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Abstract. We survey a few recent results focusing on the multiplicity of the zero at 1 of

polynomials with constrained coefficients. Some closely related problems and results are also
discussed.

1. On the multiplicity of the zero at 1 of

polynomials with constrained coefficients

In [B-99] and [B-13] we examined a number of problems concerning polynomials with
coefficients restricted in various ways. We were particularly interested in how small such
polynomials can be on [0, 1]. For example, we proved that there are absolute constants
c1 > 0 and c2 > 0 such that

e−c1
√
n ≤ min

0 6≡Q∈Fn

{

max
x∈[0,1]

|Q(x)|
}

≤ e−c2
√
n

for every n ≥ 2, where Fn denotes the set of all polynomials of degree at most n with
coefficients from {−1, 0, 1}.

Littlewood considered minimization problems of this variety on the unit disk. His most
famous, now solved, conjecture was that the L1 norm of an element f ∈ Fn on the unit
circle grows at least as fast as c logN , where N is the number of non-zero coefficients in f
and c > 0 is an absolute constant.

When the coefficients are required to be integers, the questions have a Diophantine
nature and have been studied from a variety of points of view.

One key to the analysis is a study of the related problem of giving an upper bound for
the multiplicity of the zero these restricted polynomials can have at 1. In [B-99] and [B-13]
we answer this latter question precisely for the class of polynomials of the form

Q(x) =

n
∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ C , j = 1, 2, . . . , n ,
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with fixed |a0| 6= 0.
Various forms of these questions have attracted considerable study, though rarely have

precise answers been possible to give. Indeed, the classical, much studied, and presumably
very difficult problem of Prouhet, Tarry, and Escott rephrases as a question of this variety.
(Precisely: what is the maximal vanishing at 1 of a polynomial with integer coefficients
with l1 norm 2n? It is conjectured to be n.)

For n ∈ N, L > 0, and p ≥ 1 let κp(n, L) be the largest possible value of k for which
there is a polynomial Q 6≡ 0 of the form

Q(x) =

n
∑

j=0

ajx
j , aj ∈ C , |a0| ≥ L

(

n
∑

j=1

|aj|p
)1/p

,

such that (x− 1)k divides Q(x).
For n ∈ N and L > 0 let κ∞(n, L) be the largest possible value of k for which there is

a polynomial Q 6≡ 0 of the form

Q(x) =
n
∑

j=0

ajx
j , aj ∈ C , |a0| ≥ L max

1≤j≤n
|aj| ,

such that (x− 1)k divides Q(x).
In [B-99] we proved that there is an absolute constant c3 > 0 such that

min
{1

6

√

(n(1− logL)− 1 , n
}

≤ κ∞(n, L) ≤ min
{

c3
√

n(1− logL) , n
}

for every n ∈ N and L ∈ (0, 1]. However, we were far from being able to establish the
right result in the case of L ≥ 1. In [B-13] we proved the right order of magnitude of
κ∞(n, L) and κ2(n, L) in the case of L ≥ 1. Our results in [B-99] and [B-13] sharpen and
generalize results of Schur [Sch-33], Amoroso [A-90], Bombieri and Vaaler [BV-87], and
Hua [H-82] who gave versions of this result for polynomials with integer coefficients. Our
results in [B-99] have turned out to be related to a number of recent and old publications
from a rather wide range of research areas. See the publications in the List of References,
for example. More results on the zeros of polynomials with Littlewood-type coefficient
constraints may be found in [E-02b]. Markov and Bernstein type inequalities under Erdős
type coefficient constraints are surveyed in [E-02a].

For n ∈ N, L > 0, and q ≥ 1 let µq(n, L) be the smallest value of k for which there is a
polynomial of degree k with complex coefficients such that

|Q(0)| > 1

L

(

n
∑

j=1

|Q(j)|q
)1/q

.

