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ABSTRACT. For n > 1 let
Ay = {P:P(z):szi :0§k1<k2<~-<kn,kj€Z},
j=1

that is, Ay, is the collection of all sums of n distinct monomials. These polynomials are also
called Newman polynomials. Let

10, = ([ oy dt)l/p Y

We define
M,
Sn,p = sup »(Q) and Sp = liminf Sy, p < Xy :=limsup Sp,p.
QeA, Vn n—00 neN
We show that
Sp 2T(1+p/2)'7,  pe(0,2).

The special case p = 1 recaptures a recent result of Aistleitner [1], the best known lower
bound for ;.

1. INTRODUCTION

Let
1/p

@ = ([ leepa) .
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For n > 1 let

An:={P:P(2)=> 2M:0<k <ky<---<hn kj €L},
j=1

that is, A,, is the collection of all sums of n distinct monomials. We define

Sn.p = sup and Sp :=limint S,, , <X, :=limsup S, ;.
sP QeAn \/ﬁ p s 00 p p neN sP
We also define
.. My(Q) ) .
I, = Qlenftn \p/ﬁ and I, = hfl—ilip Iy, > Q= h:glé\l{lf I, p.

The problem of calculating ¥; appears in a paper of Bourgain [5]. Deciding whether
Y1 <1 or X, =1 would be a major step toward confirming or disproving other important
conjectures. Karatsuba [7] observed that ¥; > 1/4/2 > 0.707. Indeed, taking, for instance,

n—1
Pn(z):Zsz, n=12,...,
k=0
it is easy to see that
(1.1) My(P,)* =2n(n—1) +n,

and as Holder’s inequality implies
n= Ms(Py)? < My (Py)** My(Py)**

we conclude

n? NLD
1.2 M (P,) > > —.
(1.2 (P 2[5 2

Similarly, if S,, := {a1 < a2 < --- < a,} is a Sidon set (that is, S,, is a subset of integers
such that no integer has two essentially distinct representations as the sum of two elements
of S,), then the polynomials

Pn(z):Zz“, n=12...,

a€S,

satisfy (1.1) and (1.2). In fact, it was observed in [4] that

1.3 in My(P)* =2n(n—1
(1.3) ‘£%L4(> n(n—1)+n,
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and such minimal polynomials in A,, are precisely constructed by Sidon sets as above.

Improving Karatsuba’s result, by using a probabilistic method Aistleitner [1] proved that
¥ > /7m/2 > 0.886. We note that P. Borwein and Lockhart [3] investigated the asymptotic
behavior of the mean value of normalized L, norms of Littlewood polynomials for arbitrary
p > 0. Using the Lindeberg Central Limit Theorem and dominated convergence, they
proved that

where L, := {P : P(2) = Z?:o a;jz’,a; € {—1,+1}}. It follows simply from the p = 1

case of the the result in [3] quoted above that ¥; > /7/8 > 0.626. Moreover, this can be
achieved by taking the sum of approximately half of the monomials of {z°, z!,... 22"}
and letting n tend to oco.

In this note we show that

Sp > S, 2T(1+p/2)Y7,  pe(0,2),

and
Q, <L, <T(1+p/2)'7,  pe(2,0).

The special case p = 1 recaptures a recent result of Aistleitner [1], the best known lower
bound for ;. Observe that Parseval’s formula gives 25 = ¥ = 1.

2. NEw RESULTS

Theorem 2.1. Let (k;) be a strictly increasing sequence of nonnegative integers satisfying
C; )
k]+1>k‘7<1+ﬁ)7 j:1727"'7
where lim;_, o, ¢; = 0co. Let
n
Pn(z):szj, n=12,....
j=1

We have M(P
lim P (Fn)

n— 00 \/ﬁ

=T(1+p/2)"/?
for every p € (0,2).
Theorem 2.2. Let (k;) be a strictly increasing sequence of nonnegative integers satisfying
ki1 > qk;, J=12,...,
where ¢ > 1. Let .
Pn(z):szj, n=1,2,....
j=1
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We have
M, (P,

=T(1 4 p/2)"/P
A= (1+p/2)

for every p € [1,00).
Corollary 2.3. We have ¥, > S, > T'(1 +p/2)'/? for all p € (0,2).

