

by (1.15). Hence (4.12) implies (4.9); and (4.9) implies (4.11). Finally, (4.10) follows from (4.12)
and (4.11). O

Continuing with the proof of Theorem 1.5, it follows from (4.5), (4.11), and (4.7) that there is
a constant C' > 0 such that for 0 < r < 1 we have

1 ely| 2
C > S / <10g —> —A*u(y)) dy
log & Jr<jyl<1 r ( )

7 e () 2
> s log— | (—A%u(y)) dy
log & J repyl<1 vr ( W)
21/ —A%u(y) dy.
2 Jyr<iyl<t

Thus
/ —A?u(y) dy < oo. (4.13)
ly[<1

By (4.11) there exists a constant C' > 0 such that I;(2=0U+D) < C(j + 1) for j = 0,1,2,....
Thus for each € > 0 we have

o

—n—2+¢ —€j —n—2

T N D O M [, s ol
1( ) _j:O wESl(O)

< Z 27511 (270U+)
=0

Hence, for 0 <e <1,

/ ||~ u(z) de < M
|z<1 81(0)

and so taking ¢ = 1 we have for 0 < r < 1 that
3
/ u(z)de < / Tu(z)dr = o(r®) as r—0". (4.14)
e <r lz|<r 17|

Let F = A%y and
N(z) = / B —y)F(y)dy for =€ R
B1(0)

15



By (4.1) and (4.13) we have for 0 < r <1 that

V A
/|x|<r Aol = /y|<1 </|:c|<7’ o =yt d“) (—F(y)) dy
A
< /y|<1 </|x|<r |4 dx) (—F(y))dy

= Crt. (4.15)

In particular N € LL (B;(0)). Also for ¢ € C5°(B;1(0)) we have

NA%2pdx = / (/ Oz — y)A%p(z) dm) F(y)dy
B1(0) B1(0)

[ ewPw .
B1(0)
Thus A2N = F in D'(B;(0)).

Let v =u— N. By (4.14) and (4.15) we see that v satisfies (2.7). Since A2u = F in D'(B;(0) \
{0}) we have A%v = A?u—A2N = 0 in D’'(B;(0)\ {0}). Thus Lemma 2.5 implies for some constant
a and some C™ solution H of A2H = 0 in B;(0) we have

B1(0)

u=N+a®d+H in B(0)\{0}. (4.16)

Hence, since N < 0 and u > 0 we have a > 0.

Case I. Suppose the constant a in (4.16) is positive. By (4.1) we have

—4 - if |y <
m |x|=pq>(x )= {I!Oy\4‘”p“‘5, if :z; > g-
Thus for 0 < r < 1 we have
1 4 S 2
m r<|z|<l ’x‘ N /y|<1 / A‘({)Bl’ lz|=p ( - y) 15 dp(—A U(y)) dy

< Iyl4 "o dp + 1p_1dp (—A%u(y)) dy
r<ly|<1 ly|
+ /y|<r </T1 p~! dp) (—A%u(y)) dy

:0<10gE> as r— 07"
r

by (4.13) and the fact that

e
log ) (-8%uty)dy < (10 ) | Au(y)dy
/r<y|<1< |yl ( r) r<lyl<(log 1)-1

+ <10g <e log %)) /|y<1 —A2u(y) dy.

16



Hence by (4.16)

A 1
/ ||~ u(x) da :a/ \xf‘lm dm—0<log —>
r<|z|<1 r<|z|<1 || r

1
> Clog - for small r > 0
where C'is a positive constant. Thus by (4.6) and (4.11) we have
1
Ir(r) > C'log . for small r > 0.

On the other hand, by Holder’s inequality and (4.10),

20—8 20—4n
B = [ ol (ol () do
Sa(r)

% n—2
< / \x]_2 dx Jo(r)n+2=o
0<|z|<1
1 n;Z
n+2—o
:O((log;) > as r— 0"

which contradicts (4.17) and completes the proof of Theorem 1.5 in Case L.

Case II. Suppose the constant a in (4.16) is zero. Then
O<u=N+H for 0<]|z|<1.

Thus —N and u are positive and bounded for 0 < |#| < 1/2 and so (3.3) implies

20—4n 1+ 4—0o _
n—2

—A%u > Clz| "2 u in By(0)\ {0}

for some positive constant C. Also, since (4.1) implies

L3 1 ; 1 ds
= —Ndex:/ - —F(y))dy
AN AlOBy| Jig)=r (=) <1 10Br] Jjg=r !w—y!"‘4( )

4
= _/ ly|* (= F(y))dy for 0<7r<1/2
n Jr<lyl<1

we see that

N A
Noi= [ P dy < .
yl<1 1Yl

Averaging (4.18) we obtain

0 < a(r) = (N — No)(r) + ap — a1 Ar? for 0<r<1

for some constants ag and aq.

