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Abstract

We study C2,1 nonnegative solutions u(x, t) of the nonlinear parabolic inequalities

0 ≤ ut − ∆u ≤ uλ

in a punctured neighborhood of the origin in Rn × [0,∞), when n ≥ 1 and λ > 0.
We show that a necessary and sufficient condition on λ for such solutions u to satisfy an a

priori bound near the origin is λ ≤ n+2
n , and in this case, the a priori bound on u is

u(x, t) = O(t−n/2) as (x, t) → (0, 0), t > 0.

This a priori bound for u can be improved by imposing an upper bound on the initial
condition of u.

1 Introduction

In this paper, we study C2,1 nonnegative solutions u(x, t) of the nonlinear parabolic inequalities

0 ≤ ut − ∆u ≤ f(u)

in a punctured neighborhood of the origin in Rn × [0,∞), where f : [0,∞) → [0,∞) is a given
continuous function. In particular, we give nearly optimal conditions on f such that all such
solutions satisfy an a priori bound near the origin.

For the sake of clarity, we discuss in this section weaker, but simpler, versions of our main
results in Sections 3, 4, and 5.

Our first result is the following theorem, which is an immediate consequence of Theorem 3.1 in
Section 3.

Theorem 1.1. Let u(x, t) be a C2,1 nonnegative solution of the differential inequalities

0 ≤ ut − ∆u ≤ u
n+2

n + 1 (1.1)

in a punctured neighborhood of the origin in Rn × [0,∞), n ≥ 1. Then

u(x, t) = O(1/tn/2) as (x, t) → (0, 0), t > 0. (1.2)

Remark 1. Note that there are no initial or boundary conditions imposed on u in Theorem 1.1.



Remark 2. One of the main accomplishments of this paper is the proof of Theorem 1.1 when the
nonlinear term on the right side of (1.1) is u

n+2
n . When the nonlinear term is uλ, λ < n+2

n , the
proof of Theorem 1.1 is much easier.

Remark 3. Theorem 1.1 is optimal in two ways. First, the exponent n/2 on t in (1.2) cannot be
decreased because the heat kernel

Φ(x, t) =




1
(4πt)n/2

e−
|x|2
4t , if t > 0

0, if t ≤ 0
(1.3)

is a C2,1 nonnegative solution of (1.1) in (Rn ×R)−{(0, 0)} and Φ(0, t)tn/2 → (4π)−n/2 as t→ 0+.
And second, the exponent n+2

n on u in (1.1) cannot be increased by the following theorem, which
is an immediate consequence of Theorem 4.1 in Section 4.

Theorem 1.2. Let λ ∈ (n+2
n ,∞) and let ϕ : (0, 1) → (0,∞) be a continuous function. Then there

exists a C2,1 nonnegative solution u(x, t) of

0 ≤ ut − ∆u ≤ uλ in (Rn × R) − {(0, 0)} (1.4)

satisfying u ≡ 0 in Rn × (−∞, 0) and

u(0, t) 6= O(ϕ(t)) as t→ 0+.

Remark 4. In Theorem 1.1, u(x, 0) is required to be finite for each x in some punctured neigh-
borhood of the origin in Rn, but the upper bound t−n/2 for u(x, t) is infinite at each point of the
hyperplane t = 0. It would be desirable to obtain an a priori upper bound for the function u(x, t)
in Theorem 1.1 of the form

u(x, t) = O(ϕ(x, t)) as (x, t) → (0, 0), t > 0, (1.5)

for some function ϕ which, like u, is continuous in some punctured neighborhood of the origin in
Rn × [0,∞), and in particular, finite when t = 0 and x 6= 0. However, this is not possible because
given such a ϕ, no matter how large, we can choose a smooth L1 function ψ : (Rn −{0}) → (0,∞)
such that

lim sup
x→0

ψ(x)
ϕ(x, 0)

= ∞

and then take u to be the C2,1 positive solution of

ut − ∆u = 0 in Rn × [0,∞) − {(0, 0)}

satisfying u(x, 0) = ψ(x) for x ∈ Rn − {0} given by

u(x, t) =
∫
Rn

Φ(x− y, t)ψ(y) dy.

Clearly this solution u does not satisfy (1.5).

In the following theorem, which is an immediate consequence of Theorem 5.1 in Section 5, we
obtain an a priori upper bound for the function u in Theorem 1.1 of the form (1.5) for some function
ϕ as above by imposing an upper bound on the initial condition of u.
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Theorem 1.3. Let u be as in Theorem 1.1 and suppose

u(x, 0) = O

(
1

|x|p
)

as x→ 0 (1.6)

for some constant p ∈ [0, n]. Then for each positive constant q,

u(x, t) = O(ϕ(x, t; p, q)) as (x, t) → (0, 0), t ≥ 0, (1.7)

where

ϕ(x, t; p, q) =




1
tn/2

+
1
tp/2

, t > |x|2
1

|x|p +
(

t

|x|2
)q 1

|x|n , 0 ≤ t ≤ |x|2 > 0.

Remark 5. The condition in Theorem 1.3 that u satisfy (1.6) for some p ≤ n is not a big restriction
on u because if p ≥ n then there are no functions u satisfying the conditions of Theorem 1.1 and
also satisfying

u(x, 0) ≥ 1
|x|p for |x| small and positive

because u(x, 0) is necessarily summable in some neighborhood of the orgin in Rn by Theorem 2.1
in the next section.

Remark 6. The term t−p/2 in the definition of ϕ in the region t > |x|2 is not really necessary because
t−p/2 ≤ t−n/2 for 0 < t < 1. We only insert this term so that ϕ is continuous on the punctured
hypersurface t = |x|2 > 0 and therefore continuous on Rn × [0,∞) − {(0, 0)}.
Remark 7. The estimate Theorem 1.3 gives for u in the region t > |x|2 cannot be improved because
u(x, t) = Φ(x, t) satisfies the hypotheses of Theorem 1.3 and tn/2Φ(x, t) is bounded between positive
constants in the region t > |x|2.
Remark 8. The larger we take q in Theorem 1.3, the better our estimate (1.7) for u becomes in the
region 0 ≤ t ≤ |x|2.
Remark 9. The graph in the region 0 ≤ t ≤ |x|2 of the term

(
t

|x|2
)q

1
|x|n in the definition of ϕ has

the same basic shape as the graph of Φ(x, t) in that region. In particular, each term is zero on the
punctured hyperplane t = 0 < |x| and each term is a positive constant multiple of |x|−n on the
punctured hypersurface t = |x|2 > 0.

