Blow-up Behavior of Solutions of Semilinear
Elliptic and Parabolic Inequalities

Steven D. Taliaferro

Mathematics Department
Texas A&M University
College Station, TX 77843-3368

stalia@math.tamu.edu



1. Introduction

It is well-known that if u is positive and harmonic in a
punctured neighborhood of the origin in R™ (n > 2) then either
u has a C? positive extension to the origin, or for some finite
positive number m,

lim uz)
z—0 ®(|z|)

:::']’n7

where

1 1 :
== log =, ifn=2

B(la)=q >, ",
’ n(n—2)wy, |z|?™27 iftn >3

is the fundamental solution of —A.
’ oy

In particular, u satisfies the following two weaker condi-
tions:

(i) w is asymtotically radial as x — 0, i.e.

lim _u(:z:) =1,

where i(r) is the average of u on the sphere |z| = r, and

v(ii) u(z) =0(®(|z])) as =z —0.




Do similar results hold for C? positive solutions u of the
differential inequalities

0<-Au< f(u) in B™\{0}, (1.1)

where f:(0,00) — (0, 00) is a given continuous function? Here
B™ is a ball in R"™ centered at the orlgln whose radius depends

on the solution u. }/p,w/a,@ Canre A4 ia{diwc& W@ﬂ

Specifically, under what conditions on the function f does
2 o, . . .
every C? positive solution u of (1.1) satisfy some (or all) of the
following three conditions?

(i) u is asymptotically radial as x — 0,

(i) u(z) = O(®(|z])) as z — 0,

(i) w is asymptotically harmonic as x — 0, i.e.

u(@) _
ilg%) h(z) L

for some function h(x) which is positive and harmonic in
a punctured neighborhood of the origin in R".

Since (iii) implies (i) and (ii), the conditions on f for (iii) to

hold will have to be at least as strong as the conditions on f
for (i) or (ii) to hold.



2. Two dimensional results

Theorem 2.1. Let u(z) be a C? positive solution of
0 < —-Au < f(u) in  B2*\{0},

where f:(0,00) — (0,00) is a continuous function satisfying

hole that

log f(t) =0O(t) as t— oo. p(t\:etwm

Then u is asymptotically harmonic as x — 0.

The conformal Gauss curvature equation
—Au =e"

has been extensively studied. A corollary of the previous the-
orem is the following.

Corollary. If u(x) is a C? positive solution of

0<—-Au<e* in  B*\{0} %ﬂ

then u is asymptotically harmonic as z — 0.




The condition on f in the previous theorem was
log f(t) =0(t) as t— oo. (2.1)

The following theorem shows that this condition on f is
essentially optimal.

Theorem 2.2. Let f:(0,00) — (0,00) and ¢:(0,1) = (0,00)
be continuous functions such that

1 t
lim og /(1) =oo and lim ¢(t) = oo.

t—00 t t—0+

Then there exists a C? positive solution u of
0<—-Au< f(u) in  B\{0}

such that
u() £ O(p(lel) as z -0

and v is not asymptotically radial as x — 0. (x{«% MMB

Thus condition (2.1) is essentially optimal for any (or all)
of the following conditions to hold:

(i) u is asymptotically radial as z — 0,
(i) w(z) = O(®(|z|)) as z — O,

(iii) w is asymptotically harmonic as z — 0.

There is no analogous condition on f in three and higher
dimensions.
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3. Three and higher dimensional results

Theorem 3.1. Let u(z) be a C? positive solution of
0<—-Au < f(u) in  B™\{0}, n>3,
where f:(0,00) — (0,00) is a continuous function satistying
| f(t) =O(t==2) as t— oo.
Then u is asymptotically radial as © — 0. Moreover, either u

is asymptotically harmonic as  — 0 or u satisfies the following
two conditions:

1 =0
250 & (|x|)
and
lim inf u(az) - > 0.
z—0 ( ‘I)(lCCD )
(log @(|=]))(n—2)/2
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The condition on f in the previous theorem was
ft) =0(@"-2) as t— co. (3.1)
The following theorem shows that this condition on f is essen-
tially optimal.
Theorem 3.2. Let f:(0,00) — (0,00) and ¢: (0,1) — (0, 00)

be continuous functions such that

- fy . 3
Ay =00 and - lim () = oo

Then there exists a C? positive solution u of
0 < —-Au< f(u) in B"\{0}, n>3,

such that
u() £ O(p(lzl) as z—0

and u is not asymptotically radial as  — 0.