17

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)



By (4.20), (4.21) and (4.1) we have

S o))

1 dS; i
/y<1 (‘8B ‘ |SC|_7” ’:1; ‘n 4 ’y‘ ) (y) Y
—n 4 4, o By
:/ <r4 Ly ST \y!2> F(y)dy—/ nod o rnpg)dy (4.23)
ly|<r n <1 7
—— [ it 1_<m>"‘4+n_—4<m>"—2
ly|<r r n r

n—4 n n—4 (r\? n
—/ —( > ly[* " Fy )dy—/ (—) ly[* " F(y) dy
r<yl<yr T\ Yl Ji<lyl<t ™\ Y

—0 as r—0F

F(y)dy

by (4.21). Thus by (4.22) we have ay > 0. If ag > 0 then by (3.3) and the boundedness of u in
B1(0) we have

4n 4—0o

“F(r) = ~APu(r) > r o a(r)

8—2 142=2
> 74_4_ n72o- (@) n—2
- 2

for r small and positive and thus for small g > 0 we have

/ |y [1( dy—/ / y) dS, dr
ly|<ro lyl=r
0

which contradicts (4.21). So ag = 0,a(r) — 0 as » — 0 and by (4.22) and (4.23) we have

u(r) (N —=No)(r) e
A A !

d4en "' n—4 g\
= [ wer - (2) s (2
\y|<r T n T

—4
J(r) = / nodeen A2y dy for 0<r <1
r<lyl<1t T

(=A%u(y))dy + (J(r) —ay)r?  (4.24)

where

(J(0) may be o0.)
Case II(a). Suppose a; < J(0). Then there exists ¢ > 0 and 79 € (0,1) such that a; < (1 —¢)J(r)

for 0 < r < 7. Thus by (4.24), EX) > er?J(r) for 0 < r < ro, which together with (4.19) and
Lemma 2.6 gives a contradiction and thereby proves Theorem 1.5 when n > 5 in Case II(a).

Case II(b). Suppose a; > J(0). Then for 0 < r < 1 we have
-4
() = an)r® < () = T == [ TR alu(y) dy
lyl<r

18



and hence by (4.24) we have

0< 0 < /|y<r|y|4-" [1 - < >4_n+ - <<m>2 - <@>2)

= [ e () Cauna )

where p(t) := 24 — =2 442 — 224 Since p(1) = p'(1) = p”(1) = 0 and

% §|ﬂ

n—i>>>0 for t>1

p"(t)=(n—4)(n—-2)(n— 1)tn—5 <t2 B

n J—
we see that p(t) > 0 for ¢ > 1. This contradicts (4.25) and completes the proof of Theorem 1.5
when n > 5 in all cases. O

5 Completion of the Proof of Theorem 1.5 when n =4

When n = 4, we complete in this section the proof of Theorem 1.5 which we began in Section 3.

Completion of the proof of Theorem 1.5 when n = 4. For x € R* we see by Lemma 2.1 that

1 e 15, {log2 — L 22?2 < (5.1)

= lo
0B, | Sle—yl |z —y| log & — +r2|z| 72, if |2| > 1

|z

It therefore follows from equations (1.11) and (A.1) that for » > 0 we have

1,.-2),,2 ;
1 =gyl if y[ <r
SRy RS (L
A10By] Jof=s (log 1) p (1) iflul =7

where p(t) := ((logt) — t2/4)/log(t/e) is bounded between positive constants for 0 < ¢ < 1. Hence
2rlyl?, if [y| <r
— V(x,y)dS, ~ for (r,y) € (0,00) x R"™.
[ e {W o, oy ) €00)

Thus by (A.6), for 0 < r < 1, we have

[ L [ vl as. dp-Au) g
~f " < /| 20 dp+ | " 50 1og 12 ‘dp> (~A%u(y)) dy
" /| (/ 1 2075y dp) (~A%u(y) dy

~ /T<y|<1 <log %> 2 (—A%u(y)) dy + g(r) (5.2)

r

by Lemma 2.2 with @ = 2 where

0< g(r) = <Ti2 _ 1) /|y<¢ (= A2u(y)) dy = o (%) as 17— 0" (5.3)
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by (A.4).
Let o(t,r) =t (log %)2 Since ¢y (t,r) < 0 for t > r > 0, we see for 0 < r < 1 that

/r<y|<1 <1°g >( Auly) dy = /r<y|<1“0<’y" )yl (= A%u(y)) dy

r

< o(r,7) / W2(~A2u(y)) dy + p(/r.7) / w2 (~A2u(y) dy
r<|yl<r Vr<lyl<i

l 2(_ A2y 1 o ? 2(_ A2y,
S L STOER (5 A I TS ST

=o(r%) as r—0"

by (A.4). It follows therefore from (5.2) and (5.3) that
/ |z| AN (z)dx = o(r™2) as r—0T.
r<|z|<1

Hence, by (3.4) and the positivity of u we see that the constant ¢4 in (3.4) is nonnegative and thus
by (3.4), (5.2), and the positivity of g we have