Remark 10. Let ϕ̂(x, t; p) be the function obtained from the function ϕ(x, t; p, q) in Theorem 1.3
by replacing the term

(
t

|x|2
)q

1
|x|n in the definition of ϕ in the region 0 ≤ t ≤ |x|2 with Φ(x, t). We

conjecture that Theorem 1.3 is true when ϕ is replaced with ϕ̂. If this conjecture is true, it would
be optimal when p ∈ [0, n) because

u(x, t; p) := Φ(x, t) +
∫
Rn

Φ(x− y, t)
1

|y|p dy

satisfies the hypotheses of Theorem 1.3 when p ∈ [0, n) and u(x, t; p)/ϕ̂(x, t; p) is bounded between
positive constants in a punctured neighborhood of the origin in Rn × [0,∞).

Remark 11. Theorems 1.1 and 1.3 can be strengthened by relaxing somewhat the regularity con-
ditions on u. Also, Theorem 1.2 can be strengthened by replacing the nonlinear term uλ in (1.4)
with a smaller nonlinear term. The statements and proofs of these stronger versions of Theorems
1.1, 1.2, and 1.3 are given in Sections 3, 4, and 5 respectively.
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The proofs of Theorems 1.1 and 1.3 rely heavily on the fact that the function u in Theorem 1.1
satisfies equation (2.8) in Theorem 2.1 below. A crucial step in the proofs of Theorems 1.1 and 1.3
is an adaptation and extension to parabolic inequalities of a method of Brezis [4] concerning elliptic
equations and based on Moser’s iteration. This method is used to obtain an estimate of the form

‖uj‖
L

n+2
n p(Ω′)

≤ C‖uj‖Lp(Ω)

where p > 1, Ω′ ⊂ Ω, C is a constant which does not depend on j, and uj , j = 1, 2, . . . , is obtained
from the function u in Theorem 1.1 by appropriately scaling u about (xj, tj) where (xj , tj) is a
sequence tending to the origin for which (1.2) is violated. Our proofs also require certain estimates
for the heat potential which can be found in Appendix A.

For results related to those in this paper, see [1, 2, 3, 5, 7, 9, 12, 14, 15, 16, 19]. An elliptic
analog of the results in this paper can be found in [17, 18].

2 Nonnegative solutions of ut − ∆u ≥ 0ut − ∆u ≥ 0ut − ∆u ≥ 0

For the proof of Theorem 3.1 in Section 3, we will need the following theorem, which gives a
description of nonnegative solutions of ut − ∆u ≥ 0 in a punctured neighborhood of the origin in
Rn × [0,∞). Brezis and Lions [6] proved a similar result for nonnegative solutions of −∆u ≥ 0 in
a punctured neighborhood of the origin in Rn. Their result is also a consequence of Doob’s results
[8] on superharmonic functions.

Theorem 2.1. Suppose
u ∈ C((B3(0) × [0, 3)) − {(0, 0)}) (2.1)

is a nonnegative function such that

Hu ∈ L1
loc(B3(0) × (0, 3)) (2.2)

and
Hu ≥ 0 in B3(0) × (0, 3) ⊂ Rn × R, n ≥ 1, (2.3)

where Hu = ut − ∆u is the heat operator. Then

u(·, 0) ∈ L1(B2(0)) (2.4)

and
u,Hu ∈ L1(B2(0) × (0, 2)). (2.5)

Moreover, for some finite nonnegative number m and some h ∈ C2,1(B1(0) × (−1, 1)) satisfying

Hh = 0 in B1(0) × (−1, 1) (2.6)
h = 0 in B1(0) × (−1, 0] (2.7)

we have
u = mΦ +N + v + h in B1(0) × (0, 1), (2.8)

where Φ is given by (1.3),

N(x, t) :=
∫ 2

0

∫
|y|<2

Φ(x− y, t− s)(Hu(y, s)) dy ds, (2.9)
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and

v(x, t) :=
∫

|y|<2

Φ(x− y, t)u(y, 0) dy. (2.10)

Moutoussamy and Véron [13, Theorem 1.1] prove (2.5) under slightly different conditions on
the function u. Our proof below of (2.4) and (2.5) is a modification of their proof. However the
main part of Theorem 2.1 is the representation formula (2.8).

Proof of Theorem 2.1. Let ϕ ∈ C∞
0 (B3(0)) be a nonnegative function satisfying ϕ ≡ 1 in B2(0).

Let t0 ∈ (0, 2) be fixed, and let ψε : R → [0, 1], ε small and positive, be a one parameter family of
smooth functions such that

ψε(t) =

{
1, t0 + ε ≤ t ≤ 2 − ε

0, t ≤ t0 − ε or t ≥ 2 + ε

and ψ′
ε 6= 0 on (t0 − ε, t0 + ε) ∪ (2 − ε, 2 + ε). Then by (2.2),∫

(Hu)ψεϕ = −
∫
uψ′

εϕ−
∫
uψε∆ϕ

and letting ε→ 0+ we obtain∫ 2

t0

∫
|x|<3

Hu(x, t)ϕ(x) dx =
∫

|x|<3

u(x, 2)ϕ(x) dx−
∫

|x|<3

u(x, t0)ϕ(x) dx−
∫ 2

t0

∫
2<|x|<3

u(x, t)∆ϕ(x) dx dt.

Hence, for t0 ∈ (0, 2), we have∫
|x|<2

u(x, t0) dx+
∫ 2

t0

∫
|x|<2

Hu(x, t) dx dt ≤
∫

|x|<3

u(x, t0)ϕ(x) dx +
∫ 2

t0

∫
|x|<3

Hu(x, t)ϕ(x) dx dt

≤
∫

|x|<3

u(x, 2)ϕ(x) dx +
∫ 2

0

∫
2<|x|<3

u(x, t)|∆ϕ(x)| dx dt <∞ (2.11)

by (2.1). Thus, letting t0 → 0+ and using Fatou’s lemma, the monotone convergence theorem, and
(2.3), we obtain (2.4) and (2.5). Consequently, letting

f =

{
Hu in B2(0) × (0, 2)
0 elsewhere in Rn × R

(2.12)

we have
f ∈ L1(Rn × R). (2.13)

For (x, t) ∈ Rn × (0,∞), let v be defined by (2.10) and define

v(x, 0) = u(x, 0) for x ∈ B2(0) − {0}.

Since (2.1) and (2.4) hold, it is well-known that

v ∈ C2,1(Rn × (0,∞)) ∩C(B2(0) × [0,∞) − {(0, 0)})
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and Hv = 0 in Rn × (0,∞). Also∫
Rn

v(x, t) dx =
∫

|y|<2

u(y, 0) dy <∞ for t > 0 (2.14)

and thus v ∈ L1(Rn × (0, 2)). Define

w =

{
u− v, in B2(0) × [0, 2) − {(0, 0)}
0, elsewhere in Rn × R.

