EXTENSIONS OF THE BLOCH - POLYA THEOREM ON
THE NUMBER OF REAL ZEROS OF POLYNOMIALS

TAMAS ERDELYI

ABSTRACT. We prove that there are absolute constants ¢; > 0 and ¢a > 0 such that for every
{ao,a1,...,an} C[1,M], ISMSexp(cln1/4),
there are
bo,b1,... ,bn € {—1,0, 1}
such that
n .
P(z) = ijajzj
§j=0

has at least con'/4 distinct sign changes in (0,1). This improves and extends earlier results
of Bloch and Pélya.

1. INTRODUCTION

Let F,, denote the set of polynomials of degree at most n with coefficients from {—1,0, 1}.
Let L£,, denote the set of polynomials of degree n with coefficients from {—1,1}. In [6] the
authors write

“The study of the location of zeros of these classes of polynomials begins with Bloch
and Pélya [2]. They prove that the average number of real zeros of a polynomial from F,
is at most ¢y/n. They also prove that a polynomial from F,, cannot have more than

cnloglogn
logn
real zeros. This quite weak result appears to be the first on this subject. Schur [13] and
by different methods Szeg6 [15] and Erdds and Turan [8] improve this to c¢y/nlogn (see
also [4]). (Their results are more general, but in this specialization not sharp.)

Our Theorem 4.1 gives the right upper bound of ¢/n for the number of real zeros of
polynomials from a much larger class, namely for all polynomials of the form

n
p(:L'):Zajxj, la;| <1, lao|=lan| =1, a; €C.
§=0
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Schur [13] claims that Schmidt gives a version of part of this theorem. However, it does
not appear in the reference he gives, namely [12], and we have not been able to trace it to
any other source. Also, our method is able to give ¢y/n as an upper bound for the number
of zeros of a polynomial p € Pg, with |ag| = 1,|a;| < 1, inside any polygon with vertices
in the unit circle (of course, ¢ depends on the polygon). This may be discussed in a later
publication.

Bloch and Pélya [2] also prove that there are polynomials p € F,, with

cn1/4

Viogn

distinct real zeros of odd multiplicity. (Schur [13] claims they do it for polynomials with
coefficients only from {—1,1}, but this appears to be incorrect.)

In a seminal paper Littlewood and Offord [11] prove that the number of real roots of a
p € L,, on average, lies between

(1.1)

_ G oen logn and o log®n
logloglogn

and it is proved by Boyd [7] that every p € £,, has at most c¢log®n/loglogn zeros at 1 (in
the sense of multiplicity).

Kac [10] shows that the expected number of real roots of a polynomial of degree n with
random uniformly distributed coefficients is asymptotically (2/7) logn. He writes “I have
also stated that the same conclusion holds if the coefficients assume only the values 1 and
—1 with equal probabilities. Upon closer examination it turns out that the proof I had
in mind is inapplicable.... This situation tends to emphasize the particular interest of the
discrete case, which surprisingly enough turns out to be the most difficult.” In a recent
related paper Solomyak [14] studies the random series ) £A".”

In fact, the paper [5] containing the “polygon result” mentioned in the above quote
appeared sooner than [6]. The book [4] contains only a few related weeker results. Our
Theorem 2.1 in [6] sharpens and generalizes results of Amoroso [1|, Bombieri and Vaaler
[3], and Hua [9] who give versions of that result for polynomials with integer coefficients.

In this paper we improve the lower bound (1.1) in the result of Bloch and Pdlya to
en'/*. Moreover we allow a much more general coefficient constraint in our main result.
Our approach is quite different from that of Bloch and Pdlya.

2. NEw RESULT

Theorem 2.1. There are absolute constants c; > 0 and co > 0 such that for every
{a07a17~'- 7an} - [17M]7 1 §M§exp(cln1/4),

there are
b07b17"' 7bn € {_17071}

such that

P(Z) = Z bjCLij
7=0

has at least con/* distinct sign changes in (0,1).
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3. LEMMAS

Let D :={z € C: |z] < 1} be the open unit disk. Denote by Sas the collection of all
analytic functions f on the open unit disk D that satisfy

M
| f(2)] < 1—7|Z|’

Let || f||a :=sup,eca |f(z)]. To prove Theorem 2.1 our first lemma is the following.

z€eD.

Lemma 3.1. There is an absolute constants c3 > 0 such that

—c3(1 4+ log M
Il = exp (200220 )

for every f € Sy and 0 < a < B < 1 with | f(0)| > 1 and for every M > 1.