For n ∈ N and L > 0 let µ∞(n, L) be the smallest value of k for which there is a polynomial
of degree k with complex coefficients such that

|Q(0)| > 1

L
max
1≤j≤n

|Q(j)| .
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It is a simple consequence of Hölder’s inequality (see Lemma 3.6 in [E-16]) that

κp(n, L) ≤ µq(n, L)

whenever n ∈ N, L > 0, 1 ≤ p, q ≤ ∞, and 1/p+ 1/q = 1.
In [E-16] we have found the the size of κp(n, L) and µq(n, L) for all n ∈ N, L > 0, and

1 ≤ p, q ≤ ∞. The result about µ∞(n, L) is due to Coppersmith and Rivlin, [C-92], but
our proof presented in [E-16] is completely different and much shorter even in that special
case. Another short proof of the Coppersmith-Rivlin inequality is presented in [E-15].

Our results in [B-99] may be viewed as finding the size of κ∞(n, L) and µ1(n, L) for all
n ∈ N and L ∈ (0, 1].

Our results in [B-13] may be viewed as finding the size of κ∞(n, L), µ1(n, L), κ2(n, L)
and µ2(n, L) for all n ∈ N and L > 0.

Our main results in [E-16] are stated below.

Theorem 1.1. Let p ∈ (1,∞] and q ∈ [1,∞) satisfy 1/p + 1/q = 1. There are absolute

constants c1 > 0 and c2 > 0 such that

√
n(c1L)

−q/2 − 1 ≤ κp(n, L) ≤ µq(n, L) ≤
√
n(c2L)

−q/2 + 2

for every n ∈ N and L > 1/2, and

c3 min
{

√

n(− logL), n
}

≤ κp(n, L) ≤ µq(n, L) ≤ c4 min
{

√

n(− logL), n
}

+ 4

for every n ∈ N and L ∈ (0, 1/2]. Here c1 := 1/53, c2 := 40, c3 := 2/7, and c4 := 13 are

appropriate choices.

Theorem 1.2. There are absolute constants c1 > 0 and c2 > 0 such that

c1
√

n(1− L)− 1 ≤ κ1(n, L) ≤ µ∞(n, L) ≤ c2
√

n(1− L) + 1

for every n ∈ N and L ∈ (1/2, 1], and

c3 min
{

√

n(− logL), n
}

≤ κ1(n, L) ≤ µ∞(n, L) ≤ c4 min
{

√

n(− logL), n
}

+ 4

for every n ∈ N and L ∈ (0, 1/2]. Note that κ1(n, L) = µ∞(n, L) = 0 for every n ∈ N and

L > 1. Here c1 := 1/5, c2 := 1, c3 := 2/7, and c4 := 13 are appropriate choices.

Note that in [E-08b], extending a result of Totik and Varjú in [T-07], we showed that if
the modulus of a monic polynomial P of degree at most n, with complex coefficients, on
the unit circle of the complex plane is at most 1 + o(1) uniformly, then the multiplicity
of each zero of P outside the open unit disk is o(n1/2). Equivalently, if a polynomial P
of degree at most n, with complex coefficients and constant term 1, has modulus at most
1 + o(1) uniformly on the unit circle, then the multiplicity of each zero of P in the closed
unit disk is o(n1/2). These observations were obtained in [E-08b] as a consequence of our
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“one-sided” improvement of an old Erdős–Turán Theorem in [E-50]. Namely in [E-08b]
we proved that if the zeros of

P (z) :=
n
∑

j=0

ajz
j , aj ∈ C , a0an 6= 0 ,

are denoted by

zj = rj exp(iϕj) , rj > 0 , ϕj ∈ [0, 2π) , j = 1, 2, · · · , n ,

then for every 0 ≤ α < β ≤ 2π we have

∑

j∈I1(α,β)

1− β − α

2π
n ≤ 16

√

n logR1 ,

and
∑

j∈I2(α,β)

1− β − α

2π
n ≤ 16

√

n logR2 ,

where
R1 := |an|−1‖P‖ , R2 := |a0|−1‖P‖ ,

and

I1(α, β) := {j : α ≤ ϕj ≤ β, rj ≥ 1} , I2(α, β) := {j : α ≤ ϕj ≤ β, rj ≤ 1} .