(2.15)

Then
w ∈ C((B2(0) × [0, 2)) − {(0, 0)}) ∩ L1(Rn × R) (2.16)

and
Hw = f in D′(B2(0) × (0, 2))
w(x, 0) = 0 for x ∈ B2(0) − {0}.

Also, by (2.11) and (2.14), ∫
|x|<2

|w(x, t)| dx is bounded for 0 < t < 2. (2.17)

Let Ω = B1(0) × (−1, 1) and define Λ ∈ D′(Ω) by Λ = −Hw + f , that is

Λϕ =
∫
wH∗ϕ+

∫
fϕ for ϕ ∈ C∞

0 (Ω),

where H∗ϕ := ϕt + ∆ϕ. By (2.13) and (2.16), Λ is a distribution of order two in Ω. We now show
the support of Λ is contained in {(0, 0)}. Let ϕ ∈ C∞

0 (Ω) and suppose (0, 0) /∈ supp ϕ. Then for
some small r > 0, ϕ(x, t) ≡ 0 for |x| < r and |t| < r. Let t0 ∈ (0, r) be fixed, and let ψε : R → [0, 1],
ε small and positive, be a one parameter family of smooth nondecreasing functions such that

ψε(t) =

{
1, t > t0 + ε

0, t < t0 − ε.

Then

−
∫
fϕψε = −

∫
(Hw)ϕψε =

∫
wH∗(ϕψε)

=
∫
w(ϕtψε + ϕψ′

ε + ψε∆ϕ)

=
∫
wψεH

∗ϕ+
∫
wϕψ′

ε

and letting ε→ 0+ we get

−
∫ 1

t0

∫
|x|<1

fϕdx dt =
∫ 1

t0

∫
|x|<1

wH∗ϕdxdt+
∫

r<|x|<1

w(x, t0)ϕ(x, t0) dx.

Next, letting t0 → 0+, we obtain

−
∫
fϕ =

∫
wH∗ϕ,
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where we have used the fact that lim
t→0+

w(x, t) = w(x, 0) = 0 uniformly for r ≤ |x| ≤ 1, which follows

from (2.16). So Λϕ = 0 and thus Λ is a distribution of order two whose support is contained in
{(0, 0)}. Hence

Λ = −mδ +
∑

1≤|α|≤2

aαD
αδ (2.18)

is a linear combination of the delta function and its derivatives of order at most two.
We now use a method of Brezis and Lions [6] to show aα = 0 for 1 ≤ |α| ≤ 2. Choose ϕ ∈ C∞

0 (Ω)
such that

(−1)|α|Dαϕ(0, 0) = aα for 1 ≤ |α| ≤ 2.

For ε ∈ (0, 1), define ϕε ∈ C∞
0 (Bε(0) × (−ε2, ε2)) by ϕε(x, t) = ϕ(x/ε, t/ε2). Then for 1 ≤ |α| ≤ 2,

Dαϕε(0, 0) = Dαϕ(0, 0)/εpα for some positive integer pα,

and so 
 ∑

1≤|α|≤2

aαD
αδ


ϕε =

∑
1≤|α|≤2

a2
α

εpα
≥ 1
ε

∑
1≤|α|≤2

a2
α. (2.19)

On the other hand, since supRn×R |H∗ϕε| = O(ε−2) as ε→ 0+, we have

(Λ − f)ϕε =
∫
wH∗ϕε = O


 1
ε2

∫ ε2

0

∫
|x|<ε

|w(x, t)| dx dt


 = O(1) as ε→ 0+

by (2.17). Therefore, applying (2.18) to ϕε and using (2.19) we find that aα = 0 for 1 ≤ |α| ≤ 2
and so Λ = −mδ.

By (2.9) and (2.12), we can extend N to a function on Rn × R by the formula

N(x, t) =
∫∫

Rn×R

Φ(x− y, t− s)f(y, s) dy ds.

Then
N ≡ 0 in Rn × (−∞, 0). (2.20)

By (2.13), we have N ∈ L1(Ω) and HN = f in D′(Ω). Also δ = HΦ in D′(Ω). Consequently

H(w −N −mΦ) = −Λ + f − f −mδ = 0 in D′(Ω),

which implies
w = mΦ +N + h in D′(Ω) (2.21)

for some C2,1 solution h of (2.6). It follows therefore from (2.15) that (2.8) holds. By (2.15), (1.3),
(2.20), and (2.21), we have (2.7) holds.

Finally, we now show m ≥ 0. It follows from Fatou’s Lemma and (2.1) that

lim inf
t→0+

∫
|x|<1/2

u(x, t) dx ≥
∫

|x|<1/2

u(x, 0) dx = lim
t→0+

∫
|x|<1/2

v(x, t) dx.

Also, ∫
Rn

N(x, t) dx =
∫ t

0

∫
|y|<2

f(y, s) dy ds→ 0 as t→ 0+

by (2.13). So integrating both sides of (2.8) with respect to x on B1/2(0) and then letting t→ 0+,
we see that m ≥ 0.
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3 An a priori bound for solutions at the origin

The main result of this section in the following theorem.

Theorem 3.1. Let Ω be a bounded open subset of Rn, n ≥ 1, containing the origin and let a > 0
be a constant. Suppose

u ∈ C2,1(Ω × (0, a)) ∩ C(Ω × (0, a) − {(0, 0)}) (3.1)

is a nonnegative solution of

0 ≤ ut − ∆u ≤ C(u
n+2

n + t−
n+2

2 ) in Ω × (0, a), (3.2)

where C is a positive constant. Then

max
x∈Ω

u(x, t) = O(t−n/2) as t→ 0+. (3.3)

Theorem 3.1 is stronger than Theorem 1.1 in two ways. First, the set in Theorem 3.1 where u
is C2,1 is not required to include the set (Ω − {0}) × {0}. And second, the term t−

n+2
2 in (3.2) is

larger than the corresponding term 1 in (1.1).

Proof of Theorem 3.1. By scaling we can assume that

B3(0) × (0, 3) ⊂ Ω × (0, a) (3.4)

and that the right side of the second inequality in (3.2) is u
n+2

n + Ct−
n+2
2 . (However the constant

C cannot be completely removed by scaling.)
By Theorem 2.1,

u,Hu ∈ L1(B2(0) × (0, 2)), u(·, 0) ∈ L1(B2(0)), (3.5)

and

u = mΦ +N + v + h in B1(0) × (0, 1), (3.6)

where m,Φ,N, v, and h are as in Theorem 2.1.
Suppose for contradiction that (3.3) does not hold. Then there exists a sequence {(xj , tj)} ⊂

Ω × (0, a) such that tj → 0 as j → ∞ and

lim
j→∞

t
n/2
j u(xj , tj) = ∞. (3.7)

By (3.1), xj → 0 as j → ∞. Clearly

v(x, t) ≤ 1
(4πt)n/2

‖u(·, 0)‖L1(B2(0)) for (x, t) ∈ Rn × (0,∞).