Thus condition (3.1) is essentially optimal for either (or
both) of the following conditions to hold:

(i) u is asymptotically radial as z — 0,
(il) u(z) = O(®(|z|)) as x — 0;

but is too weak to imply
(iii) w is asymptotically harmonic as x — 0,

because for 0 < o < (n — 2)/2 the function

()
ua(7) = Hoga(lal))?

is a C? positive solution of 0 < —Awu < u#-2 in B"\{0} and
uq () is not asymptotically harmonic as  — 0.
This is in contrast to the situation in two dimensions.

What condition o £ s meeded fo’iu Lo Le aw&MW?
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4. Asymptotically harmonic solutions in three and
higher dimensions

By the last two theorems, the essentially optimal growth
condition on f for u to be asymptotically radial as z — 0 is

ft) =0 ™2) as t— oco.

In the following theorem, we strenghen this growth condition
on f in such a way as to conclude that u is asymptotically
harmonic as x — 0.

First we need a definition:
log, :=log, log,:=logolog, logs:=1logologolog, etc.

Theorem 4.1. Let u be a C? positive solution of

_n__
un—2

0<-Au< 4.1
oz, ) (o, w)(og, wp

in B"\{0}, n > 3, where € (1,00) and q is a positive integer.
Then u is asymptotically harmonic as x — 0.

This theorem is essentially optimal because a solution of
(4.1) when =1 is

@(|z)
logy o ®(|)

u(|z]) =

which is not asymptotically harmonic as ¢ — 0.



5. Summary of results

In summary, the essentially optimal condition on a contin-
uous function f: (0, 00) — (0, c0) for every C? positive solution
u of

0<-Au<f(u) in  B™"\{0}

to satisfy

(i) w is asymptotically radial as z — 0, and/or
(il)) u(z) = O(®(|z|)) asxz — 0

1S

log f(t) = O(t) when n =2,
f(t) =0tV ™= D) when n >3.
Moreover, the essentially optimal condition on f for u to
be asymptotically harmonic as x — 0 is
log f(t) = O(t) when n =2,
tn/(n—2)
(logy t) - - - (log,_1 t)(log, t)P

for some B € (1,00) and some positive integer q.

ﬂﬂ=0< ) when n >3



6. Further results
Recall that C? solutions u of

0<— Ay < /("2

in B™\{0}, n>3
u >0 MOy

satisfy wu(z) =O(|z|*™™) as z—0.

However the problem

0<—Au <y n
- - in B™\{0},
w0 i \{0} —

<A\

has arbitrarily large solutions near the origin. (That is given a
continuous function ¢: (0,1) — (0,00) there exists a C*? solu-
tion w such that u(x) # O(¢(|z])) as z — 0.)

Consider instead the more restricted problem

A A
au” < — Au <u n n-+ 2
- - 1 B™\{0 —_— < A
w0 n B0}, o <A<

where 0 < a < 1.

Arbitrarily large solutions near the origin?

Answer depends on a.

Thus this is the correct problem to study for A as above.

9




More precisely, consider the differential inequalities

au* < —Au <o’ in B™\{0}, n>3 (1)
where Lo
n
A ) 2
n— 2 SAS n— 2 ( )

Theorem 1. Suppose \ satisfies (2). Then there exists a =
a(n,\) € (0,1) such that (1) has C? positive solutions which
are arbitrarily large near the origin.

