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Abstract. Let Pn be the collection of all polynomials of degree at most n with real coefficients. A subtle

Bernstein-type extremal problem is solved by establishing the inequality

‖U
(m)
n ‖Lq(R) ≤ (c1+1/qm)m/2nm/2‖Un‖Lq(R)

for all Un ∈ G̃n, q ∈ (0,∞], and m = 1, 2, . . . , where c is an absolute constant and

G̃n :=

{
f : f(t) =

N∑

j=1

Pmj (t)e
−(t−λj )

2
, λj ∈ R , Pmj ∈ Pmj ,

N∑

j=1

(mj + 1) ≤ n

}
.

Some related inequalities and direct and inverse theorems about the approximation by elements of G̃n in Lq(R)

are also discussed.

1. Introduction and Notation

In his book [1] Braess writes “The rational functions and exponential sums belong to those concrete

families of functions which are the most frequently used in nonlinear approximation theory. The starting

point of consideration of exponential sums is an approximation problem often encountered for the analysis

of decay processes in natural sciences. A given empirical function on a real interval is to be approximated

by sums of the form
n∑

j=1

aje
λjt ,

where the parameters aj and λj are to be determined, while n is fixed.”

In [3] the authors prove the right Bernstein-type inequality for exponential sums.

Let

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R

}
.
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So En is the collection of all n+1 term exponential sums with constant first term. Schmidt [10] proved that

there is a constant c(n) depending only on n so that

‖f ′‖[a+δ,b−δ] ≤ c(n)δ−1‖f‖[a,b]

for every f ∈ En and δ ∈
(
0, 12 (b− a)

)
. Here, and in what follows, ‖ · ‖[a,b] denotes the uniform norm on

[a, b]. The main result, Theorem 3.2, of [3] shows that Schmidt’s inequality holds with c(n) = 2n− 1. That

is,

(1.1) sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n− 1

min{y − a, b− y} , y ∈ (a, b) .

In this Bernstein-type inequality even the point-wise factor is sharp up to a multiplicative absolute constant;

the inequality

1

e− 1

n− 1

min{y − a, b− y} ≤ sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

, y ∈ (a, b) ,

is established by Theorem 3.3 in [3].

Bernstein-type inequalities play a central role in approximation theory via a machinery developed by

Bernstein, which turns Bernstein-type inequalities into inverse theorems of approximation. See, for example,

the books by Lorentz [7] and by DeVore and Lorentz [5]. From (1.1) one can deduce in a standard fashion

that if there is a sequence (fn)
∞
n=1 of exponential sums with fn ∈ En that approximates f on an interval

[a, b] uniformly with errors

‖f − fn‖[a,b] = O
(
n−m(logn)−2

)
, n = 2, 3, . . . ,

where m ∈ N is a fixed integer, then f is m times continuously differentiable on (a, b). Let Pn be the

collection of all polynomials of degree at most n with real coefficients. Inequality (1.1) can be extended to

En replaced by

Ẽn :=

{
f : f(t) = a0 +

N∑

j=1

Pmj (t)e
λj t , a0, λj ∈ R , Pmj ∈ Pmj ,

N∑

j=1

(mj + 1) ≤ n

}
.

In fact, it is well-known that Ẽn is the uniform closure of En on any finite subinterval of the real number

line.

For a function f defined on a set A let

‖f‖A := ‖f‖L∞A := ‖f‖L∞(A) := sup{|f(x)| : x ∈ A} ,

and let

‖f‖LpA := ‖f‖Lp(A) :=

(∫

A

|f(x)|p dx
)1/p

, p > 0 ,
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whenever the Lebesgue integral exists. In this paper we focus on the classes

Gn :=

{
f : f(t) =

n∑

j=1

aje
−(t−λj)

2

, aj, λj ∈ R

}
,

G̃n :=

{
f : f(t) =

N∑

j=1

Pmj (t)e
−(t−λj)

2

, λj ∈ R , Pmj ∈ Pmj ,

N∑

j=1

(mj + 1) ≤ n

}
,

and

G̃∗
n :=

{
f : f(t) =

N∑

j=1

Pmj (t)e
−(t−λj)

2

, λj ∈ [−n1/2, n1/2] , Pmj ∈ Pmj ,

N∑

j=1

(mj + 1) ≤ n

}
.