The special case p = 1 of Corollary 2.3 recaptures a recent result of Aistleitner, and it
is the best known lower bound in the problem of Bourgain mentioned in the introduction.

Corollary 2.4. We have 31 > S; > /7/2.
Corollary 2.5. We have Q, < I, <T(1+p/2)Y/P for all p € (2,0).

We remark here that the same results also hold for the polynomials with coefficients
> i1 a;zki if a general form of Salem-Zygmund theorem is used (e.g see (2) in [6]).
Our final result shows that the upper bound T'(1 4 p/2)'/? in Corollary 2.5 is optimal

at least for even integers.

Corollary 2.6. For any even integer p = 2m > 2, we have

M.
lim min p(P>
n—oo PEA, \/ﬁ

=T(1+p/2)Y".

Observe that a standard way to prove a Nikolskii-type inequality for trigonometric
polynomials [2, p. 394] applies to the classes A,,. Indeed,

)= (5 | N PP at)

= (nnp_Q)l/p — nl_l/p,

1/p

1/p

for every P € A,, and p > 2, and the Dirichlet kernel D,,(z) := 1+ z 4+ --- 4 2" shows the
sharpness of this upper bound up to a multiplicative factor constant ¢ > 0. So if we study
the original Bourgain problem in the case of p > 2, we should normalize by dividing by
n'=1/? rather than n'/2.

3. PROOFS

Let m(A) denote the Lebesgue measure of measurable sets A C [0, 1]. To prove Theorem
2.1 we need the complex-valued analogue of the following result of Erdds [6] (note that
there is a typo in (4) in [6], the term N'/2 should be (N/2)'/?).
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Theorem 3.1. Let (k;) be a strictly increasing sequence of nonnegative integers satisfying

C; .
kj+1>k‘j<1+jl%), 7=12 ...,

where lim;_, o, c; = oo. Let
Qn(t) =Y cos(2rk;(t—0;)). 0, €R.
j=1

Then
Tim m({t € [0,1]: Qu(t) < a(n/2)"/2)) = \/%/_OO 112 gy

for every x € R.

Following the proof of Theorem 1 in Erd8s’s paper [6], we can calculate the moments
of |P,(e™)|? on [0,1] in the same way, and the limit distribution function

F(z) := lim m({t € [0,1] : |P.(e"*™)|* < zn})

n— oo

can be identified as F'(x) =1 —e~” on [0, 00). Hence the following complex-valued version
of Erdés’s result can be obtained. While Erd6s could have easily claimed it in [6], our
Theorem 3.2 below seems to be a new result.

Theorem 3.2. Let (k;) be a strictly increasing sequence of nonnegative integers satisfying

Cj .
kj+1>kj<1+j1%), j=12 ...,

where lim;_, o, ¢; = 0o. Let

n

Pn(z):szj, n=12,....

Jj=1

Then
lim m({t € [0,1] : |P(e®™)|? <an})=1—¢"

n—oo
for every x € [0, 00).

We also need the following result from [8, p. 215].
Theorem 3.3. Let (k;) be a strictly increasing sequence of nonnegative integers satisfying

kj+1>qkj, j=12 ...,
)



where ¢ > 1. Let
Qn(t) =Y cos(2mk;(t — ;).
j=1

Then for every r > 0 there are constants (depending only onr and q) Ay q > 0 and B, 4 > 0
such that

Ar,q\/ﬁ < Mr(Qn) < Br,q\/ﬁ
for everyn € N and r > 0.

Proof of Theorem 2.1. Let

1 .
Zn(t) == 7 P, (e, n=12,....

V4D

Observe that the functions |Z,|P,n = 1,2,..., are uniformly integrable on [0, 1]. To see
this let a > 1,
E:=FE,,:={tel0,1]:|Z,(t)]P > a}

and
F:=F,:={tc[0,1]:|Z,t)]* > a}.

