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Abstract. Denote by span{f1, f2, . . . } the collection of all finite linear combinations of the

functions f1, f2, . . . over R. The principal result of the paper is the following.

Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose (λj)
∞
j=1 is a sequence

of distinct positive numbers. Then span{1, xλ1 , xλ2 , . . . } is dense in C[0, 1] if and only if

∞X

j=1

λj

λ2
j + 1

= ∞ .

Moreover, if
∞X

j=1

λj

λ2
j + 1

< ∞ ,

then every function from the C[0, 1] closure of span{1, xλ1 , xλ2 , . . . } can be represented as

an analytic function on {z ∈ C \ (−∞, 0] : |z| < 1} restricted to (0, 1).

This result improves an earlier result by P. Borwein and Erdélyi stating that if

∞X

j=1

λj

λ2
j + 1

< ∞ ,

then every function from the C[0, 1] closure of span{1, xλ1 , xλ2 , . . . } is in C∞(0, 1). Our result

may also be viewed as an improvement, extension, or completion of earlier results by Müntz,
Szász, Clarkson, Erdős, L. Schwartz, P. Borwein, Erdélyi, W.B. Johnson, and Operstein.
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1. Introduction and Notation

Müntz’s beautiful classical theorem characterizes sequences (λj)∞j=0 with

0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space span{xλ0 , xλ1 , . . .} is dense in C[0, 1]. Here, and in what follows,
span{xλ0 , xλ1 , . . .} denotes the collection of finite linear combinations of the functions
xλ0 , xλ1 , . . . with real coefficients, and C[a, b] is the space of all real-valued continuous
functions on [a, b] ⊂ R equipped with the uniform norm. Müntz’s Theorem [Bo-Er3,
De-Lo, Go, Mü, Szá] states the following.

Theorem 1.A (Müntz). Suppose (λj)∞j=0 is a sequence with 0 = λ0 < λ1 < λ2 < · · · .

Then span{xλ0 , xλ1 , . . .} is dense in C[0, 1] if and only if
∑∞

j=1 1/λj = ∞.

The original Müntz Theorem proved by Müntz [Mü] in 1914, by Szász [Szá] in 1916,
and anticipated by Bernstein [Be] was only for sequences of exponents tending to infinity.
The point 0 is special in the study of Müntz spaces. Even replacing [0, 1] by an interval
[a, b] ⊂ [0,∞) in Müntz’s Theorem is a non-trivial issue. This is, in large measure, due
to Clarkson and Erdős [Cl-Er] and Schwartz [Sch] whose works include the result that if∑∞

j=1 1/λj < ∞ then every function belonging to the uniform closure of span{xλ0 , xλ1 , . . .}
on [a, b] can be extended analytically throughout the region {z ∈ C \ (−∞, 0] : |z| < b}.

There are many variations and generalizations of Müntz’s Theorem [An, Be, Boa, Bo1,
Bo2, Bo-Er1, Bo-Er2, Bo-Er3, Bo-Er4, Bo-Er5, Bo-Er6, Bo-Er7, B-E-Z, Ch, Cl-Er, De-Lo,
Er-Jo, Go, Lu-Ko, Ma, Op, Sch, So]. There are also still many open problems. In [Bo-Er6]
it is shown that the interval [0, 1] in Müntz’s Theorem can be replaced by an arbitrary
compact set A ⊂ [0,∞) of positive Lebesgue measure. That is, if A ⊂ [0,∞) is a compact
set of positive Lebesgue measure, then span{xλ0 , xλ1 , . . .} is dense in C(A) if and only if∑∞

j=1 1/λj = ∞. Here C(A) denotes the space of all real-valued continous functions on
A equipped with the uniform norm. If A contains an interval then this follows from the
already mentioned results of Clarkson, Erdős, and Schwartz. However, their results and
methods cannot handle the case when, for example, A ⊂ [0, 1] is a a Cantor type set of
positive measure.

In the case that
∑∞

j=1 1/λj < ∞, analyticity properties of the functions belonging to
the uniform closure of span{xλ0 , xλ1 , . . .} on A are also established in [Bo-Er6].

In [Bo-Er3, Section 4.2] and in [Bo-Er4] the following result is proved.

Theorem 1.B (Full Müntz Theorem in C[0, 1]). Suppose (λj)∞j=1 is a sequence of
distinct positive real numbers. Then span{1, xλ1 , xλ2 , . . .} is dense in C[0, 1] if and only if

∞∑
j=1

λj

λ2
j + 1

= ∞ .