Theorem 2. Suppose \ satisfies (2). Then there exists a =
a(n,\) € (0,1) such that if u is a C? positive solution of (1)
then

w(z) = O0(|z|"#*A 1) as z—0

and

0<(C; < u(z) < Cy < o0 for |z| small and positive

u(|zl)

where 1(r) is the average of u on the sphere |z| =r.

Let X satisfy (2) and let
I = I(n,\) ={a € (0,1): Theorem 1 is true}
I, = Ir(n,\) = {a € (0,1): Theorem 2 is true}.

Then I; and Iy are nonempty disjoint subintervals of (0,1).
L T,
¢ 1
Open Question. Does Iy U I, = (0,1)7 If not, what is the
behavior of C? positive solutions of (1) when

a € (0, 1)\([1 U Iz)?

10



The proofs of some of these results for elliptic inequalities
use a representation formula of Brezis and Lions for nonnega-
tive solutions of —Awu > 0 in a punctured neighborhood of the
origin in R™.

Brezis-Lions Lemma. Let u be a C? solution of

—Au>0

w>0 in  B(0)\{0}.

Then —Au € L'(B1(0) and for some nonnegative constant m
and some solution of h of

—Ah =0 1In Bl(O)

we have
u=m®+N+h in Bi(0)\{0}

where ® is the fundamental solution of —A and

N(z) = /] 89 (-u() dy

11




7. Polyharmonic inequalities

Next consider C?™ nonnegative solutions of
—A™u >0 in B"\{0} (7.1)

where n > 2 and m > 1 are integers. If m = 1 then this
inequality has C? positive solutions which are pointwise arbi-
trarily large near the origin. What about other choices for m?
Results in this section are due to Ghergu, Moradifam, T.

Theorem 7.1. A necessary and sufficient condition on inte-
gers n > 2 and m > 1 such that C?™ nonnegative solutions
u(x) of (7.1) satisfy a pointwise a priori bound as x — 0 is that

either m is even or n < 2m. (7.2)
In this case, u is harmonically bounded at 0, that is

u(z) = O0(®(z)) as x—0.

This bound is optimal.

By this theorem, in order to get a pointwise bound for
nonnegative solutions u(x) of (7.1) when (7.2) does not hold
we have to impose additional conditions on u. To this end, we
consider

0< —A™y < f(u) in B™\{0} (7.3)

and ask the following question.

12



Question. For which continuous fuctions f : [0,00) — [0, 00)
does there exist a continuous function ¢ : (0,1) — (0, 00) such
that every C*™ nonnegative solution u(z) of

0<—-A"u< f(u) in B™\{0} (7.3)

satisfies

u(@) = O(p(lz])) as z -0

and what is the optimal such ¢ when one exists?

The last theorem completely answers this question when
either m is even or n < 2m. (7.2)

(In this case all nonnegative solutions of (7.3) are harmonically
bounded, regardless of f.)

As an example of our results for this question when (7.2)
does not hold, we have the following result which deals with
the case

m > 2 is odd and n = 2m,

which is the most interesting case when (7.2) does not hold.

13



Theorem 7.2. Let u(x) be a C*™ nonnegative solution of
0<—-A"u < f(u) in B™\{0},

where m > 2 is odd, n = 2m, and either

2n — 2

' =t", 0<)A< ;
2n — 2
. :t)\ .

(iii)  f(t) = e, 0<A<1;or
(iv) fl)=¢€", A>1.

Then, as = — 0, u(x) respectively satisfies
(i) u(z)=0 (|$|"(”_2) that is u is harmonically bounded,

() ule) = o (Ja " Dlog - )

]
—(

(iii)) u(z) =o0 (lxl 17132)) ; or

(iv)  no pointwise bound.

These bounds are all optimal.

This theorem is “non-radial” in the sense that all radial
solutions of

0<—-A"y in B™\{0}, m>1, n>2,
are harmonically bounded at 0.