For (x, t) ∈ Rn × R and r > 0, let

Er(x, t) := {(y, s) ∈ Rn ×R : |y − x| < √
r and t− r < s < t}.
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Then for (x, t) ∈ Etj/4(xj , tj) and (y, s) ∈ Rn × (0,∞) − Etj (xj , tj) we have

Φ(x− y, t− s) ≤ max
0≤τ<∞

Φ
(√

tj
2
, τ

)
= Φ

(√
tj
2
,
tj
8n

)
=
(

2n
πetj

)n/2

,

which implies for (x, t) ∈ Etj/4(xj , tj) that

∫∫
B2(0)×(0,2)−Etj (xj ,tj)

Φ(x− y, t− s)(Hu(y, s)) dy ds ≤
(

2n
πetj

)n/2 ∫∫
B2(0)×(0,2)

Hu(y, s) dy ds.

It follows therefore from (3.5) and (3.6) that for (x, t) ∈ Etj/4(xj , tj) we have

u(x, t) ≤ C

t
n/2
j

+
∫∫

Etj (xj ,tj)

Φ(x− y, t− s)(Hu(y, s)) dy ds, (3.8)

where C is a positive constant which does not depend on j or (x, t).
Substituting (x, t) = (xj , tj) in (3.8) and using (3.7) we obtain

t
n/2
j

∫∫
Etj (xj ,tj)

Φ(xj − y, tj − s)(Hu(y, s)) dy ds→ ∞ as j → ∞. (3.9)

Also, by (3.5) we have ∫∫
Etj (xj ,tj)

Hu(y, s) dy ds→ 0 as j → ∞. (3.10)

For each positive integer j, define fj : E1(0, 0) → [0,∞) by

fj(ξ, τ) = t
n+2

2
j Hu(xj +

√
tjξ, tj + tjτ).

Making the change of variables y = xj +
√
tjη, s = tj + tjζ in (3.10), (3.9), and (3.8) and using

(3.2) we obtain ∫∫
E1(0,0)

fj(η, ζ) dη dζ → 0 as j → ∞, (3.11)

∫∫
E1(0,0)

Φ(−η,−ζ)fj(η, ζ) dη dζ → ∞ as j → ∞, (3.12)

and

fj(ξ, τ)
n

n+2 ≤ C +
∫∫

E1(0,0)

Φ(ξ − η, τ − ζ)fj(η, ζ) dη dζ (3.13)

for (ξ, τ) ∈ E1/4(0, 0), where C is a positive constant which does not depend on j or (ξ, τ).
Define uj(ξ, τ) for (ξ, τ) ∈ Rn × (−1,∞) to be the right side of (3.13). It follows from (3.1) and

(3.6) that N ∈ C2,1(B1(0) × (0, 1)) and HN = Hu in B1(0) × (0, 1). Hence

uj ∈ C2,1(E1(0, 0)) ∩C(Rn × (−1,∞))
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and
Huj = fj in E1(0, 0). (3.14)

Thus, by (3.13),

Huj ≤ u
n+2

n
j in E1/4(0, 0). (3.15)

The rest of this proof is an adaptation and extension to parabolic inequalities of some methods
of Brezis [4] concerning elliptic equations. Let 0 < R < 1

16 and λ > 1 be constants, and let
ϕ ∈ C∞

0 (B√
2R(0) × (−2R,∞)) satisfy ϕ ≡ 1 on ER(0, 0) and ϕ ≥ 0 on Rn × R. Since

∇uj · ∇(uλ−1
j ϕ2) =

4(λ− 1)
λ2

|∇(uλ/2
j ϕ)|2 − λ− 2

λ2
∇uλ

j · ∇ϕ2 − 4(λ− 1)
λ2

uλ
j |∇ϕ|2,

we have for −2R < t < 0 that∫
|x|<√

2R

(−∆uj)uλ−1
j ϕ2 dx =

∫
|x|<√

2R

∇uj · ∇(uλ−1
j ϕ2) dx

≥ 4(λ− 1)
λ2

∫
|x|<√

2R

|∇(uλ/2
j ϕ)|2dx− C2

∫
|x|<√

2R

uλ
j dx, (3.16)

where C2 = C2(n,R, λ) is a positive constant whose value may change from line to line. Thus by
the parabolic Sobolev inequality (see [11, Theorem 6.9]),

∫∫
E2R(0,0)

(−∆uj)uλ−1
j ϕ2 dx dt ≥ C1

∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt

max
−2R≤t≤0


 ∫

|x|<√
2R

uλ
jϕ

2 dx




2/n
−C2

∫∫
E2R(0,0)

uλ
j dx dt,

where C1 = C1(n,R, λ) is a positive constant whose value may change from line to line. (Here, C1

only depends on n and λ, but later it will also depend on R.)
Also, for |x| < √

2R we have

∫ 0

−2R

∂uj

∂t
uλ−1

j ϕ2 dt =
1
λ

∫ 0

−2R

∂uλ
j

∂t
ϕ2 dt

=
1
λ

[
uj(x, 0)λϕ(x, 0)2 −

∫ 0

−2R
uλ

j

∂ϕ2

∂t
dt

]
≥ −C2

∫ 0

−2R
uλ

j dt (3.17)

and thus

∫∫
E2R(0,0)

(Huj)uλ−1
j ϕ2 dx dt ≥ C1

∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt

max
−2R≤t≤0


 ∫

|x|<√
2R

uλ
jϕ

2 dx




2/n
− C2

∫∫
E2R(0,0)

uλ
j dx dt. (3.18)
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On the other hand,∫∫
E2R(0,0)

(Huj)uλ−1
j ϕ2 dx dt =

∫∫
E2R(0,0)

Huj

uj
uλ

jϕ
2 dx dt

≤


 ∫∫
E2R(0,0)

(
Huj

uj

)n+2
2

dx dt




2
n+2


 ∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt




n
n+2

≤


 ∫∫
E2R(0,0)

fj dx dt




2
n+2


 ∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt




n
n+2

(3.19)

because (
Huj

uj

)n+2
2

= (Huj)