1 2 2 1
/ 2|~ u(x) de > —/ <log M) (=A%u(y))dy — C (log E) for 0<r< - (54)
r<l|z|<1 r<|y|<1 r r 4
where C is a positive constant independent of 7.
By (A.3) there exists a constant M > 1 such that 0 < u(z) < M|z|~2 for 0 < |z| < 1. Define
117]2 : (071) - [0,00) by

L(r):=M lz|Cdzr and Iy(r):= / |lz| " u(z) da
z€eS1(r) z€Sa(r)
where
Si(r)={zeR':r<|z| <1land 1< u(zx) < M|z|%}
and

So(r):={z € R*:r < |z| <1 and 0 < u(z) < 1}.
Then Si(r) U Sy(r) = B1(0) — B,.(0),

1
I(r)=0 <log ;) as r— 0%, (5.5)
and for 0 < r < i we have
L) + I(r) > / [ ~hu(z) do (5.6)
r<|z|<1
1 e]y\>2 2 e\?
> — log — —A%u(y))dy — C (log - 5.7
c r<ly|<1 < r ( ) < 7‘) (5.7)
by (5.4).
By (3.3) we have
2
/ <10g M> (=A2%u(y))dy > Ji(r) + Jo(r) for 0<7r<1 (5.8)
r<|y|<1 r
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where

and

Before continuing with the proof of Theorem 1.5, we prove the following lemma.

Lemma 5.1. Asr — 07 we have

and

Proof. By (5.8), (5.7), and (5.5) we have

T () < (1) + Jo(r) < C [11 () + Io(r) + (1og ;)1

2
=CL(r)+ 0 ((log%) ) as r— 0.

(5.9)

(5.10)

(5.11)

(5.12)

If S1(0) = 0 then I(r) = Ji(r) =0 for 0 < r < 1 and thus (5.10) follows from (5.12). Hence we

can assume S1(0) # (). So for r small and positive, S1(r) # 0, I;(r) > 0, and

2
n) = | ur (10 2) \y!"‘zf(U(y))]Ile

r<|y|<1 r M

: ely| 2 —2\1—0/2 —oy| Lai(r)
> | inf |(log (=) 7= f (M y[~7)
by (3.2) and because 1 < u(y) < M|y|=2 for y € S1(r). Thus
M2 Jy(r)

11(7’)

r<lyl<yr VT ) Jr<lyl<t

2
me{ i (Mly| ™) F(Mly] ), (mgi) in <M|y|—2>1—0/2f<M|y|—2>}

— oo asr—0"

by (1.15). Hence (5.12) implies (5.9); and (5.9) implies (5.11). Finally, (5.10) follows from (5.12)

and (5.11).
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Continuing with the proof of Theorem 1.5, it follows from (5.5), (5.11), and (5.7) that there is
a constant C' > 0 such that for 0 < r < 1 we have

- ﬁ /r<y|<1 <10g M>2 (—A%u(y)) dy
ﬁ%f /\/F<|y<1 <log %)2 (A () dy

/ —A%u(y) dy.
Vr<lyl<1

>

I

Thus
/ —A?u(y) dy < oo. (5.13)
lyl<1

By (5.11) there exists a constant C' > 0 such that I;(2=0U+D) < C(j 4+ 1)? for j = 0,1,2,....
Thus for each € > 0 we have

o0
M A< Y oM

|z| 7% dx
51(0)

¢ 2*(j+1)<‘x‘<2*j
J=0 x€S1(0)

< ZQ—EJ'I (27 G+D)
7=0

o
Z]—I—l I < oo0.
j=0

Hence, for 0 <e <1,
/ || "4 e u(x) de < M || 707 da +/ 2|7 dr < oo
lz|<1 S1(0) lz|<1

and so taking ¢ = 1 we have for 0 < r < 1 that

/|m|<r u(z)dr < /| iu(:z:) dr =o(r®) as r—0", (5.14)

z|<r |$|3
Let F' = A%y and
N(z) = / d(z —y)F(y)dy for zeRL
B1(0)

By (5.1) and (5.13) we have for 0 < r <1 that

/x<r |N(x)|dx = /|y<l ( ‘xKrAlog T i dm) (—F(y))dy

< /|y<1 ( MAlogmd”“’) (—F(y)) dy

< Crilog ; (5.15)
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In particular N € LL (B(0)). Also for ¢ € C5°(B;(0)) we have

NA%2pdx = / (/ Oz — y)A%p(z) dm) F(y)dy
B1(0) B1(0)

= / e(y)F(y) dy.
B1(0)
Thus A2N = F in D'(B;(0)).