Note that G̃n is the uniform closure of Gn on any finite subinterval of the real number line. Let W (t) :=

exp(−t2). Combining Corollaries 1.5 and 1.8 in [6] and recalling that for the weight W the Mhaskar-

Rachmanov-Saff number an defined by (1.4) in [6] satisfies an ≤ c1n
1/2 with a constant c1 independent of

n, we obtain that

inf
P∈Pn

‖(P − g)W‖Lq(R) ≤ c2n
−m/2‖g(m)W‖Lq(R)

with a constant c2 independent of n, whenever the norm on the right-hand side is finite for some m ∈ N and

q ∈ [1,∞]. As a consequence

inf
f∈G̃∗

n

‖f − gW‖Lq(R) ≤ c3n
−m/2

m∑

k=0

‖(1 + |t|)m−k(gW )(k)(t)‖Lq(R)

with a constant c3 independent of n whenever the norms on the right-hand side are finite for each k =

0, 1, . . . ,m with some q ∈ [1,∞]. Replacing gW by g, we conclude that

(1.2) inf
f∈G̃∗

n

‖f − g‖Lq(R) ≤ c3n
−m/2

m∑

k=0

‖(1 + |t|)m−kg(k)(t)‖Lq(R)

with a constant c3 independent of n whenever the norms on the right-hand side are finite for each k =

0, 1, . . . ,m with some q ∈ [1,∞].

2. New Results

Theorem 2.1. There is an absolute constant c4 such that

|U ′
n(0)| ≤ c4n

1/2 ‖Un‖R

for all Un of the form Un = PnQn with Pn ∈ G̃n and an even Qn ∈ Pn. As a consequence

‖P ′
n‖R ≤ c4n

1/2 ‖Pn‖R

for all Pn ∈ G̃n.

We remark that a closer look at the proof shows that c4 = 5 in the above theorem is an appropriate choice.
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Theorem 2.2. There is an absolute constant c5 such that

‖U ′
n‖Lq(R) ≤ c

1+1/q
5 n1/2 ‖Un‖Lq(R)

for all Un ∈ G̃n and q ∈ (0,∞).

Theorem 2.3. There is an absolute constant c6 such that

‖U (m)
n ‖Lq(R) ≤ (c

1+1/q
6 nm)m/2‖Un‖Lq(R)

for all Un ∈ G̃n, q ∈ (0,∞], and m = 1, 2, . . . .

We remark that a closer look at the proofs shows that c5 = 180π in Theorem 2.2 and c6 = 180π in Theorem

2.3 are appropriate choices.

Our next theorem may be viewed as a slightly weak version of the right inverse theorem of approximation

that can be coupled with the direct theorem of approximation formulated in (1.2).

Theorem 2.4. Suppose q ∈ [1,∞], m is a positive integer, ε > 0, and f is a function defined on R. Suppose

also that

inf
fn∈G̃n

‖fn − f‖Lq(R) ≤ c7n
−m/2(logn)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n. Then f is m times differentiable almost everywhere on R. Also, if

inf
fn∈G̃∗

n

‖fn − f‖Lq(R) = c7n
−m/2(logn)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n, then, in addition to the fact that f is m times differentiable almost

everywhere on R, we also have

‖(1 + |t|)m−jf (j)(t)‖Lq(R) < ∞ , j = 0, 1, . . . ,m .

Theorem 2.5. There is an absolute constant c8 such that

‖U ′
n‖Lq[y−δ/2,y+δ/2] ≤ c

1+1/q
8

(n
δ

)
‖Un‖Lq[y−δ,y+δ]

for all Un ∈ G̃n, q ∈ (0,∞], y ∈ R, and δ ∈ (0, n1/2].

In [9] H. Mhaskar writes “Professor Ward at Texas A&M University has pointed out that our results

implicitly contain an inequality, known as Bernstein inequality, in terms of the number of neurons, under

some conditions on the minimal separation. Professor Erdélyi at Texas A&M University has kindly sent us

a manuscript in preparation, where he proves this inequality purely in terms of the number of neurons, with
4



no further conditions. This inequality leads to the converse theorems in terms of the number of neurons,

matching our direct theorem in this theory. Our direct theorem in [8] is sharp in the sense of n-widths.

However, the converse theorem applies to individual functions rather than a class of functions. In particular,

it appears that even if the cost of approximation is measured in terms of the number of neurons, if the

degrees of approximation of a particular function by Gaussian networks decay polynomially, then a linear

operator will yield the same order of magnitude in the error in approximating this function. We find this

astonishing, since many people have told us based on numerical experiments that one can achieve a better

degree of approximation by non-linear procedures by stacking the centers near the bad points of the target

functions”.

3. Proofs

To prove Theorem 2.1 we need two lemmas. Our first lemma can be proved by a (not completely straight-

forward) modification of the proof of Theorem 3.2 in [3]. This is carefully done in Section 4.

Lemma 3.1. We have

|U ′
n(0)| ≤

2n+m

δ
‖Un‖[−δ,δ]

for all Un = P̃nRm with P̃n ∈ Ẽn and an even Rm ∈ Pm, and for all δ ∈ (0,∞).

Our next lemma is a simple observation.

Lemma 3.2. For the even polynomials S2n ∈ P2n defined by S2n(x) = (1− x2/n)n we have S2n(0) = 1 and

0 ≤ S2n(x) ≤ exp(−x2) for every x ∈ [n−1/2, n−1/2].