This follows from the lemma below by a linear scaling:

Lemma 3.2. There are absolute constants ¢4 > 0 and c5 > 0 such that

o /a c4(1+ log M)
e < exp (SEEED g

for every f € Sy and a € (0,1].
To prove Lemma 3.2 we need some corollaries of the following well known result.
Hadamard Three Circles Theorem. Let 0 < ry < ry. Suppose f is reqular in
{zeC:r <|z| <ra}.
Forr € [r,rq], let
M(r) := max|f(z)].

|z|=r
Then
M (r)'08(r2/m1) < N (1) 108(r2/7) Nf (g ) 08 (/1)

Corollary 3.3. Let a € (0,1]. Suppose f is reqular inside and on the ellipse E, with foci
atl—a and 1 —a+ %a and with major axis

Let E, be the ellipse with foci at 1 —a and 1 — a + %a and with major axis

{1—a—i,1—a+9—a} .

1/2 1/2
ma~X|f(Z)|§< max \f(Z)\> <max|f<z>|) |

Then

z€E, ze[l—a,l—a—l—%a] z€E,
Proof. This follows from the Hadamard Three Circles Theorem with the substitution
a (z+ 271 a
¢ 1- —) .
w=g ( 5 ) + ( a+ 3
The Hadamard Three Circles Theorem is applied with ry := 1,7 := 2, and ro := 4. [
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Corollary 3.4. For every f € Sy and a € (0, 1] we have

max | £(2)] < (64M)1/2( max |f(2)|)1/2-

2€E, 39a z€[1—a,1]

Proof of Lemma 3.2. Let f € Sy and h(z) = $(1 — a)(z + 22). Observe that h(0) = 0,
and there are absolute constants cg > 0 and c¢7 > 0 such that

|h(e)]| < 1 — c6t?, —r<t<m,

and for ¢t € [—cra, cra), h(e') lies inside the ellipse E,. Now let m := |7/(cza)| + 1. Let
€ := exp(27i/(2m)) be the first 2m-th root of unity, and let

o) = [ fh(e=)).
§=0

Using the Maximum Principle and the properties of h, we obtain

P = lg0)] < maxlg(e)) < (max 7)) T (%)

|z|=1 z€E, k=1 ﬂ-k/m
2 2m—2 mm_l ’
= (e 1) 32 exeaton D) ()

< (max ()] (Me)eomD
zeE,

with absolute constants cg and cg, and the result follows from Corollary 3.4. [

4. PROOF OF THEOREM 2.1

Proof of Theorem 2.1. Let L < %nl/z and
M(P):= (P(1—n"Y?), PQ—2n"1?), ..., P(1 — Ln"Y?)) € [-M+/n, M+/n]" .

We consider the polynomials
n—1
P(z2) = ijasz , b; € {0,1}.
j=0

There are 2™ such polynomials. Let K € N. Using the box principle we can easily deduce
that (2K )L < 2™ implies that there are two different

n—1
Pi(z) =) bja;z’, b €{0,1},
5=0
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and )
Py(z) =Y bja;z’, by €{0,1},
§=0
such that

|P(1— jn %) = Py(1—jn~ /)| <

MR
— =1,2,...,L.
K Y ] y = )

Let - |
Pi(z) = Py(2) = > Bja;2), B €{-1,0,1}, by #0.
j=m
Let 0 # Q(z) := z7"(P1(z) — P»(z)). Then @ is of the form
n—1
Q(Z) = nyjajzj ’ Vi S {_1707 1}7 Yo € {_17 1}7
§=0

and, since 1 — z > e=2% for all z € [0, 1/2], we have

(4.1) Q(1 — jn~'/?)] Sexp(2Ln1/2)MT\/ﬁ, j=12,...,L.
Also, by Lemma 3.1, there are

Gelj=1—m 2 1-G-)n"?, j=12,...,L,
such that
(4.2) |Q(&;)| > exp (—cs3(1 +log M)v/n) , j=1,2,...,L.

Now let L := [(1/16)n'/4] and 2K = exp(n®/%). Then (2K)Y < 2" holds. Also, if
log M = O(n'/*), then (4.1) implies

(4.3) Q1 —jn~'?) <exp(—(3/4)n**),  j=1,2,...,L,
for all sufficiently large n. Now observe that 1 < M < exp((64c3)~'n'/*) yields that
(4.4) lanx™| >|z|" > exp(—=2(1 — ) > exp(—2Ln'/?)
>exp(—(1/8)n**),  ze[l—Ln Y2 1—(L/2)n Y7,
and
(4.5) lanz™| <M exp(—(L/2)n'/?)

<exp(—(1/33)n3/%),  ze[l—Ln Y2 1—(L/2)n /7],
for all sufficiently large n. Observe also that with log M < (64c3)~'n'/* (4.2) implies
(4.6) Q&) > exp(—(1/63)n>*),  j=1,2,... L,
for all sufficiently large n. Now we study the polynomials
S1(2) == Q(2) — anz" and Sa(2) = Q(2) + anz".

These are of the requested special form. It follows from (4.3) — (4.6) that either S; or So
has a sign change in at least half of the intervals I;,5 = L,L —1,...[L/2] 4+ 2, for all
sufficiently large n, and the theorem is proved. [
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