Let v = u—N. By (5. 14) and (5.15) we see that v satifies (2.7). Since A%y = FinD’'(B1(0)\{0})
we have A%y = A%u — A2N =0 in D’(B1(0) \ {0}). Thus Lemma 2.5 implies for some constant a
and some C™ solution H of A2H = 0 in B;(0) we have

B1(0)

u=N+ad+H in B(0)\ {0} (5.16)
Hence, since N < 0 and u > 0 we have a > 0.
Case 1. Suppose the constant a in (5.16) is positive. By (5.1) we have
—4 -1 e :
p p~tlog s, iflyl <p
Oz —y)dS, < L
AlOB1| Jia1=p T e g g iyl > .

Thus for 0 < r < 1 we have

i e[, [ 2
_— |7 (=N(x x —y)dS, dp(—A%u(y)) dy
A‘aBﬂ r<‘x‘<l’ ‘ y|<1 A’aBl‘ ‘Z“ =p ( ) ( ( ))
|yl
< / 110g—d,o+2/ “log Sdp | (—~A2u(y)) dy
r<|y|<1 r | | ly| P
L e
+ (/ p llog—d/)) (—A%u(y)) dy
lyl<r \Jr P
e e e\?
< (log - / <log ) A%y dy + | log — / —A%u(y) dy
( 7"> r<lyl<1 ] (~A%u(w) ( 7") lyl<r W
2
:0<<log§> ) as r— 0"

by (5.13) and the fact that

e

fog ) (-a%ut)ay < (1ox ) | Au(y)dy
/r<y|<1< |yl ( r> r<lyl<(log 1)-1

+ <log <e log 1>> / —A2u(y) dy.
r lyl<1
Hence by (5.16)

1\ 2
/ |lz| " u(z) dz = a/ lz|~* Alog L dz—o <10g —)
r<lz|<1 r<lz|<1 |z| r

1\ 2
>C <10g ;) for small » > 0
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where C' is a positive constant. Thus by (5.6) and (5.11) we have

1\2
Iy(r)>C <log ;) for small r > 0.

On the other hand, by Hoélder’s inequality and (5.10),

L(r) = /S . = (e 55 () da

4—0c

6= 2
< / 2|72 dx Jo(r)5=7
0<|z|<1
4
1\ 6=7
:O<<10g;> ) as r— 0"

which contradicts (5.17) and completes the proof of Theorem 1.5 in Case I.
Case II. Suppose the constant a in (5.16) is zero. Then

O<u=N+H for 0<]z|<1.
Thus —N and u are positive and bounded for 0 < |z| < 1/2 and so (3.3) implies
—A%u > Clz|" %7/ in B1(0)\ {0}

for some positive constant C'. Also, since (5.1) implies

2>|

(i=— [ —N()ds, = / L g S dS, (~F()dy
Yy

A A|OBr| Jjz)=r <1 10Br| Jizj= |z =y

2§/ <log )( F(y)dy for 0<r<1/2
4 <|y|<1 |y

we see that

Ry = /|y<1A<1og |y|>< F(y)) dy < oo.

Averaging (5.18) we obtain

~ ~

0<u(r)= (N—No)(r)+a0—a1Ar2 for 0<r<1

for some constants ag and aq.
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By (5.20), (5.21) and (5.1) we have
11—
S R
1 e e
= log —— dS, —log — | F(y) dy
/y|<1 <’8B ‘ |x|=r ‘.Z' - y’ ‘m) ( )

= o__oi_lmz . Lo
_/y|<r<lg 1 ] 4< >>F(y)dy /<|y<14 ly| "2 F(y) dy (5.23)

%
log— 1\
=—/ log — 7 —1< >e F(y)dy
lyl<r ’y‘ 08 Ty T 8 147

—/ 'y‘ ( ) y) dy — / L |y>e <10g i) F(y)dy
<Jyl<v/F 4 log 1 &1yl Jr<lyl<1 4 10g 1 Y|

—0 as r—0F

N

/N

by (5.21). Thus by (5.22) we have ag > 0. If ap > 0 then by (5.19) we have
—F(r) = —=A2u(r) > Cro Su(r)3~7/?
3—0/2
> o—8 @
> Cro 2 )

for r small and positive and thus for small ¢y > 0 we have

/|y<m <10g !y\>( (y))dyz/or0 <log§) /y| —F(y)dS, dr

\8B1]/ log (—F(r))dr = c0

which contradicts (5.21). So ag = 0,a(r) — 0 as » — 0 and by (5.22) and (5.23) we have

alr) _ (N=Nor)
A A 1
N / <lo ) b — > <‘_T|>2 (—A%u(y)) dy + (J(r) — ar)r? (5.24)
= ly|<r STl |y log |—Z‘ 4 log ‘_; y))ay 1 .

where
J(r) 12/ —\ |72(=A2%u(y))dy for 0<r<1.
r<lyl<1 4

(J(0) may be oo.)
Case II(a). Suppose a1 < J(0). Then there exists ¢ > 0 and ry € (0, 1) such that a; < (1 —¢)J(r)

for 0 < r < rp. Thus by (5.24), ( ) > er?J(r) for 0 < r < 7, which together with (5.19) and
Lemma 2.6 gives a contradiction and thereby proves Theorem 1.5 when n = 4 in Case II(a).