Huj

u
n+2

n
j




n
2

≤ fj

by (3.14) and (3.15). Since by (3.14),

∂

∂t
uλ

jϕ
2 = λuλ−1

j

∂uj

∂t
ϕ2 + uλ

j 2ϕ
∂ϕ

∂t

= λuλ−1
j ϕ2[(∆uj) + fj] + 2uλ

jϕ
∂ϕ

∂t
,

it follows from (3.16) that for −2R ≤ t < 0 we have

∂

∂t

∫
|x|<√

2R

uλ
jϕ

2 dx ≤ C2

∫
|x|<√

2R

uλ
j dx+ λ

∫
|x|<√

2R

uλ−1
j ϕ2fj dx,

and thus

max
−2R≤t≤0

∫
|x|<√

2R

uλ
jϕ

2 dx ≤ C2

∫∫
E2R(0,0)

uλ
j dx dt+ λ

∫∫
E2R(0,0)

uλ−1
j ϕ2fj dx dt

≤ C2

∫∫
E2R(0,0)

uλ
j dx dt+ λ


 ∫∫
E2R(0,0)

fj dx dt




2
n+2


 ∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt




n
n+2

≤ C2



∫∫

E2R(0,0)

uλ
j dx dt+


 ∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt




n
n+2


 (3.20)

by (3.14), (3.19) and (3.11).
If 

 ∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt




n
n+2

≥
∫∫

E2R(0,0)

uλ
j dx dt (3.21)
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then by (3.20),

max
−2R≤t≤0


 ∫
|x|<√

2R

uλ
jϕ

2 dx




2/n

≤ C2


 ∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt




2
n+2

and hence by (3.18) we have

∫∫
E2R(0,0)

(Huj)uλ−1
j ϕ2 dx dt ≥ C1


 ∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt




n
n+2

− C2

∫∫
E2R(0,0)

uλ
j dx dt.

Thus by (3.19) and (3.11),
 ∫∫
E2R(0,0)

(uλ
jϕ

2)
n+2

n dx dt




n
n+2

≤ C2

∫∫
E2R(0,0)

uλ
j dx dt,

which clearly holds even when (3.21) does not hold. Consequently,

∫∫
ER(0,0)

u
λ n+2

n
j dx dt ≤ C2


 ∫∫
E2R(0,0)

uλ
j dx dt




n+2
n

. (3.22)

It follows from the definition of uj , (3.11), and Theorem A.1 in Appendix A that

lim sup
j→∞

∫∫
E1(0,0)

u
n+1

n
j dx dt <∞. (3.23)

Starting with (3.23) and using (3.22) a finite number of times we find that for each p > 1 there
exists ε > 0 such that the sequence uj is bounded in Lp(Eε(0, 0)) and thus the same is true for the
sequence fj by (3.14) and (3.15). Hence by Theorem A.1 in Appendix A,

lim sup
j→∞

∫∫
Eε(0,0)

Φ(−η,−ζ)fj(η, ζ) dη dζ <∞ (3.24)

for some ε > 0. Also, by (3.11),

lim
j→∞

∫∫
E1(0,0)−Eε(0,0)

Φ(−η,−ζ)fj(η, ζ) dη dζ = 0. (3.25)

Adding (3.24) and (3.25) we contradict (3.12).

4 Arbitrarily large solutions at the origin

The main result of this section is the following theorem which gives conditions on a nonnegative
function f such that there exists a smooth nonnegative solution u(x, t) of

0 ≤ ut − ∆u ≤ f(u) in (Rn × R) − {(0, 0)} (4.1)

which is arbitrarily large at the origin.
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Theorem 4.1. Suppose f : [0,∞) → [0,∞) is a nondecreasing continuous function such that for
some s0 > 0 we have f(s) > 0 for s ≥ s0 and

∫ ∞

s0

(∫ ∞

s

ds̄

f(s̄)

)n/2

ds <∞. (4.2)

Let ϕ : (0, 1) → (0,∞) be a continuous function. Then there exists a C∞ nonnegative solution
u(x, t) of (4.1) satisfying u ≡ 0 in Rn × (−∞, 0) and

u(0, t) 6= O(ϕ(t)) as t→ 0+. (4.3)

Theorem 4.1 implies Theorem 1.2 in the introduction because the functions f(s) = sλ, λ > n+2
n ,

satisfy the conditions on f in Theorem 4.1.
Actually the smaller (at ∞) functions

f(s) = s
n+2

n (log(1 + s))β, β >
2
n
,

also satisfy the conditions on f in Theorem 4.1.

Proof of Theorem 4.1. For s ≥ s0/αn, let

g(s) = − 1
αn

∫ ∞

αns

ds̄

f(s̄)
,

where αn is defined in (4.19) below. By (4.2),∫ ∞

s0/αn

(−g(s))n/2ds <∞ (4.4)

and thus lim inf
s→∞ s(−g(s))n/2 = 0. Hence there exists a strictly decreasing sequence {tj}∞j=1 of

positive real numbers, which tends to zero, such that

−g
(
βn

t
n/2
j

)/
tj → 0 as j → ∞, (4.5)

where
βn =

1
(8π)n/22e

. (4.6)

Let wj(t) be the solution of the initial value problem

w′
j = f(αnwj), wj(tj) =

βn

t
n/2
j

. (4.7)

Since g′(s) = 1/f(αns), we have

t− tj =
∫ t

tj

dτ =
∫ t

tj

g′(wj(τ))w′
j(τ) dτ

= g(wj(t)) − g(wj(tj)).

Let Tj = tj − g(wj(tj)). Then
Tj − t = −g(wj(t)) (4.8)
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and thus
lim

t→T−
j

wj(t) = ∞. (4.9)

Also,
Tj − tj
tj

=
−g(wj(tj))

tj
=

−g(βn/t
n/2
j )

tj
→ 0 as j → ∞ (4.10)

by (4.5).
Thanks to (4.9), we can choose aj ∈ (tj, Tj) such that

wj(aj)
ϕ(aj)

→ ∞ as j → ∞. (4.11)

Let hj(s) =
√

4(aj − s) and Hj(s) =
√

4(aj + εj − s) where εj > 0 satisfies

aj + 2εj < Tj, tj − εj > tj/2, and wj(tj − εj) >
wj(tj)

2
. (4.12)

Define

ωj = {(y, s) ∈ Rn × R : |y| < hj(s) and tj < s < aj}
Ωj = {(y, s) ∈ Rn × R : |y| < Hj(s) and tj − εj < s < aj + εj}.