Proof of Theorem 2.1. Observe that every Pn ∈ G̃n is of the form Pn(t) = P̃n(t) exp(−t2) with some P̃n ∈ Ẽn.

It is sufficient to prove the existence of an absolute constant c9 such that

(3.1) |U ′
n(0)| ≤ c9n

1/2 ‖Un‖[−δ,δ] , δ := n1/2 ,

for all Un of the form Un = PnQn with Pn ∈ G̃n and an even Qn ∈ Pn. Note that every such Un is of the

form Un(t) = P̃n(t)Qn(t) exp(−t2) with P̃n ∈ Ẽn and an even Qn ∈ Pn. Combining this observation with

Lemma 3.2, it is sufficient to prove (3.1) for all Un of the form Un = P̃nQnS2n := P̃nR3n with P̃n ∈ Ẽn and

an even R3n := QnS2n ∈ P3n. However (3.1) in this situation follows from Lemma 3.1 �

In the proof of Theorem 2.2 we need the following well known result which, in fact, may be viewed as a

simple exercise in approximation theory (it follows from part c of E.19 on page 413 of [2], for instance). A

more direct proof of the lemma below is presented in Section 4 with c10 = (2π)−1.
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Lemma 3.3. For every n ∈ N, δ ∈ (0,∞), and q ∈ (0,∞), there are even polynomials Vn,δ,q ∈ Pn and an

absolute constant c10 > 0 such that

1 = |Vn,δ,q(0)| ≥ c
1+1/q
10

(
1 + qn

δ

)1/q

‖Vn,δ,q‖Lq[−δ,δ] .

Our next lemma can be proved by a (not completely straightforward) modification of the proof of Theorem

3.2 in [3] as well. This is carefully done in Section 4 with c11 = 2.

Lemma 3.4. There is an absolute constant c11 such that

|U ′
n(0)| ≤

(c11
δ

)1+1/q

(2n+m)(1 + q(2n+m))1/q‖Un‖Lq[−δ,δ]

holds for all Un of the form Un = P̃nRm with P̃n ∈ Ẽn and an even Rm ∈ Pm, and for all q ∈ (0,∞).

Combining Lemmas 3.4 and 3.2 we obtain the lemma below with c12 = 5c11 = 10.

Lemma 3.5. There is an absolute constant c12 such that

|U ′
n(0)|q ≤ c1+q

12 nq/2−1/2(1 + qn) ‖Un‖qLq[−n1/2,n1/2]

holds for all Un of the form Un = P̃nQn with P̃n ∈ G̃n and an even Qn ∈ Pn, and for all q ∈ (0,∞).

Proof of Theorem 2.2. Let

In := [−n1/2, n1/2] .

Recalling the notation of Lemma 3.3, we define

Qn := Vn,δ,q with δ := 3n1/2 .

Using Q′
n(0) = 0 and Lemma 3.5, we obtain

(3.2) |P̃ ′
n(0)|q = |(P̃ ′

nQn)(0)|q = |(P̃nQn)
′(0)|q ≤ c1+q

12 nq/2−1/2(1 + qn) ‖P̃nQn‖qLq(In)

for every P̃n ∈ G̃n. Now let Pn ∈ G̃n. Applying (3.2) with P̃n ∈ G̃n defined by P̃n(t) := Pn(t+ y), we obtain

|P ′
n(y)|q ≤ c1+q

12 nq/2−1/2(1 + qn)

∫

In

|Pn(t+ y)Qn(t)|q dt

≤ c1+q
12 nq/2−1/2(1 + qn)

∫

I4n

|Pn(u)Qn(u− y)|q du
6



for all Pn ∈ G̃n and y ∈ In. Integrating on In with respect to y, then using Fubini’s Theorem and Lemma

3.3, we conclude

‖P ′
n‖qLq(In)

=

∫

In

|P ′
n(y)|q dy ≤ c1+q

12 nq/2−1/2(1 + qn)

∫

In

∫

I4n

|Pn(u)Qn(u− y)|q du dy

≤ c1+q
12 nq/2−1/2(1 + qn)

∫

I4n

|Pn(u)|q
∫

In

|Qn(u − y)|q dy du

≤ c1+q
12 nq/2−1/2(1 + qn)c−1−q

10

3n1/2

1 + qn

∫

I4n

|Pn(u)|q du

≤ c1+q
13 nq/2‖Pn‖qLq(I4n)

(3.3)

for all P ∈ G̃n, where c13 is an absolute constant. Now we divide the real number line into subintervals of

length 2n1/2 and apply the shifted versions of (3.3) on each subinterval to finish the proof of the theorem. �

Proof of Theorem 2.3. This follows from Theorem 2.2 by induction on m. Note that if Un ∈ G̃n, then

U
(m−1)
n ∈ G̃nm. �

To prove Theorem 2.4 we need the following inequality that follows from part g of E.4 on pages 120–121

in [2].