Case II(b). Suppose a; > J(0). Then for 0 < r < 1 we have

() = an)r® < (T(r) = TO)r* = - /| | T Au(y) dy
y|<r
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and hence by (5.24) we have

<2 (i ()5 (G) )
_ /| P2 (—‘) (~A2u(y)) dy (5.25)

where p(t) := 1t* — t?logt — 1. Since p(1) = p/(1) = p”(1) = 0 and

1
p"(t) =6t7" <t2 - §> >0 for t>1

we see that p(t) > 0 for ¢ > 1. This contradicts (5.25) and completes the proof of Theorem 1.5
when n = 4 in all cases. O
6 Completion of the Proof of Theorem 1.5 when n =3

When n = 3, we complete in this section the proof of Theorem 1.5 which we began in Section 3.
Completion of the proof of Theorem 1.5 when n = 3. For x € R? we see by Lemma 2.1 that

1 r 4 %T‘_1|ZE|2, if x| <7

= x—yldS, = 6.1
0B, | \y|=r‘ ulds, {]a:\ + 22zt i 2| > (6.1)
It therefore follows from equations (1.12) and (A.1) that for » > 0 we have

-1
A|aBT| lz|=r

ey, iffyl <

\I’(ﬂj,y) dSy; = r .
{!y\p (m) , i fyl =

where p(t) :=1—1t+ %t2 is bounded between positive constants for 0 <t < 1. Hence
Plyl, iyl >

2r|y|?, if
—/ U (z,y)dS, ~ { rlyl®, iyl <r for  (r,y) € (0,00) x R>.
|z|=r

Thus by (A.6), for 0 < r < 1, we have

/r<x<1 ol "N @) de :/|y<1 /Tlp_4 /|m|:p_‘1’(x=y) dS, dp(—Au(y)) dy
N/T<y|<1 </y1| 20" ly[* dp + /Tyl p‘zlyldp) (—A2u(y)) dy

~f " (M) ozt ay + o0 (63)

r

where

0< g(r) i= <T_2 - 1) /|y<¢ 2= A2u(y)) dy = o (%) as 0" (6.4)
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by (A.4).
For 0 < r < 1 we have

WY e
/T<y|<1<r>( Al dy /r<y|<1 7"|Z/|‘y’( Auly)) dy

1 1
< PN A+ [ lyPARu() dy
r<lyl<vr S vr<yl<a
1 1
<o WAyt [ PeA%u) dy
r<|y|<+/r r

ly[<1
=o(r™?) as r—0"

by (A.4). It follows therefore from (6.3) and (6.4) that
/ lz|™*N(z)dz = o(r™2) as r—0T.
r<|z|<1

Hence, by (3.4) and the positivity of u we see that the constant ¢4 in (3.4) is nonnegative and thus
by (3.4), (6.3), and the positivity of g we have

1 1 1
/ ||~ u(z) dz > —/ <M> (=A2%u(y))dy — C— for 0<7 <= (6.5)
r<|z|<1 C r<lyl<i \ T r 4

where C is a positive constant independent of 7.
By (A.3) there exists a constant M > 1 such that 0 < u(z) < M|z|™! for 0 < |z| < 1. Define
117]2 : (071) - [0,00) by

L(r):=M lz| P dr and Iy(r) := / || =) da
z€S1(r) z€S2(r)
where
Si(r):={z eR®:r < |z| <1and |z| < u(x) < Mz|™'}
and

So(r) :={z eR®:r < |z| <1and 0 < u(z) < |z|}.
Then Si(r) U Sy(r) = B1(0) — B,.(0),

Iy(r)=0 <log %) as r— 0%, (6.6)
and for 0 <7 < % we have
L(r) + L(r) > / 2| u(z) de (6.7)
r<|z|<1
1 / <\y!> 2 1
>~ — | (=A%u(y))dy — C— (6.8)
CJrcpyl<ca \ T r
by (6.5).
By (3.3) we have
/ <M> (=A%u(y))dy > Ji(r) + Jo(r) for 0<r<1 (6.9)
r<|yl<i \ T
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where

Jo(r) o= / 2 Pu(y)57 dy
Sa(r)
and

r

ni = [ N () 1o 1 ut)

Before continuing with the proof of Theorem 1.5, we prove the following lemma.