Let χj : Rn × R → [0, 1] be a C∞ function such that χj ≡ 1 in ωj and χj ≡ 0 in Rn × R − Ωj.
Define vj, uj : Rn ×R → [0,∞) by

vj(y, s) = χj(y, s)w′
j(s)

uj(x, t) =
∫∫

Rn×R

Φ(x− y, t− s)vj(y, s) dy ds.

We can assume f is C∞ because given any function f satisfying the conditions of Theorem 4.1
there exists a C∞ function f̂ ≤ f satisfying the same conditions. Thus wj , vj, and uj are C∞ and

∂uj

∂t
+ ∆uj = vj in Rn × R

uj ≡ 0 in Rn × (−∞, 0).
(4.13)

Letting p be a fixed number larger than n+2
2 , say p = n + 2, we have by Theorem A.1 in

Appendix A that∥∥∥∥∥∥∥
∫∫

Ωj−ωj

Φ(x− y, t− s)w′
j(s) dy ds

∥∥∥∥∥∥∥
L∞(Rn×(0,1))

≤ Cn‖w′
j(s)‖Lp(Ωj−ωj)

≤ wj(tj) (4.14)

provided we decrease εj if necessary.
Also, for (x, t) ∈ Ωj we have

|x| ≤
√

4(aj − tj + 2εj) ≤
√

4(Tj − tj)
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by (4.12); and thus using (4.12) again we obtain

max
(x,t)∈Ωj

|x|2
t

≤ 4(Tj − tj)
tj − εj

≤ 8(Tj − tj)
tj

→ 0 as j → ∞ (4.15)

by (4.10).
In order to obtain a lower bound for uj in Ωj, note first that for tj − εj ≤ s ≤ t ≤ aj + εj and

|x| ≤ Hj(t) we have∫
|y|<Hj(s)

Φ(x− y, t− s) dy =
1

πn/2

∫
|z− x√

4(t−s)
|< Hj (s)√

4(t−s)

e−|z|2dz (4.16)

≥ 1
πn/2

∫
|z− Hj(s)e1√

4(t−s)
|< Hj (s)√

4(t−s)

e−|z|2dz where e1 = (1, 0, . . . , 0) (4.17)

≥ αn (4.18)

where
αn :=

1
πn/2

∫
|z−e1|<1

e−|z|2 dz ∈ (0, 1). (4.19)

Some of the steps in the above calculation need some explanation. Equation (4.16) is obtained by
making the change of variables z = x−y√

4(t−s)
. Since |x| ≤ Hj(t) ≤ Hj(s), the center of the ball of

integration in (4.16) is closer to the origin than the center of the ball of integration in (4.17). Thus,
since the integrand e−|z|2 is a decreasing function of |z|, we obtain (4.17). Since Hj(s) ≥

√
4(t− s),

the ball of integration in (4.17) contains the ball of integration in (4.19) and hence inequality (4.18)
holds.

For (x, t) ∈ Ωj we have

∫∫
Ωj

Φ(x− y, t− s)w′
j(s) dy ds =

∫ t

tj−εj

w′
j(s)


 ∫

|y|<Hj(s)

Φ(x− y, t− s) dy


 ds

≥ αn(wj(t) − wj(tj − εj)) ≥ αnwj(t) − wj(tj)

by (4.18) and (4.19). It therefore follows from (4.14) that for (x, t) ∈ Ωj we have

uj(x, t) ≥
∫∫
ωj

Φ(x− y, t− s)w′
j(s) dy ds

=
∫∫
Ωj

Φ(x− y, t− s)w′
j(s) dy ds −

∫∫
Ωj−ωj

Φ(x− y, t− s)w′
j(s) dy ds

≥ αnwj(t) − 2wj(tj). (4.20)
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Also, ∫∫
Rn×R

vj(y, s) dy ds ≤
∫∫
Ωj

w′
j(s) dy ds

=
∫ aj+εj

tj−εj

w′
j(s)


 ∫
|y|<Hj(s)

dy


 ds

= ωn

∫ aj+εj

tj−εj

w′
j(s)(Hj(s))nds

≤ ωn

∫ Tj

tj−εj

w′
j(s)[4(Tj − s)]n/2ds, by (4.12)

= 4n/2ωn

∫ Tj

tj−εj

[−g(wj(s))]n/2w′
j(s) ds, by (4.8)

≤ 4n/2ωn

∫ ∞

wj(tj )/2
[−g(w)]n/2dw, by (4.12).

It therefore follows from (4.4) that

∫∫
Rn×R

∞∑
j=1

vj(y, s) dy ds <∞

provided we take a subsequence of vj if necessary. Hence the function u : (Rn×R)−{(0, 0)} → [0,∞)
defined by

u(x, t) = Φ(x, t) +
∫∫

Rn×R

Φ(x− y, t− s)
∞∑

j=1

vj(y, s) dy ds

= Φ(x, t) +
∞∑

j=1

uj(x, t)

is C∞ and by (4.13) we have

ut − ∆u =
∞∑

j=1

vj in (Rn × R) − {(0, 0)} (4.21)

u ≡ 0 in Rn × (−∞, 0).

Also, for (x, t) ∈ Ωj it follows from (4.10), (4.15), (4.7), and (4.6) that Φ(x, t) ≥ 2wj(tj), provided
we take a subsequence of Ωj if necessary, and thus for (x, t) ∈ Ωj we have by (4.20) that

u(x, t) ≥ Φ(x, t) + uj(x, t)
≥ Φ(x, t) + (αnwj(t) − 2wj(tj))
≥ αnwj(t). (4.22)

Hence, for (x, t) ∈ Ωj,

(ut − ∆u)(x, t) = vj(x, t) ≤ w′
j(t) = f(αnwj(t)) ≤ f(u(x, t)). (4.23)
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Inequality (4.23) also holds for (x, t) ∈ (Rn × R) −
∞⋃

j=1
Ωj because ut − ∆u ≡ 0 there by (4.21).

Thus (4.1) holds.
Finally, by (4.22) and (4.11),

u(0, aj)
ϕ(aj)

>
αnwj(aj)
ϕ(aj)

→ ∞ as j → ∞.

Hence (4.3) holds.

5 Initial conditions

As discussed in the introduction, we now improve the upper bound (1.2) for u in Theorem 1.1
by imposing an upper bound on the initial condition of u. Our first such result is the following
proposition.

Proposition 5.1. Let Ω be a bounded open subset of Rn, n ≥ 1, containing the origin and let
a > 0 be a constant. Suppose

u ∈ C2,1(Ω × (0, a)) ∩ C(Ω × (0, a) − {(0, 0)}) (5.1)

is a nonnegative solution of

0 ≤ ut − ∆u ≤ f(u) in Ω × (0, a), (5.2)

where f : [0,∞) → [0,∞) is a continuous function satisfying

f(s) = O(s
n+2

n ) as s→ ∞.