Lemma 3.6. We have

|f(t)| ≤ exp(γ(|t|+ δ))

(
2|t|
δ

)n

‖f‖[−δ,δ] , t ∈ R \ [−δ, δ] ,

for all f ∈ Ẽn of the form

f(t) = a0 +

N∑

j=1

Pmj (t)e
λjt , a0 ∈ R , λj ∈ [−γ, γ] , Pmj ∈ Pmj ,

N∑

j=1

(mj + 1) ≤ n ,

and for all γ > 0.

Corollary 3.7. We have

|f(t) exp (−t2)| ≤ exp (−t2/4)‖f(x) exp(−x2)‖[−2n1/2,2n1/2] ,

t ∈ R \ [−6n1/2, 6n1/2] ,

for every f ∈ Ẽn of the form

f(t) = a0 +

N∑

j=1

Pmj (t)e
λj t ,

a0 ∈ R , λj ∈ [−n1/2, n1/2] , Pmj ∈ Pmj ,

N∑

j=1

(mj + 1) ≤ n .
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Proof of Corollary 3.7. Assume that f in the corollary satisfies

(3.4) ‖f(t) exp(−t2)‖[−2n1/2,2n1/2] ≤ 1 .

Elementary calculus shows that

(3.5) ‖tn exp (−t2/2)‖R ≤
(n
e

)n/2
.

Applying Lemma 3.6 with δ := 2n1/2 and γ := n1/2, then using (3.4) and (3.5), we obtain

|f(t) exp (−t2)| = |f(t)| exp (−t2)

≤ exp(n1/2(|t|+ 2n1/2))

(
2|t|
2n1/2

)n

exp (−t2/2) exp (−t2/2)

≤ exp (n1/2(|t|+ 2n1/2)− n/2− t2/4) exp (−t2/4)

≤ exp (−t2/4) , t ∈ R \ [−6n1/2, 6n1/2] ,

and the corollary is proved. �

The following result is stated as Theorem 2.2 in [4], and plays a role in the proof of Lemma 3.9.

Lemma 3.8. There is an absolute constant c14 such that

‖f‖[a+δ,b−δ] ≤
(
c14(1 + qn)

δ

)1/q

‖f‖Lq[a,b]

holds for all f ∈ Ẽn, q ∈ (0,∞), and δ ∈
(
0, 12 (b − a)

)
.

Lemma 3.9. Let q ∈ (0,∞]. There is a constant c15 independent of n such that

‖f(t) exp (−t2)‖Lq(R) ≤ c15‖f(t) exp (−t2)‖Lq[−6n1/2,6n1/2]

for every f ∈ Ẽn of the form considered in Corollary 3.7. In conclusion

‖f‖Lq(R) ≤ c15‖f‖Lq[−6n1/2,6n1/2]

for every f ∈ G̃∗
n.

Proof. This follows from Corollary 3.7 and Lemma 3.8. �

The Nikolskii-type inequality below is also needed in the proof of Theorem 2.4. A proof of it can be

given by a routine combination of the second Bernstein-type inequality of Theorem 2.1 and the Mean Value

Theorem.
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Lemma 3.10. There is an absolute constant c16 such that

‖Pn‖R ≤ c
1+1/q
16 n1/(2q)‖Pn‖Lq(R)

for all Pn ∈ G̃n and for all q > 0.

Proof of Theorem 2.4. Suppose

(3.6) inf
fn∈G̃n

‖fn − f‖Lq(R) ≤ c7n
−m/2(log n)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n. Choose a sequence (fn) with fn ∈ G̃n such that

(3.7) ‖fn − f‖Lq(R) ≤ c7n
−m/2(log n)−1−ε , n = 2, 3, . . . .

Let

hn := f2n − f2n−1 , n = 2, 3, . . . .

Then hn ∈ G̃2n+1 . Since q ∈ [1,∞], (3.6) implies

(3.8) ‖hn‖Lq(R) ≤ 2c72
−(n+1)m/2(n+ 1)−1−ε .

Combining this with Theorem 2.3, we obtain

(3.9) ‖h(m)
n ‖Lq(R) ≤ c172

(n+1)m/22−(n+1)m/2(n+ 1)−1−ε = c17(n+ 1)−1−ε

with a constant c17 independent of n. Also, combining Theorem 2.3 and Lemma 3.10 (recall that q ∈ [1,∞]),

and then using (3.7), we deduce that

‖h(j)
n ‖R ≤ c182

(n+1)j/2‖hn‖R

≤ c192
(n+1)j/22(n+1)/2‖hn‖Lq(R)

≤ c202
(n+1)j/22(n+1)/22−(n+1)m/2(n+ 1)−1−ε

≤ c21(n+ 1)−1−ε , j = 0, 1, . . . ,m− 1 ,

(3.10)

with some constants c18, c19, c20, and c21 independent of n. Since

∞∑

n=1

(n+ 1)−1−ε < ∞ ,

it follows easily from (3.10) that the sequence (f
(j)
2n ) is uniformly Cauchy on R for each j = 0, 1, . . . ,m− 1,

while (3.9) implies that the sequence (f
(m)
2n ) is Cauchy in Lq(R). Hence there are functions Fj ∈ C(R),

j = 1, 2, . . . ,m− 1, and Fm ∈ Lq(R) such that

lim
n→∞

‖f (j)
2n − Fj‖R = 0 , j = 0, 1, . . . ,m− 1 ,

9



and

lim
n→∞

‖f (m)
2n − Fm‖Lq(R) = 0 .