Here ‖P‖ denotes the maximum modulus of P on the closed unit disk of the complex plane.
For better constants in the Erdős–Turán Theorem in [E-50] see the recent paper [S-19] by
Soundararajan, who also offers a very elegant new approach to prove the Erdős–Turán
Theorem in [E-50].

2. Remarks and Problems

A question we have not considered in [E-16] is if there are examples of n, L, and p
for which the values of κp(n, L) are significantly smaller if the coefficients are required to
be rational (perhaps together with other restrictions). The same question may be raised
about µq(n, L). As the conditions on the coefficients of the polynomials in Theorems 1.1
and 1.2 are homogeneous, assuming rational coefficients and integer coefficients lead to the
same results. Four special classes of interest are

Fn :=







Q : Q(z) =

n
∑

j=0

ajz
j , aj ∈ {−1, 0, 1}







,

Nn :=







Q : Q(z) =
n
∑

j=0

ajz
j , aj ∈ {0, 1}







,
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Ln :=







Q : Q(z) =
n
∑

j=0

ajz
j , aj ∈ {−1, 1}







,

and

Kn :=







Q : Q(z) =

n
∑

j=0

ajz
j , aj ∈ C, |aj| = 1







.

Elements of Fn are often called Borwein polynomials of degree at most n. Elements of
Nn are often called Newman polynomials of degree at most n. Elements of Ln are often
called Littlewood polynomials of degree n. Elements of Kn are often called unimodular or
Kahane polynomials of degree n. In [B-99] we proved the following result.

Theorem 2.1. Let p ≤ n be a prime. Suppose Q ∈ Fn and Q has exactly k zeros at 1
and exactly m zeros at a primitive pth root of unity. Then

p(m+ 1) ≥ k
log p

log(n+ 1)
.

The proof of Theorem 2.1 vis so simple that we reproduce it here.

Proof of Theorem 2.1. Let

ξj := exp

(

2πij

p

)

, j = 1, 2, . . . , p− 1 .

Let Q ∈ Fn be of the form
Q(x) = (x− 1)kR(x) ,

where R is a polynomial of degree at most n− k with integer coefficients. Then, for every
integer m ≤ k, we have

Q(m)(x) = (x− 1)k−mS(x) ,

where S is a polynomial of degree at most n− k with integer coefficients. Hence

K :=

p−1
∏

j=1

Q(m)(ξj) =

p−1
∏

j=1

(ξj − 1)k−m

p−1
∏

j=1

S(ξj) =: pk−mN ,

where both K and N are integers by the fundamental theorem of symmetric polynomials.
Further

|K| ≤
p−1
∏

j=1

(n+ 1)nm ≤ (n+ 1)(p−1)(m+1) .

Hence K 6= 0 implies
pk−m ≤ (n+ 1)(p−1)(m+1) ,

that is,

k −m ≤ (p− 1)(m+ 1) log(n+ 1)

log p
,

and the result follows. �

The following three problems arise naturally, and they have been already raised in
[BE-96b], for example.
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Problem 2.2. How many zeros can a polynomial 0 6≡ Q ∈ Fn have at 1?

Problem 2.3. How many zeros can a polynomial Q ∈ Ln have at 1?

Problem 2.4. How many zeros can a polynomial Q ∈ Kn have at 1?

The case when p = ∞ and L = 1 in our Theorem 1.1 gives that every 0 6≡ Q ∈ Fn, every
Q ∈ Ln, and every Q ∈ Kn can have at most cn1/2 zeros at 1 with an absolute constant
c > 0, but one may expect better results by utilizing the additional pieces of information
on their coefficients.