Moreover, if
∞∑

j=1

λj

λ2
j + 1

< ∞ ,
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then every function from the C[0, 1] closure of span{1, xλ1 , xλ2 , . . .} is infinitely many
times differentiable on (0, 1).

The new result of this paper is the following.

Theorem 1.1 (Full Clarkson-Erdős-Schwartz Theorem). Suppose (λj)∞j=1 is a se-
quence of distinct positive numbers. Then span{1, xλ1 , xλ2 , . . .} is dense in C[0, 1] if and
only if

∞∑
j=1

λj

λ2
j + 1

= ∞ .

Moreover, if
∞∑

j=1

λj

λ2
j + 1

< ∞ ,

then every function from the C[0, 1] closure of span{1, xλ1 , xλ2 , . . .} can be represented as
an analytic function on {z ∈ C \ (−∞, 0] : |z| < 1} restricted to (0, 1).

The notation
‖f‖A := sup

x∈A
|f(x)|

is used throughout this paper for real-valued measurable functions f defined on a set
A ⊂ R The space of all real-valued continuous functions on a set A ⊂ R equipped with the
uniform norm is denoted by C(A). Denote by span{f1, f2, . . .} the collection of all finite
linear combinations of the functions f1, f2, . . . over R.

2. Auxiliary Results

The following result is the “bounded Remez-type inequality for non-dense Müntz spaces”
due to P. Borwein and Erdélyi [Bo-Er6].

Theorem 2.1. Suppose (γj)∞j=1 is a sequence of distinct positive numbers satisfying

∞∑
j=1

1/γj < ∞ .

Let s > 0. Then there exists a constant c(Γ, s) depending only on Γ := (γj)∞j=1 and s (and
not on % , A , or the “length” of Q) so that

‖Q‖[0,%] ≤ c(Γ, s) ‖Q‖A

for every Q ∈ span{1, xγ1 , xγ2 , . . .} and for every set A ⊂ [%, 1] of Lebesgue measure at
least s .

Combining a result of Clarkson and Erdős [Cl-Er] and its extension given by Schwartz
[Sch] we can state the following
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Theorem 2.2. Suppose (γj)∞j=1 is a sequence of distinct positive numbers satisfying∑∞
j=1 1/γj < ∞ . Then span{1, xγ1, xγ2 , . . .} is not dense in C[0, 1]. In addition, if the

gap condition
inf{γj+1 − γj : j = 1, 2, . . .} > 0

holds, then every function f ∈ C[0, 1] belonging to the C[0, 1] closure of
span{1, xγ1, xγ2 , . . .} can be represented as

f(x) =
∞∑

j=0

ajx
γj , x ∈ [0, 1) .

If the gap condition (2.1) does not hold, then every function f ∈ C[0, 1] belonging to the
C[0, 1] closure of span{1, xγ1 , xγ2, . . .} can still be represented as an analytic function on

{z ∈ C \ (−∞, 0] : |z| < 1}

restricted to (0, 1).

Now we offer a sufficient condition for a sequence (βj)∞j=1 of distinct positive numbers
converging to 0 to guarantee the non-denseness of span{xβ1 , xβ2 , . . .} in C[0, 1].

Theorem 2.3. Suppose that (βj)∞j=1 is a sequence of distinct real numbers greater than 0
satisfying

∞∑
j=1

βj =: η < ∞ .

Then span{xβ1 , xβ2 , . . .} is not dense in C[0, 1]. In addition, every function in the C[0, 1]
closure of span{xβ1 , xβ2 , . . .} can be represented as an analytic function on C \ (−∞, 0]
restricted to (0, 1).

Proof of Theorem 2.3. The theorem is a consequence of D. J. Newman’s Markov-type
inequality [Bo-Er3, Theorem 6.1.1 on page 276] (see also [Ne]). We state this as Theorem
2.4. Repeated applications of Theorem 2.4 with the substitution x = e−t imply that

‖Q(e−t))(m)‖[0,∞) ≤ (9η)m‖Q(e−t)‖[0,∞) , m = 1, 2, . . . ,

in particular

|(Q(e−t))(m)(0)| ≤ (9η)m‖Q(e−t)‖[0,∞) , m = 1, 2, . . . ,

for every Q ∈ span{xβ1 , xβ2 , . . .} . By using the Taylor series expansion of Q(e−t) around
0, we obtain that