14



To prove the results in this section, we need a representa-
tion formula for C*™ nonnegative solutions u(z) of

—A™uy >0 in Bs(0)\{0} C R", (7.3)

which extends to m > 2 the Brezis-Lions representation for-
mula for (7.3) when m = 1. We now discuss this extension.
A fundamental solution of A™ in R™ is given by

I'(z) = Clz|*™™™ or Clz|*™ "log|z|.

If u(z) is a C*™ nonnegative solution of (7.3), where m > 1
and n > 2 are integers, then

[ WP amu(m) dy < oo (7.4)
ly|<1
but, when m > 2,

/(—Amu(y))dy, and hence /F(m—y)Amu(y)dy,
ly|<1 lyl<1

may be infinite. So the straight-forward generalization of the
Brezis-Lions formula does not work, because the last integral
is the natural extension to m > 2 of the Newtonian potential
term in the Brezis-Lions formula. To overcome this difficulty,
let ¥(z,y) be the difference between I'(x — y) and the partial
sum of degree 2m — 3 of the Taylor series of I" at . Then for
all z # 0, we have by Taylor’s theorem that

U(z,y) = O(|y|*™ %) as y— 0.
Thus by (7.4),

N(z) := /| » U(z,y)A"u(y)dy < oo for xz#0 (7.5)

and one can check that A™N = A™u. Thus (7.5) is the correct
extension to m > 2 of the Newtonian potential term in the
Brezis-Lions formula.

15



Our polyharmonic extension of the Brezis-Lions represen-
tation formula is the following theorem. A similar result was
obtained by Futamura and Mizuta.

For x # 0 and y # z, let

Vo) =Te-v - > )
la|<2m—3

be the difference between I'(x —y) and the partial sum of degree
2m — 3 of the Taylor series of I' at z.

Theorem 7.3. Let u(z) be a C>™ nonnegative solution of
—A™y >0 in B2(0)\{0} CR"
where m > 1 and n > 2 are integers. Then

[ PR amu) dy < oo

ly|<1

and

u=N+h+ Y a.D°T in Bi(0)\{0}

|| <2m—2
where a,, are constants, h € C°°(B1(0)) is a solution of
A™h =0 in Bl(O),

and

N(z) = / U(z,y)A™u(y)dy for = #0.

ly|<1

16



8. Systems

We study the behavior near the origin of C? positive so-
lutions u(z) and v(z) of the system

0< -Au <

b Av oy ™ B0

where f,¢g:(0,00) — (0,00) are continuous functions.
We say such a function f is exponential bounded at oo if

log® f(t) = O(t) as t— oo.

There are three possiblities to consider:

(i) f and g are both exponentially bounded at oo;
(ii) neither f nor g is exponentially bounded at oo;
(iii) one and only one of the functions f and g is exponentially
bounded at co.

The following three results [Ghergu, T, Verbitsky| deal
with these three possiblities.

17



By the following theorem, if the functions f and g are both
exponentially bounded at oo then all positive solutions v and
v are harmonically bounded at O.

Theorem 8.1. Suppose u(x) and v(z) are C? positive solu-
tions of the system

0 < —Au< f(v)

in B2\{0},
0 < —Av < g(u) W0}
where f,g : (0,00) — (0,00) are continuous and exponentially

bounded at oco. Then both u and v are harmonically bounded,

that is

w(z), v(z) = O (log i) as 7 0.

]

This bound for u and v is optimal

18



By the following theorem, it is essentially the case that if
neither of the functions f and g is exponentially bounded at
oo then neither of the positive solutions u and v satisfies an
apriori pointwise bound at 0.

Theorem 8.2. Suppose f,g: (0,00) — (0,00) are continuous

functions satisfying

lim log f(?) =00 and lim log 9(?)

t—00 t t—>00 t

Let h : (0,1) — (0,00) be a continuous function satisfying
lim,_,o+ h(r) = co. Then there exist C? positive solutions u(z)
and v(x) of the system

0<-Au< f(v) | N
0 < —Av < g(u) in B0},

such that
u(z) # O(h(|z|)) asz—0

and

v(z) # O(h(|x|)) asz — O

19



By the following theorem, if at least one of the functions
f and g is exponentially bounded at co then at least one of the
positive solutions u and v is harmonically bounded at 0.