It was observed in [B-99] that for every integer n ≥ 2 there is a Q ∈ Fn having at least
c(n/ logn)1/2 zeros at 1 with an absolute constant c > 0. This is a simple pigeon hole
argument. However, as far as we know, closing the gap between cn1/2 and c(n/ logn)1/2

in Problem 2.2 is an open and most likely very difficult problem.
It is proved in [B-97a] that every every polynomial P of the from

P (z) =
n
∑

j=0

ajz
j , |a0| = 1, |aj| ≤ 1 , aj ∈ C ,

has at most c
√
n zeros inside any polygon with vertices on the unit circle ∂D, where c

depends only on the polygon. One of the main results of [BE-08b] gives explicit estimates
for the number and location of zeros of polynomials with bounded coefficients. Namely if

δn := 33π
logn√

n
≤ 1 ,

then every polynomial P of the from

P (z) =

n
∑

j=0

ajz
j , |a0| = |an| = 1, |aj| ≤ 1 , aj ∈ C ,

has at least 8
√
n log n zeros in any disk with center on the unit circle and radius δn. More

on Littlewood polynomials may be found in [B-02] and [E-02b], for example.
As far as Problem 2.3 is concerned, Boyd [B-97] showed that for n ≥ 3 every Q ∈ Ln

has at most

(2.1)
c(logn)2

log logn

zeros at 1, and this is the best known upper bound even today. Boyd’s proof is very clever
and up to an application of the Prime Number Theorem is completely elementary. It is
reasonable to conjecture that for n ≥ 2 every Q ∈ Ln has at most c logn zeros at 1. It is
easy to see that for every integer n ≥ 2 there are Qn ∈ Ln with at least c logn zeros at 1
with an absolute constant c > 0. Indeed, the polynomials Pk defined by

Pk(z) =

k
∏

j=0

(z2
j − 1) , k = 1, 2, . . . ,

6



have degree 2k+1−1 and a zero of multiplicity k+1 at 1. By using Boyd’s elegant method
it is easy to prove also that if Mk denotes the largest possible multiplicity that a zero of a
P ∈ Lk can have at 1 and (Ck) is an arbitrary sequence of positive integers tending to ∞,
then

lim
n→∞

1

n
|k ∈ {1, 2, . . . , n} : Mk ≥ Ck| = 0 .

This was proposed as a problem in the Monthly [E-09] in 2009, and a few people have
solved it.

As far as Problem 2.4 is concerned, one may suspect that for n ≥ 2 every Q ∈ Kn has at
most c logn zeros at 1. However, just to see if Boyd’s bound (2.1) holds for every Q ∈ Kn

seems quite challenging and beyond reach at the moment.

Problem 2.5. How many zeros can a polynomial P ∈ Fn have at α if |α| 6= 1 and α 6= 0?
Can it have as many as we want?

Problem 2.6. How many zeros can a polynomial P ∈ Ln have at α if |α| 6= 1 and α 6= 0?
Can it have as many as we want?

The Mahler measure

M0(P ) := exp

(

1

2π

∫ 2π

0

log |P (eit)| dt
)

is defined for bounded measurable functions P defined on the unit circle. It is well known
that

M0(P ) := lim
q→0+

Mq(P ) ,

where, for q > 0,

Mq(P ) :=

(

1

2π

∫ 2π

0

∣

∣P (eit)
∣

∣

q
dt

)1/q

.

It is a simple consequence of the Jensen formula that

M0(P ) = |c|
n
∏

k=1

max{1, |zk|}

for every polynomial of the form

P (z) = c
n
∏

k=1

(z − zk) , c, zk ∈ C .

Lehmer’s conjecture is a problem in number theory raised by Derrick Henry Lehmer.
The conjecture asserts that there is an absolute constant µ > 1 such that for every poly-
nomial P with integer coefficients satisfying P (0) 6= 0 we have either M0(P ) = 1 (that is,
P is monic and has all its zeros on the unit circle) or M0(P ) ≥ µ.
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The smallest known Mahler measure greater than 1 is taken for the “Lehmer’s polyno-
mial”

P (z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1

for which
M0(P ) = 1.176280818 . . . .

It is widely believed that this example represents the true minimal value: that is,

µ = 1.176280818 . . .

in Lehmer’s conjecture.
In 1973, Pathiaux [P-73] proved that if Q is an irreducible polynomial with integer

coefficients and M0(Q) < 2 then there exists a polynomial P ∈ Fn such that Q divides
P . A remark at the end of this paper notes that the proof may be modified to establish
the same result for reducible polynomials. Mignotte [M-75] found a simpler proof of this
statement for irreducible polynomials Q with integer coefficients and derived an upper
bound on the degree of P in terms of the degree of Q and M0(Q). His proof may also
be extended to the reducible case. These results were generalized and strengthened by
Bombieri and Vaaler in [B-87], as an application of their improved formulation of Siegel’s
lemma.