Therefore, if q ∈ [1,∞], the sequence (uj,n)
∞
n=1 with

uj,n(t) :=

∫ t

0

f
(j)
2n (τ) dτ = f

(j−1)
2n (t)− f

(j−1)
2n (0)

converges uniformly to

Uj(t) :=

∫ t

0

Fj(τ) dτ = Fj−1(t)− Fj−1(0)

on every finite closed subinterval of R for every j = 1, 2, . . . ,m. Therefore F ′
j−1 = Fj everywhere on R for

all j = 1, 2, . . . ,m− 1, while F ′
m−1 = Fm almost everywhere on R. Since F0 = f , we have Fj = f (j) ∈ C(R)

for every j = 0, 1, . . . ,m − 1, and Fm = f (m) ∈ Lq(R). This finishes the proof of the first statement of the

theorem.

The proof of the second statement of the theorem is quite similar. We use the notation introduced in the

proof of the first statement of the theorem, but G̃n is replaced by G̃∗
n. Theorem 2.3 and (3.8) imply that

‖h(j)
n ‖Lq(R) ≤ c222

(n+1)j/2‖hn‖Lq(R)

≤ c232
(n+1)j/22−(n+1)m/2(n+ 1)−1−ε

≤ c232
−(n+1)(m−j)/2(n+ 1)−1−ε , j = 0, 1, . . . ,m ,

(3.11)

with a constants c22 and c23 independent of n. For j = 0, 1, . . . ,m and k = 0, 1, . . . ,m− j, we define

uj,k,n(t) := tkf
(j)
2n (t) and vj,k,n(t) := uj,k,n(t)− uj,k,n−1(t) = tkh(j)

n (t) .

Note that vj,k,n ∈ G̃∗
(m+1)2n+1 . Applying Lemma 3.9 to vj,k,n, then recalling (3.11), we obtain

‖vj,k,n‖Lq(R) ≤ c15‖vj,k,n‖Lq[−6(m+1)1/22(n+1)/2,6(m+1)1/22(n+1)/2]

≤ c242
(n+1)(m−j)/2‖h(j)

n ‖Lq[−6(m+1)1/22(n+1)/2,6(m+1)1/22(n+1)/2]

≤ c252
(n+1)(m−j)/22−(n+1)(m−j)/2(n+ 1)−1−ε

≤ c25(n+ 1)−1−ε

with constants c24 and c25 independent of n. Since

∞∑

n=1

(n+ 1)−1−ε < ∞ ,

we can deduce that the sequence (uj,k,n)
∞
n=1 is Cauchy in Lq(R) for each j = 0, 1, . . . ,m and k = 0, 1, . . . ,m−

j. Hence there are functions F ∗
j,k ∈ Lq(R), j = 0, 1, . . . ,m, k = 0, 1, . . . ,m− j, such that

lim
n→∞

‖tkf (j)
2n (t)− F ∗

j,k(t)‖Lq(R) = 0 .
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As a consequence, there is a subsequence (f2nl )∞l=1 such that

lim
l→∞

tkf2nl (t) = F ∗
j,k(t)

almost everywhere on R for every j = 0, 1, . . . ,m and k = 0, 1, . . . ,m− j. Hence

F ∗
j,k(t) = tkF ∗

j,0(t) = tkf (j)(t)

for every j = 0, 1, . . . ,m and k = 0, 1, . . . ,m− j. So

‖tkf (j)(t)‖Lq(R) < ∞

for every j = 0, 1, . . . ,m and k = 0, 1, . . . ,m− j. This proves the second part of the theorem. �

Proof of Theorem 2.5. The proof of the theorem is a straightforward modification of that of Theorem 2.3

and is left to the reader. �

4. Additional Details for the Proofs of Lemmas 3.1, 3.3, and 3.4

In this section we present the details of the proofs of Lemmas 3.1, 3.3, and 3.4.

Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The collection of all linear combinations of of

eλ0t, eλ1t, . . . , eλnt over R will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .

Let Λn := {λ0 < λ1 < · · · < λn} be a set of positive real numbers. The collection of all linear combinations

of of

{sinh(λ0t), sinh(λ1t), . . . , sinh(λnt)}

over R will be denoted by

H(Λn) := span{sinh(λ0t), sinh(λ1t), . . . , sinh(λnt)} .