If

u(x, 0) = O

(
1

|x|n
)

as x→ 0 (5.3)

then
max
x∈Ω

u(x, t)
U(x, t)

= O(1) as t→ 0+ (5.4)

where

U(x, t) =




1
tn/2

, |x| < √
t

1
|x|n , |x| ≥ √

t.

Note that U : Rn × [0,∞) − {(0, 0)} → (0,∞) is continuous and lim
(x,t)→(0,0)

t≥0

U(x, t) = ∞.

Proof of Proposition 5.1. By scaling we can assume (3.4) holds and f(s) = s
n+2

n + 1. By Theorem
2.1, statements (3.5) and (3.6) hold.

Suppose for contradiction that (5.4) does not hold. Then there exists a sequence {(xj , t̂j)} ⊂
Ω × (0, a) such that t̂j → 0 as j → ∞ and

lim
j→∞

u(xj , t̂j)
U(xj , t̂j)

= ∞. (5.5)
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If (x, t) ∈ Rn × (0,∞) and t ≥ ε|x|2 for some ε ∈ (0, 1) then

U(x, t) ≥ U

((
t

ε

)1/2

, t

)
=
(ε
t

)n/2
.

It follows therefore from (5.5) and Theorem 3.1 that

t̂j
|xj|2 → 0 as j → ∞. (5.6)

Also, by (5.1), xj → 0 as j → ∞. Let

tj =
|xj |2

9
(5.7)

and for (x, t) ∈ Rn × (0,∞) and r > 0, let

Er(x, t) = {(y, s) ∈ Rn × R : |y − x| < √
r and 0 < s < t}.

Then for (x, t) ∈ Etj (xj, tj) and (y, s) ∈ Rn × (0,∞) − E4tj (xj , tj) we have

max{Φ(x− y, t− s),Φ(x, t)} ≤ max
0≤τ<∞

Φ(
√
tj, τ)

= Φ
(√

tj,
tj
2n

)
=
(

n

2πetj

)n/2

,

which implies for (x, t) ∈ Etj (xj , tj) that

∫∫
B2(0)×(0,2)−E4tj

(xj ,tj)

Φ(x− y, t− s)Hu(y, s) dy ds ≤
(

n

2πetj

)n/2 ∫∫
B2(0)×(0,2)

Hu(y, s) dy ds.

Also, for (x, t) ∈ Etj (xj, tj) we have

v(x, t) =
∫

|y−xj |>2
√

tj
|y|<2

Φ(x− y, t)u(y, 0) dy +
∫

|y−xj |<2
√

tj

Φ(x− y, t)u(y, 0) dy

≤
(

n

2πetj

)n/2 ∫
|y|<2

u(y, 0) dy +
C

(
√
tj)n

∫
y∈Rn

Φ(x− y, t) dy

by (5.3) where C is a positive constant which does not depend on j or (x, t).
It follows therefore from (3.5) and (3.6) that for (x, t) ∈ Etj (xj , tj) we have

u(x, t) ≤ C

t
n/2
j

+
∫∫

E4tj
(xj ,tj)

Φ(x− y, t− s)Hu(y, s) dy ds (5.8)

where C is a positive constant which does not depend on j or (x, t).
Using (5.6) and (5.7) we obtain

U(xj , t̂j) =
1

|xj |n =
1

(9tj)n/2
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and thus by (5.5),
t
n/2
j u(xj , t̂j) → ∞ as j → ∞. (5.9)

By (5.6) and (5.7), (xj , t̂j) ∈ Etj (xj , tj) for large j.
Substituting (x, t) = (xj , t̂j) in (5.8) and using (5.9) we obtain

t
n/2
j

∫∫
E4tj

(xj ,tj)

Φ(xj − y, t̂j − s)Hu(y, s) dy ds→ ∞ as j → ∞. (5.10)

Also, by (3.5) we have ∫∫
E4tj

(xj ,tj)

Hu(y, s) dy ds→ 0 as j → ∞. (5.11)

For each positive integer j, define fj : E4(0, 1) → [0,∞) by

fj(ξ, τ) = t
n+2

2
j Hu(xj +

√
tj ξ, tjτ).

Making the change of variables y = xj +
√
tj η, s = tjζ in (5.11), (5.10), and (5.8) and using (5.2)

and the first sentence of this proof, we obtain∫∫
E4(0,1)

fj(η, ζ) dη dζ → 0 as j → ∞, (5.12)

∫∫
E4(0,1)

Φ(−η, τj − ζ)fj(η, ζ) dη dζ → ∞ as j → ∞, (5.13)

where τj = t̂j/tj ∈ (0, 1), and

fj(ξ, τ)
n

n+2 ≤ C +
∫∫

E4(0,1)

Φ(ξ − η, τ − ζ)fj(η, ζ) dη dζ (5.14)

for (ξ, τ) ∈ E1(0, 1), where C is a positive constant which does not depend on j or (ξ, τ).
Define uj(ξ, τ) for (ξ, τ) ∈ Rn × R to be the right side of (5.14). Since fj ∈ L∞(E4(0, 1)),

uj ∈ C(Rn × R) and uj(ξ, 0) = C = min
Rn×R

uj . (5.15)

It follows from (5.1) and (3.6) that

N ∈ C2,1(B1(0) × (0, 1)) and HN = Hu in B1(0) × (0, 1).

Hence
uj ∈ C2,1(E4(0, 1))

and
Huj = fj in E4(0, 1).

Thus by (5.14),

Huj ≤ u
n+2

n
j in E1(0, 1).
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Let 0 < R < 1
4 and λ > 1 be constants, and let ϕ ∈ C∞(Rn) be a nonnegative function satisfying

ϕ ≡ 1 for |x| ≤ √
R and ϕ ≡ 0 for |x| ≥ √

2R. The proof of Proposition 5.1 is now completed
by replacing max

−2R≤t≤0
, integrals with respect to t from −2R to 0, E2R(0, 0), and ER(0, 0) in the

proof of Theorem 3.1 with max
0≤t≤1

, integrals with respect to t from 0 to 1, E2R(0, 1), and ER(0, 1),

respectively. However we should point out that (3.17) is replaced with∫ 1

0

∂uj

∂t
uλ−1

j ϕ2 dt =
ϕ2

λ
(uj(x, 1)λ − uj(x, 0)λ) ≥ 0

by (5.15). Other similar simplications hold because ϕ does not depend on t.

The main result of this section is the following theorem, which immediately implies Theorem
1.3 in the introduction.