Lemma 6.1. Asr — 07 we have

Ji(r) = 0 (%) , (6.10)
Jo(r) = O (%) , (6.11)
1o =o(2). 612

Proof. By (6.9), (6.8), and (6.6) we have

Jl(T‘) < Jl(T‘) + JQ(T’) <C |:Il(7‘) + Ig(’r’) + %:|

1
r

=ChL(r)+ 0 < > as r—0". (6.13)
If S1(0) = 0 then I(r) = Ji(r) =0 for 0 < r < 1 and thus (6.11) follows from (6.13). Hence we
can assume S1(0) # (. So for r small and positive, S1(r) # 0, I;(r) > 0, and

niry = | it (M) st 7

r

> [ inf <M) (’y‘_2)1_0/2f(]\/[]y\—2)] [1]\(/;)

r<lyl<l \ T

by (3.2) and because 1 < |y|tu(y) < M|y|=2 for y € Si(r). Thus

Ii(r)
1
i int Oryl 00, () it Onl ) 0n )
—~o00 asr— 0"

by (1.15). Hence (6.13) implies (6.10); and (6.10) implies (6.12). Finally, (6.11) follows from (6.13)
and (6.12). O

Continuing with the proof of Theorem 1.5, it follows from (6.6), (6.12), and (6.8) that

/| WAy < o (6.14)
yI<
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Since, by (6.14), (3.3), and (3.2),

—A%u(2)) dz 2|z f(|z) " u(z)) da
o> [ alatu)de> [ ol el u(e)d

S1(0

1 / —4 —2\1—0/2 -2
> T Mlx f(M|z dx
S g ) M)

1 < l—0/2 > / —4
> ———— | mint f(t x| " dx,
M1-0/2 <tZM ( ) 51(0) ’ ‘

it follows from (1.15) that fsl(()) |z|~* dz < oo. Hence

/ e Pu@)de <M [ o[ ~tde +/ 2|2 d < o0, (6.15)
lz|<1 51(0) B1(0)\S1(0)
Thus by Lemma 2.7 we have
/ —A?u(y) dy < oo. (6.16)
ly[<1
Equation (6.15) also implies
/ u(z)dr < 7‘3/ || Bu(z)dz = o(r3) as r—07T. (6.17)
|z|<r |z|<r

Let F = A%y and
N(x) = / O(x—y)F(y)dy for xR
B1(0)

It follows from (1.12) and (6.16) that N € C*(R3). In particular

U(zx) := N(x) — N(0) = DN(0)x = o(|z]) as z — 0. (6.18)

Also for ¢ € C§°(B1(0)) we have

NA%pdx = / (/ Oz — y)A%p(z) dm) F(y)dy
B1(0) \/B1(0)

= / o(y)F(y) dy.
B1(0)

B1(0)

Thus F = A2N = A2U in D'(B1(0)).

Let v=u—U. By (6.17) and (6.18) we see that v satisfies (2.7). Since A%2u = F in D'(B1(0) \
{0}) we have A%y = A%u—A2U = 0in D'(B1(0)\{0}). Thus Lemma 2.5 implies for some constant
bo and some C™ solution H of A2H = 0 in B;(0) we have

u=U(x)+bolz| + H(x) in B;1(0)\ {0} (6.19)
=bolz| + H(z) + o(|z]) asxz—0 (6.20)

by (6.18). Hence the positivity of w implies H(0) > 0. If H(0) > 0 then by (6.20) we have
u(z) > € > 0 for |z| small and positive which contradicts (6.17). Thus H(0) = 0. Hence (6.20)
implies

u(z) =0(z]) asz—0 (6.21)
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and the biharmonicity of H implies
H(r) = —bjAr? for some constant b; (6.22)

where H is the average of H on the sphere |z| = r. By (6.21) and (3.3) we see for some positive
constant C' that
—A%u(x) > Cla[* Pu(z)® for 0<|z| <1. (6.23)

Averaging (6.20) we find by (6.22) that
0 <a(r)=bor+o(r) asr—0.

Hence by > 0. If by > 0 then for some constant C' > 0 we have u(r) > Cr for 0 < r < 1 and thus
averaging (6.23) we get —A2u(r) > Cr°~7 > Cr~5 for 0 < r < 1 which contradicts (6.16). Hence
bp = 0 and so averaging (6.19) and using (6.22) we get

u(r) _ U(r) 2
= — <1 .
i i bire for0<r<1 (6.24)
It follows from (6.18) and (6.1) that for 0 < r < 1 we have
1 - 1= -
ZU(r) = 2 (N = N(0)(r)

— 1 B - e
- y|<1<|aBr| mzr‘x yldSs !y\>( Alu(y)) dy

-/ | Sl ) Ay [ ) dn
y|<r

r<lyl<1 3
Hence by (6.24),

2L

1
J(r) = / g\y]_l(—A2u(y))dy for 0<r<1.
r<|y|<1

(—A%u(y)) dy + (J(r) — by)r? (6.25)

where

(J(0) may be 00.)
Case I. Suppose by < J(0). Then there exists € > 0 and r¢ € (0,1) such that b, < (1 —¢)J(r) for

0 < r <rg. Thus by (6.25), @ > er?J(r) for 0 < r < 79, which together with (6.23) and Lemma
2.6 gives a contradiction and thereby proves Theorem 1.5 when n = 3 in Case 1.