The lemma below can be proved by a simple compactness argument.

Lemma 4.1. Let Λn := {λ0 < λ1 < · · · < λn} be a set of positive real numbers. Let a, b ∈ R, 0 < a < b.

Let w be a not identically 0 continuous function defined on [a, b]. Let q ∈ (0,∞]. Then there exists a

0 6= S ∈ H(Λn) such that

|S′(0)|
‖Sw‖Lq[a,b]

= sup

{ |P ′(0)|
‖Pw‖Lq[a,b]

: P ∈ H(Λn)

}
.

Our next lemma is an essential tool in proving our key lemma, Lemmas 4.3.
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Lemma 4.2. Let Λn := {λ0 < λ1 < · · · < λn} be a set of positive real numbers. Let a, b ∈ R, 0 < a < b.

Let q ∈ (0,∞]. Let S be the same as in Lemma 4.1. Then S has exactly n zeros in (a, b) by counting

multiplicities.

To prove Lemma 4.2 below we need the following two facts.

(a) Every f ∈ H(Λn) has at most n positive real zeros by counting multiplicities.

(b) If t1 < t2 < · · · < tm are positive real numbers and k1, k2, . . . , km are positive integers such that

∑m
j=1 kj = n, then there is a 0 6= f ∈ H(Λn) having a zero at tj with multiplicity kj for each j = 1, 2, . . . ,m.

Proof of Lemma 4.2. To avoid some extra technical details we prove only that S has exactly n zeros in [a, b]

(rather than ((a, b)) by counting multiplicities. Suppose to the contrary that t1 < t2 < · · · < tm are real

numbers lying in [a, b] such that tj is a zero of S with multiplicity kj for each j = 1, 2, . . . ,m, k :=
∑m

j=1 kj <

n, and S has no other zeros in [a, b] different from t1, t2, . . . , tm. Let t0 := 0 and k0 := 2(n− k) + 1. Choose

an 0 6= R ∈ H(Λn) such that R has a zero at tj with multiplicity kj for each j = 0, 1, . . . ,m (it is easy

to see that such an 0 6= R ∈ H(Λn) exists). Then R′(0) = 0 and R has no positive zeros different from

t1, t2, . . . , tm. We normalize R so that R(t) and S(t) have the same sign for every t ∈ [a, b]. Let Sε := S−εR .

Note that R ∈ H(Λn) still has a zero at each tj with multiplicity kj for each j = 1, 2, . . . ,m, hence S and

R are of the form

S(t) = S̃(t)
m∏

j=1

(t− tj)
kj and R(t) = R̃(t)

m∏

j=1

(t− tj)
kj ,

where both S̃ and R̃ are continuous functions on [a, b] having no zeros on [a, b]. Hence, if ε > 0 is sufficiently

small, then |Sε(t)| < |T (t)| at every t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Sεw‖Lq [a,b] < ‖Sw‖Lq[a,b] .

This, together with S′
ε(0) = S′(0), contradicts the maximality of S. �

The fact that for any 0 < λ0 < λ1 < · · · < λn,

(sinh(λ0t), sinh(λ1t), . . . , sinh(λnt))

is a Descartes system on (0,∞) is stated as Lemma 4.5 and proved in [3]. The heart of the proof of our

theorems is the following comparison lemma. The proof of the next couple of lemmas is based on basic

properties of Descartes systems, in particular on Descartes’ Rule of Sign, and on a technique used earlier by

P.W. Smith and A. Pinkus. G.G. Lorentz ascribes this result to Pinkus, although it was P.W. Smith [19]

who published it. I have learned about the the method of proofs of these lemmas from P. Borwein (oral

communication), who also ascribes it to Pinkus. This is the proof we present here.
12



Lemma 4.3. Let Λn := {λ0 < λ1 < · · · < λn} and Γn := {γ0 < γ1 < · · · < γn} be sets of positive real

numbers satisfying λj ≤ γj for each j = 0, 1, . . . , n. Let a, b ∈ R, 0 ≤ a < b. Let w be a not identically 0

continuous function defined on [a, b]. Let q ∈ (0,∞]. Then

sup

{ |P ′(0)|
‖Pw‖Lq[a,b]

: P ∈ H(Γn)

}
≤ sup

{ |P ′(0)|
‖Pw‖Lq[a,b]

: P ∈ H(Λn)

}
.

Proof of Lemma 4.3. We may assume that 0 < a < b. The general case when 0 ≤ a < b follows by a standard

continuity argument. Let k ∈ {0, 1, . . . , n} be fixed and let

γ0 < γ1 < · · · < γn , γj = λj , j 6= k , and λk < γk < λk+1

(let λn+1 := ∞). To prove the lemma it is sufficient to study the above cases since the general case follows

from this by a finite number of pairwise comparisons. By Lemmas 4.1 and 4.2, there is an S ∈ H(Γn) such

that

|S′(0)|
‖Sw‖Lq[a,b]

= sup

{ |P ′(0)|
‖Pw‖Lq[a,b]

: P ∈ H(Γn)

}
,

where S has exactly n zeros in (a, b) by counting multiplicities. Denote the distinct zeros of S in (a, b) by

t1 < t2 < · · · < tm, where tj is a zero of S with multiplicity kj for each j = 1, 2, . . . ,m, and
∑m

j=1 kj = n.