Similarly, it is a simple counting argument to show that if k ≥ 2 is an integer, the monic
polynomial Q has only integer coefficients, and M0(Q) < k, then there is a polynomial P
with integer coefficients in [−k + 1, k − 1] such that Q divides P . See the hint to E.8 on
page 23 of [B-02].

The result of Pathiaux [P-73]leads us to the following observations.

Remark 2.6. If

Q(z) := (z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1)4 ,

then M0(Q) = (1.176280818 . . . )4 < 2, hence there is a polynomial P ∈ Fn such that Q
divides P .

Remark 2.7. If Lehmer’s conjecture is false then the answer to Problem 2.5 is yes. In-

deed, if Lehmer’s conjecture is false then for every 1 < µ < 2 there is a monic polynomial

Q such that 1 < M0(Q) ≤ µ, so if k := ⌊log 2/ logµ⌋ − 1, then Qk divides a polynomial

P ∈ Fn.

Remark 2.8. It remains open whether or not a polynomial P ∈ Fn with P (0) = 1 can

have a zero α of multiplicity at least 5 outside the unit circle.

To find examples of Newman polynomials with constant term 1 and with at least one
repeated zero outside the unit circle had been asked by Odlyzko and Poonen [O-93]. This
question was later answered by Mossinghoff [M-03] who found examples of several such
polynomials with repeated zeros outside the unit circle.

To find examples of Littlewood polynomials with at least one repeated zero outside
the unit circle is also a very interesting problem. It is easy to see that such Littlewood
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polynomials must have odd degree. P. Drungilas, J. Jankauskas, and J. Šiurys [D-18a]
have found a Littlewood polynomial P of degree 195 such that (x3 − x + 1)2 divides P .
See more in [D-09], [D-18a], [D-18b], and [H-20].

We close this section by a version of an old and hard unsolved problem known as the
already mentioned Tarry-Escott Problem.

Problem 2.9. Let N ∈ N be fixed. Let a(N) be the smallest value of m for which there

is a polynomial P ∈ ∪∞
n=1Fn with exactly m nonzero terms in it and with a zero at 1 with

multiplicity at least N . Prove or disprove that a(N) = 2N .

To prove that a(N) ≥ 2N is simple. The fact that a(N) ≤ 2N is known for N =
1, 2, . . . , 12, but the problem is open for every N ≥ 13. In 1999, S. Chen found the first
ideal solution with N ≥ 12:

0k + 11k + 24k + 65k + 90k + 129k + 173k + 212k + 237k + 278k + 291k + 302k

=3k + 5k + 30k + 57k + 104k + 116k + 186k + 198k + 245k + 272k + 297k + 299k ,

valid for all k = 1, 2, . . . , 11.
The best known upper bound for a(N) in general seems to be a(N) ≤ cN2 logN with

an absolute constant c > 0. See [B-94]. Even improving this (like dropping the factor
logN) would be a significant achievement. Note that for every integer n ≥ 2 there is a
polynomial Q ∈ Fn having at least c(n/ logn)1/2 zeros at 1 with an absolute constant
c > 0. This was observed in [B-99] based on a simple counting argument. The inequality
a(N) ≤ cN2 logN with an absolute constant c > 0 follows simply from this.
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B-32. A. Bloch and G. Pólya, On the roots of certain algebraic equations, Proc. London Math. Soc
33 (1932), 102–114.

B-87. E. Bombieri and J. Vaaler, Polynomials with low height and prescribed vanishing, in Analytic

Number Theory and Diophantine Problems (Stillwater, OK, 1984), Progr. Math., 70, Birkhäuser
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B-97a. P. Borwein and T. Erdélyi, On the zeros of polynomials with restricted coefficients, Illinois J.
Math. 41 (1997), 667–675.
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