Case II. Suppose by > J(0). Then for 0 < r < 1 we have

(J(r) — b)) < (J(r) — J(0))r? = _/

lyl<r

1 _
§r2|y| H(=A%u(y)) dy

and hence by (6.25) we have

o< ps () )

3w (5-1) st

This contradiction completes the proof of Theorem 1.5 in all cases. O

(—A%u(y)) dy
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7 Proof of Theorem 1.6

In this section we prove Theorem 1.6.

Proof of Theorem 1.6. Suppose for contradiction that v(y) is a C* positive solution of (1.14) in
R?\ Q. By scaling v, we can assume Q = By 5(0). Let u(z) = |y|2v(y), y = # be the 2-Kelvin

transform of v(y). Then

v(y) = |z|2u(z) and A2u(y) = |z|°A%u(x). (7.1)
It follows therefore from (1.14) that u(z) is a C* positive solution of

—A%u(z) > [2| 70 f (|2 Pu(@))  in B2(0) \ {0}, (7.2)

Choose sy > 1 and so large that the function

(logs)l—a/Q .
g(s) = { TP 102
9(so0) it 0<s<sg

is well defined, continuous, positive, and nonincreasing for s > 0. By (1.16) we have for some

positive constant C' that
f(s) > Cg(s) for s>1. (7.3)

Since u is a C* positive solution of (A.2) it follows from Theorem A.1 that u satisfies (A.4) and,

for some constant M > e,
e
u(z) < Mlogﬂ for 0<|z|<1. (7.4)
x

Since

gMle|2log &) 79\ 12
T T (—) as x—0
o/ Ty log & \M
there exists 79 € (0,1/sg) such that
g@Wﬂ”bg3>> [«

= k 1
2] M=o/ [lizolog’

|2—O’

for 0 < |z| < ro. (7.5)

Let D = {z € B (0) \ {0} : 2> < u(z) < Mlog 5} Since 1 < || %u(z) < Mlz|log 1§ for
x € D, it follows from (7.2), (7.3), and (7.5) that for a > 0 we have

I(a) = /D 2%~ A2u(z)) da
> [ fal?lal (ol (o)) da

> C/ |z T 6 <M\x]_2 log i) dx
D

]

|33|O‘_4

20| =% o1
D iy log’

dx.
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Hence by (7.4)

|z ‘a 4 |2
p— - x)de < M dm + dx
lz|<ro logm]_[i:2 log | | II- 2log By (0)\D log‘ ‘Hz 2log T
|$|a 2
< Cl(a)+ dz. (7.6)
BTO(O log Tz Hz 2 log |:E|

By (A.4), I(2) < co. Thus (7.6) with a = 2 and Lemma 2.7 imply
/ —A?%u(z) dr < oo. (7.7)
|z| <1

Hence I(1/2) < oo and thus by (7.6) with a = 1/2 we have

T iow T,
. w(z)dr =o(l) as r—0".
r7/2log € TIF_, log' L Jje/<r (@) o
Therefore
/ uw(z)dr =o(r3) as r—0T. (7.8)
|z|<r

Let F = A%y and
N(x) = / d(x —y)F(y)dy for zcR?
lyl<1

where ® is the fundamental solution of A2 in R? given by (1.13). It follows from (7.7) and (1.13)
that N € C*(R?). In particular

U(z) := N(z) — N(0) — (DN)(0)x = o(|z|) as z — 0. (7.9)

Also for ¢ € C§°(B1(0)) we have

2 = T — 20(z) dx
NA soda:—/Bl(O) (/Bl(o)@( y)A%p(z)d )F(y)dy

- / o(y)F(y) dy.
B1(0)

B1(0)

Thus F = A%2N = A%U in D'(By(

Let v =u—U. By (7.8) and (7.
we have A%y = A%y — A2U =0 in
that

0)).
9) we see that v satifies (2.7). Since A%y = F in D’(B1(0)\ {0})
D'(B1(0) \ {0}). Thus Lemma 2.5 implies for some constant b

u(x) = U(x) + bla|* log % +H(z) in B(0)\ {0} (7.10)
where H is a C* biharmonic function in B;(0).
It follows from (7.10), (7.9), and the positivity of u that H(0) > 0. If H(0) > 0 then, by (7.10)

and (7.9), u(x) > e > 0 for |z| small and positive, which contradicts (7.8). Thus H(0) = 0. Hence
by (7.10), (7.9), and the positivity of u we have DH(0) = 0 and thus

H(z)=0(|z]*) as z—0. (7.11)

32



For = € R? we see by Lemma 2.1 that

L
0B |

r?log € + |z|? log L, if |z] <r

2
lo ds, =
ol log 5, = {ng_;wzlogﬁ, £ > .