Then S has no other zeros in (0,∞) different from t1, t2, . . . , tm. Let

S(t) :=

n∑

j=0

aj sinh(γjt) , aj ∈ R .

Without loss of generality we may assume that S(b) > 0. Note that S(b) 6= 0 since S ∈ H(Γn), and S has

exactly n zeros in (a, b) (by counting multiplicities). Because of the extremal property of S, S′(0) 6= 0. Since

H(Γn) is the span of a Descartes system on [a, b], it follows from Descartes’ Rule of Signs that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .

Choose R ∈ H(Λn) of the form

R(t) =

n∑

j=0

bj sinh(λjt), bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j = 1, 2, . . . ,m, and we normalize so that

R(a) = S(a) (this R ∈ H(Λn) is uniquely determined). Since H(Λn) is the span of a Descartes system on

[a, b], Descartes’ Rule of Signs implies

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

We have

(S −R)(t) = ak sinh(γkt)− bk sinh(λkt) +

n∑

j=0
j 6=k

(aj − bj) sinh(λjt) .

13



Since S − R has altogether at least n + 1 zeros at t1, t2, . . . , tm, and a (by counting multiplicities), it does

not have any zero on R different from t1, t2, . . . , tm, and a. Since

(sinh(λ0t), sinh(λ1t), . . . , sinh(λkt), sinh(γkt), sinh(λk+1t), . . . , sinh(λnt))

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, −bk, ak, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−kak > 0, this implies that an − bn > 0, so

(S −R)(t) > 0 , t > tm .

Since each of S, R, and S − R has a zero at tj with multiplicity kj for each j = 1, 2, . . . ,m;
∑m

j=1 kj = n,

and S −R has a sign change (a zero with multiplicity 1) at a, we can deduce that each of S, R, and S −R

has the same sign on each of the intervals (tj , tj+1) for every j = 0, 1, . . . ,m with t0 := a and tm+1 := ∞.

Hence |R(t)| ≤ |S(t)| holds for all t ∈ [a, b] with strict inequality at every t different from t1, t2, . . . , tm, while

|R(t)| ≥ |S(t)| at every t ∈ [0, a]. These, together with R(0) = S(0) = 0 imply that ‖Rw‖Lq[a,b] ≤ ‖Sw‖Lq[a,b]

and |R′(0)| ≥ |S′(0)|. Therefore

|R′(0)|
‖Rw‖Lq[a,b]

≥ |S′(0)|
‖Sw‖Lq[a,b]

= sup

{ |P ′(0)|
‖Pw‖Lq[a,b]

: P ∈ H(Γn)

}
.

Since R ∈ H(Λn), the lemma follows from this. �

Let, as before, Pn denote the collection of all algebraic polynomials of degree at most n with real coef-

ficients. Our next lemma may be viewed as an exercise and we do not present its complete proof here. It

follows from Lemmas 3.8, 3.6, and Theorem 2.3 on page 173 of [1].

Lemma 4.4. Let a, b ∈ R, a < b. Let w be a not identically 0 continuous function defined on [a, b]. Let

q ∈ (0,∞]. For an ε > 0 let

Hn(ε) := span{sinh(εt), sinh(2εt), . . . , sinh(nεt)} .

Suppose (Pk) is a sequence with Pk ∈ Hn(εk) and ‖Pkw‖Lq [a,b] ≤ 1, where (εk) is a sequence of positive real

numbers converging to 0. Then (Pk) has a subsequence (Pkj ) that converges to an odd polynomial P̃ ∈ P2n

uniformly on [a, b], while (P ′
kj
(0)) converges to P̃ ′(0).

Combining Lemmas 4.3 and 4.4, we easily obtain
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Lemma 4.5. Let Γn := {γ0 < γ1 < · · · < γn} be a set of positive real numbers. Let w be a not identically 0

continuous even function defined on [−1, 1]. Let q ∈ (0,∞]. Then

sup

{ |P ′(0)|
‖Pw‖Lq[−1,1]

: P ∈ H(Γn)

}
≤ sup

{ |S′(0)|
‖Sw‖Lq[−1,1]

: S ∈ P2n}
}

.

The following result follows easily from Bernstein’s inequality and the Nikolskii-type inequality of Theorem

A.4.3 on page 394 of [2].

Lemma 4.6. We have

|P ′(0)| ≤ n‖P‖[−1,1]

and

|P ′(0)| ≤ 2n ‖P‖[−1/2,1/2] ≤ 2n

(
2e√
3π

(1 + qn)

)1/q

‖P‖Lq[−1,1]

for every P ∈ Pn.