Using p € (0,2), we have E C F. This, together with

1
/ Za(t)[2 dt = 1
0

gives m(E) < m(F) < a~! foreverya > 1, p € (0,2), and n € N. Using Hélder’s inequality
we obtain that

p/2
P 2 m (2—p)/2 a(p—2)/2
[E|Zn<t>| dt < (/E|zn<t>| dt) (m(E)ZP/2 <

for every a > 1, p € (0,2), and n € N, which shows that the functions |Z,[P,n=1,2,...,
are uniformly integrable on [0, 1], indeed.
By Theorem 3.2 we have

Un(z) :=m{t €[0,1] : | Z.(t)|*> < x})

converges to F'(z) := 1 — e~ ® pointwise on [0,00) as n — oco. Combining this with the
uniform integrability of |Z,|P,n =1,2,..., on [0, 1], we obtain

1 0o 0o 00
lim / | Z,(t)|P dt = / aP/? dF () = / 2P/ 2F'(2) dx = / 2P/ e dx
0 0 0 0

n—oo
=T(1+p/2). O
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Proof of the Theorem 2.2. Let, as before,

Zn(t) := % P, (™),  n=1,2,
Introducing
Xn(t) = % Re(P,(e”™)) \/, Zcos (2mk;t)
and
Yo(t) :== % Im (P, (e”™) Zsm 27k;t)
we have Z,(t) := X,(t) +iY,(y). Observe that the functions |Z,|P,n = 1,2,..., are

uniformly integrable on [0, 1]. To see this let a > 0 and
E:=E,,:={tc0,1]:|Z,t)]*” > a}.

By Theorem 3.3 (recall that p > 1) we have

o< [|z,mPrd= [ (X0F+Y.0F)" @

1
< o1 / (IXa()]2P + Yo (0)P) dt < 20 B2
0

2p,q°
Hence m(E) < 2pB2p ~1 for every a > 0, p > 1, and n € N. Combining this with the
Cauchy-Schwarz 1nequahty and Theorem 3.3, we obtaln

1/2

/E ‘Zn<t)|p dt < (/E |Zn(t)|2p dt) (m(E))1/2 < Bp (2p/2B§pq _1/2)
:Qp/2B§Iz: qa—1/2

for every a > 0, p > 1, and n € N, which shows that the functions |Z,|P,n =1,2,..., are
uniformly integrable on [0, 1], indeed.
By Theorem 3.2 we have

Un(z) = m({t €[0,1] : | Z,(t)? < z})

converges to F'(xz) := 1 — e™® pointwise on [0,00) as n — co. Combining this with the
uniform integrability of |Z,|P,n =1,2,..., on [0, 1], we obtain

1 oo oo 00
lim/ \Zn(t)\pdt:/ a:p/zdF(aj):/ a:p/zF’(a:)da;:/ 2P/ e dx
oo Jo 0 0 0

=T(1+p/2). O
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Proof of Corollary 2.6. Let P € A, be of the form P(z) = Z;.Lzl 2% with some integers
0<ki<ky<---<k,. Wehave

n m o
(P(z))" = E M| = E E 1|2~
j=1 k=0 1<j1,d2,---im<mn,
Fjythjg b thyy, =k
Hence
2 2
oo oo
M,(P)P = My(P™)* = > 1 => > 1
k=0 1<j1,42,---dm<n, k=0 1<j1,d2,--dm <n,jp#d;,
kjy kit tkj, =k kjip kgt tkj, =k
Now, as the number of permutations of distinct values kj,, kj,, -, k;,, is m!, it follows
that

n

Mp(P)Pz(m!)2< ):m!n(n—l)---(n—m-l-l).

m

Hence, we have

Therefore

(3.1) lim inf min My (P)

> T(1 2)1/P,
n—oo PcA,, \/ﬁ - ( +p/ )

By Theorem 2.2, there are polynomials P,, € A,, such that

lim 7Mp (Pn)

=T(1 4 p/2)Y/P.
= (1+p/2)

Hence

<T(1+p/2)4e.

M, (P
(3.2) lim sup min p(P)
n—oo PEAn \/ﬁ

The corollary now follows from (3.1) and (3.2). O
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