Theorem 8.3. Suppose u(z) and v(z) are C? positive solu-
tions of the system

0 < —-Au

o A gy ™ B

where g : (0,00) — (0,00) is continuous and exponentially
bounded at co. Then v is harmonically bounded, that is

v(z) =0 (log —1—) as ¢ — 0.

]
If, in addition,
—Au< f(v) in B*\{0},
where f : (0,00) — (0,00) is a continuous function satisfying
logt f(t) = O(t") ast— o0

for some \ > 1 then

w(z) = o0 <<1og |_i—|>>\> S~

Note that in these theorems we impose no conditions on
the growth of f(t) (or g(t)) as t — 07. Also, all bounds given
in these three theorems are optimal. Similar results hold in
three and higher dimensions.

20



9. Parabolic inequalities

It is not hard to prove that if u is a nonnegative solution
of the heat equation

up—Au=0 in Qx(0,1), (1)

where (2 is an open subset of R™, n > 1, then for each compact
subset K of €2, we have

max u(z,t) = O(t~™/?) as t— 0. (2)
TE

The exponent —n /2 in (2) is optimal because the Gaussian
1 =2
Glz,t) = (@nt)n7z€ 2, ift>0
0, if + <0

is a nonnegative solution of the heat equation in R™ x R—(0, 0)
and
G(0,t) = (4mrt)~™/? for ¢>0.

Do similar results hold for nonnegative solutions u of the
differential inequatities

0 <wus—Au < f(u) in Qx(0,1), (3)
where f : [0,00) — (0, 00) is a given continuous function? Note

that solutions of the heat equation satisfy (3). By the following
theorem, the estimate (2) remains true provided

f(s) = O(s(n+2)/m) as 8§ — 00.

21



Theorem 9.1. Suppose u(z,t) is a C?! nonnegative solution
of
0<u—Au<u™ +1 in Qx(0,1), (4)

where ) is an open subset of R®, n > 1. Then, for each
compact subset K of §), we again have

max w(z,t) = O(t~™?) as t— 0%, (5)

One of the main accomplishments of this paper is the proof

of Theorem 9.1 when the nonlinear term on the right side of (4)
is w5~ . When the nonlinear term is ur, N < ”TH, the proof of
Theorem 9.1 is much easier.

Theorem 1 is optimal in two ways. First, as before, the
exponent —n /2 in (5) is optimal because the Gaussian G(z,t)

is a solution of (4) and

G(0,t) = (4rt)~"™/? for ¢>0.

.

And second, the exponent 2t2 on u in (4) cannot be increased
by the following theorem.
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Theorem 9.2. Let A\ > %2 and let p(t), 0 <t <1, be any
large positive continuous function. Then there exists a C**
nonnegative solution u(x,t) of

0<u—Au<u* in (R"xR)—{(0,00} (6)
satisfying u = 0 in R™ X (—o0,0) and

u(0,t) # O(p(t)) as t— 0.

A

n

Actually, Theorem 9.2 is true if the nonlinear term w
(6) is replaced with the smaller term

u™ (log(1+ )P, B> 2/n.
ouxe)y

r




For the proofs of some of my results for parabolic inequal-
ities, I prove and use a

Parabolic Brezis-Lions Lemma. Let u be a C%! solution

of
uy — Au >0

Lo i Bs(0)x(03)

Then for some finite positive Borel measure p on Bo(0) and
some solution of h of

hi —Ah =0 in By(0)x (—1,1)

we have
u=N+v+h in B1(0)x(0,1)

where

2
N(z,t) :/ G(z —y,t — s)(us — Au)(y, s) dy ds,
0 Jly|<2

v(z,t) = /| B G(z —y,t) du(y),

and G is the Gaussian.

..t
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