Lemma 4.7. We have

|U ′(0)| ≤ 2n+m

δ
‖U‖[−δ,δ]

and

|U ′(0)| ≤ max{21/q−1, 1} 2(2n+m)

δ

(
2e√
3πδ

(1 + q(2n+m))

)1/q

‖U‖Lq[−δ,δ]

holds for all U of the form U = PR with P ∈ E(Λn) and an even R ∈ Pm, and for all q ∈ (0,∞].

Proof of Lemma 4.7. Without loss of generality we may assume that δ := 1, the general case follows simply

by a linear scaling. We may also assume that λj + λk 6= 0 for every 0 ≤ j ≤ k ≤ n, the general case follows

by a simple continuity argument. Choose the set of positive numbers {γ0 < γ1 < · · · < γn} so that

{γ0, γ1, . . . , γn} = {|λ0|, |λ1|, . . . , |λn|} .

Let U be of the form U = PR with P ∈ E(Λn) and an even R ∈ Pm. Let f(t) := U(t) + U(−t),

Q(t) := P (t) + P (−t), and w := R. Then f(t) = Q(t)w(t) with Q ∈ H(Γn) and an even w ∈ Pm. We have

|U ′(0)|
‖U‖Lq[−1,1]

≤ max{21/q−1, 1} |f ′(0)|
‖f‖Lq[−1,1]

= max{21/q−1, 1} |Q′(0)w(0)|
‖Qw‖Lq[−1,1]

≤ max{21/q−1, 1} sup
{ |S′(0)w(0)|
‖Sw‖Lq[−1,1]

: S ∈ P2n

}

≤ max{21/q−1, 1} sup
{ |V ′(0)|
‖V ‖Lq[−1,1]

: V ∈ P2n+m

}

≤ max{21/q−1, 1}2(2n+m)

(
2e√
3π

(1 + q(2n+m))

)1/q
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and

|U ′(0)|
‖U‖[−1,1]

≤ sup

{ |V ′(0)|
‖V ‖[−1,1]

: V ∈ P2n+m

}
≤ 2n+m,

and the lemma is proved. �

Proof of Lemmas 3.1 and 3.4. Lemma 4.7 yields Lemma 3.1 and Lemma 3.4 with c11 := 2. �

In the proof of Theorem 2.2 we have used Lemma 3.3. The Lemma below shows that Lemma 3.3 holds

with c10 = (2π)−1. absolute constant as well.

Lemma 4.8. For every n ∈ N, δ ∈ (0,∞), and q ∈ (0,∞), there are even polynomials Vn,δ,q ∈ Pn such that

1 = |Vn,δ,q(0)| ≥
(

1 + qn

2π(2 + q)δ

)1/q

‖Vn,δ,q‖Lq[−δ,δ] .

Proof of Lemma 4.8. Without loss of generality we may assume that δ := 1, the lemma in the general case

follows from this by a linear scaling. Let Tn ∈ Pn be the nth Chebyshev polynomial defined by

Tn(cos t) := cos(nt) , t ∈ R .

The polynomials 2−1/2T0, T1, T2, . . . form an orthonormal system on [−1, 1] with respect ‘to the weight

(2/π)(1 − x2)−1/2. Let k := ⌈2/q⌉ be the smallest integer not less than 2/q. Let m := ⌊n/(2k)⌋ be the

greatest integer not greater than n/(2k). For qn ≥ 1 we define

Vn,1 :=

(
m∑

j=0

(−1)jT2j(0)

)−k( m∑

j=0

(−1)jT2j

)k

.

For qn < 1 we define Vn,1 := 1. Then Vn,1 ∈ Pn and Vn,1(0) = 1. When qn ≥ 1 we have

∫ 1

−1

|Vn,1(t)|q dt = (m+ 1)−kq

∫ 1

−1

∣∣∣∣∣

m∑

j=0

(−1)jT2j(t)

∣∣∣∣∣

kq

dt

≤ (m+ 1)−kq max
t∈[−1,1]

∣∣∣∣∣

m∑

j=0

(−1)jT2j(t)

∣∣∣∣∣

kq−2 ∫ 1

−1

(
m∑

j=0

(−1)jT2j(t)

)2

dt

≤ (m+ 1)−kq(m+ 1)kq−2 π

2
(m+ 1/2) ≤ π

2
(m+ 1)−1 ≤ π(2 + q)

qn

≤ 2π(2 + q)

qn+ 1
,

while when qn < 1 we have ∫ 1

−1

|Vn,1(t)|q dt ≤ 2 ≤ 2π(2 + q)

qn+ 1
,

and the proof is finished. �
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3. P. Borwein and T. Erdélyi, A sharp Bernstein-type inequality for exponential sums, J. Reine Angew. Math. 476 (1996),

127–141.
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