Theorem 5.1. Let Ω, a, and u be as in the first two sentences of Proposition 5.1 and suppose

u(x, 0) = O

(
1

|x|p
)

as x→ 0 (5.16)

for some constant p ∈ [0, n]. Then for each positive constant q,

max
x∈Ω

u(x, t)
ϕ(x, t; p, q)

= O(1) as t→ 0+ (5.17)

where

ϕ(x, t; p, q) =




1
tn/2

+
1
tp/2

, |x| ≤ √
t

1
|x|p +

(
t

|x|2
)q 1

|x|n , |x| > √
t.

For the proof of Theorem 5.1, we will use Proposition 5.1 and the following lemma whose trivial
proof we omit.

Lemma 5.1. Let q > 0. Then for some constant C = C(n, q) > 0 we have

Φ
(x

2
, τ
)
≤ C

|x|n
(

t

|x|2
)q

for x ∈ Rn − {0} and 0 < τ ≤ t.

Proof of Theorem 5.1. Since, for some constant C > 0,

u(y, 0) ≤ C

|x|p for |y − x| < |x|
2

and 0 < |x| < 1,

it follows from (3.5) that for 0 < |x| < 1 and t > 0 we have

v(x, t) =
∫

|y−x|< |x|
2

Φ(x− y, t)u(y, 0) dy +
∫

|y−x|> |x|
2

|y|<2

Φ(x− y, t)u(y, 0) dy

≤ C

|x|p
∫
Rn

Φ(x− y, t) dy + Φ
(x

2
, t
) ∫
|y|<2

u(y, 0) dy

≤ C

[
1

|x|p + Φ
(x

2
, t
)]
,
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where here and in what follows C is a constant which does not depend on (x, t).
For x ∈ Rn − {0} and t > 0, let

Q(x, t) = {(y, s) ∈ Rn × R : |y − x| < |x|
2

and 0 < s < t}.
It follows from (3.5) that for 0 < |x| < 1 and t > 0 we have∫∫

B2(0)×(0,2)−Q(x,t)

Φ(x− y, t− s)Hu(y, s) dy ds ≤
[

max
0≤τ≤t

Φ
(x

2
, τ
)] ∫∫

B2(0)×(0,2)

Hu(y, s) dy ds

≤ C max
0≤τ≤t

Φ
(x

2
, τ
)
.

Thus by (3.6), we have for 0 < |x| < 1 and 0 < t < 1 that

u(x, t) ≤ C


 1
|x|p + max

0≤τ≤t
Φ
(x

2
, τ
)

+
∫∫

Q(x,t)

Φ(x− y, t− s)Hu(y, s) dy ds


 . (5.18)

Suppose, inductively, for some constants A > 1, r ∈ (0, 1), and q ≥ 0 satisfying Ar2 < 1 we
have

u(x, t) ≤ C

[
1

|x|p +
1

|x|n
(

t

|x|2
)q]

for 0 < |x| < r and 0 < t < A|x|2. (5.19)

(Note that by Proposition 5.1, given any large constant A > 1, (5.19) holds with r = 1/
√

2A and
q = 0.) Then for

0 < |x| < 2
3
r, 0 < t <

A

4
|x|2, and (y, s) ∈ Q(x, t)

we have |x|
2
< |y| < 3

2
|x| < r and 0 < s < t <

A

4
|x|2 < A|y|2

and thus by (5.19),

u(y, s) ≤ C

[
1

|y|p +
1

|y|n
(

s

|y|2
)q]

≤ C

[
2p

|x|p +
2n+2q

|x|n
(

t

|x|2
)q]

,

which implies

Hu(y, s) ≤ u(y, s)
n+2

n + 1 ≤ C

[
1

|x|p n+2
n

+
1

|x|n+2

(
t

|x|2
)q n+2

n

]
,

and hence ∫∫
Q(x,t)

Φ(x− y, t− s)Hu(y, s) dy ds ≤ Ct

[
1

|x|p n+2
n

+
1

|x|n+2

(
t

|x|2
)q n+2

n

]

= C

[
t

|x|2
1

|x|p n+2
n

−2
+

1
|x|n

(
t

|x|2
)q n+2

n
+1
]

≤ C

[
A

4
1

|x|p +
1

|x|n
(

t

|x|2
)q n+2

n
+1
]
.
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It therefore follows from (5.18) and Lemma 5.1 that

u(x, t) ≤ C

[
1

|x|p +
1

|x|n
(

t

|x|2
)q n+2

n
+1
]

for 0 < |x| < 2
3
r and 0 < t <

A

4
|x|2. (5.20)

That is (5.19) implies (5.20). Thus given q0 > 0 and iterating the above argument, starting with
(5.19) with q = 0 and A = A(q0) sufficiently large, we see that there exists r0 > 0 such that

u(x, t) ≤ C

[
1

|x|p +
1

|x|n
(

t

|x|2
)q0
]

for 0 < |x| < r0 and 0 < t < |x|2.

Consequently, Theorem 5.1 follows from Proposition 5.1.

A Estimates for the heat potential

In this appendix, we give estimates for the heat potential

(V f)(x, t) =
∫∫

Rn×(a,b)

Φ(x− y, t− s)f(y, s) dy ds,

where a < b, n ≥ 1, and Φ is given by (1.3).
These estimates, which are needed for the proofs of Theorems 3.1 and 4.1, are the analog of

estimates given in [10, Lemma 7.12] for the Riesz potential.

Theorem A.1. Let p, q ∈ [1,∞] satisfy

0 ≤ δ :=
1
p
− 1
q
<

2
n+ 2

.

Then V maps Lp(Rn × (a, b)) continuously into Lq(Rn × (a, b)) and for f ∈ Lp(Rn × (a, b)),

‖V f‖Lq(Rn×(a,b)) ≤M‖f‖Lp(Rn×(a,b)),

where

M =


(1 − δ)

n
2 (b− a)1−

nδ
2(1−δ)

(4π)
nδ

2(1−δ) (1 − nδ
2(1−δ) )




1−δ

.

Proof. Let r = (1 − δ)−1. Then 1 ≤ r < (n+ 2)/n and for s < t we have∫
Rn

Φ(x− y, t− s)r dy =
∫
Rn

Φ(x− y, t− s)r dx =
1

(4π)(r−1)n/2rn/2(t− s)(r−1)n/2
.

Hence, letting Ω = Rn × (a, b), X = (x, t), and Y = (y, s), we have

‖Φ(X − ·)‖Lr(Ω) ≤M for all X ∈ Ω

and
‖Φ(· − Y )‖Lr(Ω) ≤M for all Y ∈ Ω.

The proof is now completed by mimicking the proof of Lemma 7.12 in [10].
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