It therefore follows from (7.9) and (7.7) that for 0 < r < e~! we have

00| =[5 =N @)
N /|y<1 |8;r| z|=r <_(I)(1E4_ d + q)ff)> de(_Azu(y))dy‘

1 2 € 2 € 2
= x —y|“log —— dS, — |y|“log — | (—A%u(y)) dy
/. <1<\aBr TP IOB 5e —llog g | (2 Au()

1
N / (7‘2 log = + [y[*log — — |y[*log i) (—A%u(y)) dy
|y\<7‘ r T |y|

i /r<y|<1 (r o |31/|> (—Azu(y))dy‘

1 1
§r210g—/ —A%u(y) dy+r210glog—/ —A%u(y) dy
r<|y|<(log £) T Jlyl<1
2 (w11, vl
2 e/ ° (e_y"> log
+7°log — —_— 7
T Jlyl<r

[&
=0 (7"2 log E) as r—07.
r

1+ (—A%u(y)) dy

log &

T

Thus averaging (7.10) and noting (7.11) we get
a(r) = br? log; + o(r?log ;) as r— 0"
which together with the positivity of u implies
b> 0. (7.12)

It follows from the integral form of the remainder in Taylor’s theorem that if z,y € B1(0) \ {0}
are such that tz —y # 0 for all ¢ € [0,1] then

1
O(x—y)— P(—y) — DO(—y)x = —2A|:17|2/ (1 —t)log 7|t;pe J dt + @(:L',y)
0 —
where 2P [l [ y) - af
tr —y)-x 3 9
=Al— +2 1—t)——— < -A .
b = A5 +2 [ -1 i < S Al
Thus for € B1(0) \ {0} we have
2 € 2 2
— 24l / / 0108 T dt(~A%u(y) dy + O(Jaf) (7.13)
ly|<1 _y|

by (7.7).
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By Fatou’s lemma,

.. € 2 1 2
hm1nf/y<l/ 0)log T (- A%u(y) dy > 5/ log |y|( Alu(y))dy.  (T.14)

z—0 ly|<1

Case I. Suppose f‘y|<1 <log ‘—Z|> (—=A%u(y))dy = oo. Then it follows from (7.13), (7.14), (7.12),

(7.11), and (7.10) that u(x) >> |x|* as # — 0. Thus, reversing the original change of variables
(7.1), we have v(y) > 1 for |y| > r¢/2 for some ro > 2 and v(y) is a solution of

—A% > |y~ f(v) > Cly|7g(v) > Cly| 70> in R*\ B, 5(0) (7.15)

where C' is a positive constant and g is the function in (7.3). Averaging (7.15) we see that v(r) is
a positive radial solution of —A%3 > Cly|=7o~+7/2 in R?\ B, /2(0) which contradicts Lemma 2.8
and completes the proof of Theorem 1.6 in Case I.

Case II. Suppose f‘y|<1 (log ﬁ) (—A2%u(y)) dy < oo. Then since

log ——— =log — + log vl
ltx — y| Iyl ly — tal

we see that (7.13) and Lemma 2.9 imply U(z) = O(|z|?) as  — 0. Hence if b > 0 (resp. b = 0)
then it follows from (7.10) and (7.11) that

u(z) >> 2>  (resp. u(x) = O(|z]?)) as =z — 0.

If u(z) >> |z|? as ¥ — 0 then we obtain a contradiction as in Case I. Thus we can assume for some
5o > 0 that |z|~2u(z) < so for 0 < |z| < 1. Hence reversing the original change of variables (7.1)
we get

0<wv(y) <sp for |y|>1 (7.16)

and v(y) is a solution of
—A% >yl f(v) in R?\ Bi(0). (7.17)

We can assume f|(g s, is C? and (f l(0,50))" > 0 because, as one easily verifies, the function f
(0, s0] = (0,00) defined by

~ 1 $
Fo) = [0 (Lmin 7)) ac
is C2 and satisfies R X
0< f(s) < f(s) and f (s)>0 for0<s< sp.
Thus averaging (7.17) and noting (7.16) we find that ©(r) is a positive solution of —A2% > |y| =7 f(v)

in R?\ B;(0) which contradicts Lemma 2.8 and completes the proof of Theorem 1.6 in all cases. [
A Represention formula and pointwise bound

Let ® be the fundamental solution of A? in R™ given by (1.10)—(1.13) and for = # 0 and y # =, let

Wy =ty - Y T pa) (A1)

181<1

5!
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be the error in approximating ®(z — y) with the partial sum of degree one of the Taylor series of
® at x.

The following theorem, which we proved in [10], gives representation formula (A.5) and pointwise

bound (A.3) for nonnegative solutions of

See

~A%u >0 in By(0)\ {0} Cc R™ (A.2)

[7] and [8] for some similar results.

Theorem A.1. Let u(x) be a C* nonnegative solution of (A.2) where n > 2. Then

and

O(lz*™™) ifn >3
u(z) = {O <10g |%) ifn—2 as x — 0, (A.3)
/ A dr < o (A4)
u=N+h+ Y agD’® in B1(0)\ {0}, (A.5)
|B1<2

where ag, |8 < 2, are constants, h € C*®(B1(0)) is a solution of A*h =0 in B1(0), and

N(x) :/ U(x,y)A%u(y)dy for x#0. (A.6)
ly[<1
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