(2.1) |Q(z)| ≤ c1(K, η)‖Q‖[0,1] , z ∈ K ,
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for every Q ∈ span{xβ1 , xβ2 , . . .} and for every compact K ⊂ C \ {0}, where

c1(K, η) :=
∞∑

m=0

(9η)m
(

maxz∈K |log z|
)m

m!
= exp

(
9η max

z∈K
| log z|

)

is a constant depending only on K and η. Now (2.1) shows that if

Qn ∈ span{xβ1 , xβ2 , . . .}
converges in C[0, 1], then it converges uniformly on every compact K ⊂ C \ {0}, and the
theorem is proved. �

The following Markov-type inequality for Müntz polynomials is due to Newman [Bo-Er3,
Theorem 6.1.1 on page 276] (see also [Ne]).

Theorem 2.4 (Markov-Type Inequality for Müntz Polynomials). Suppose that
β1, β2, . . . , βn are distinct nonnegative numbers. Then

‖xQ′(x)‖[0,1] ≤ 9


 n∑

j=1

βj


 ‖Q‖[0,1]

for every Q ∈ span{xβ1 , xβ2 , . . . , xβn} .

We will also need the bounded Bernstein-type inequality below (see [Bo-Er3, page 182].

Theorem 2.5 (Bernstein Type Inequality for Non-Dense Müntz spaces). Suppose
Γ := (γj)∞j=1 is a sequence of distinct positive numbers satisfying γ1 ≥ 1 and

∑∞
j=1 1/γj <

∞ . Then
‖Q′‖[0,x] ≤ c(Γ, x)‖Q‖[0,1]

for every Q ∈ span{1, xγ1 , xγ2 , . . .} and for every x ∈ [0, 1), where c(Γ, x) depends only on
Γ and x.

The following simple fact will also be needed.

Lemma 2.6. Let U ⊂ C[0, 1] be a cosed linear subspace and let V ⊂ C[0, 1] be a finite
dimensional (hence closed) linear subspace. Then U + V is closed.

4. Proof of Theorems 1.1

Proof of Theorem 1.1. The first part of the theorem is contained in Theorem 1.B, so we
need to prove only the second part. Suppose (λj)∞j=1 is a sequence of distinct positive
numbers satisfying

∞∑
j=1

λj

λ2
j + 1

< ∞ .

Then there are positive numbers η, βj , γj , and δj such that

{λj : j = 1, 2, . . .} = {βj : j = 1, 2, . . .} ∪ {γj : j = 1, 2, . . .} ∪ {δj : j = 1, 2, . . . , k} ,
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where γ1 ≥ 1,
∞∑

j=1

βj ≤ η ,
∞∑

j=1

1/γj < ∞ ,

and with Γ := (γj)∞j=1 we have

c(Γ, 1/2) <
1

36η

(c(Γ, 1/2) is defined in Theorem 2.1). Let

Hβ := span{xβ1 , xβ2 , . . .} , Hγ := span{1, xγ1, xγ2 , . . .} ,

and
Hδ := span{xδ1 , xδ2 , . . . , xδk} .

Every Q ∈ Hβ+Hγ can be written as Q = Qβ+Qγ with some Qβ ∈ Hβ and Qγ ∈ Hγ . First
we show that there are constans Cβ and Cγ depending only on Hβ and Hγ , respectively,
so that

(3.1) ‖Qβ‖[0,1] ≤ Cβ‖Q‖[0,1]

and

(3.2) ‖Qγ‖[0,1] ≤ Cγ‖Q‖[0,1]

for every Q ∈ Hβ + Hγ . Suppose to the conrary that, say the first inequality fails. Then
there are Müntz polynomials Qβ,n ∈ Hβ and Qγ,n ∈ Hγ so that

(3.3) ‖Qβ,n‖[0,1] = 1 , lim
n→∞ ‖Qγ,n‖[0,1] = 1 ,

and

(3.4) lim
n→∞ ‖Qβ,n + Qγ,n‖[0,1] = 0 .

Then by Theorem 2.4 {Qβ,n : n = 1, 2, . . .} is a family of bounded, equi-continuous
functions on [1/3, 1], while {Qγ,n : n = 1, 2, . . .} is a family of bounded, equi-continuous
functions on [0, 2/3]. So by the Arzela-Ascoli Theorem there are a subsequence of (Qβ,n)
(without loss of generality we may assume that this is (Qβ,n) itself) and a subsequence of
(Qγ,n) (without loss of generality we may assume that this is (Qγ,n) itself) so that

(3.5) lim
n→∞ ‖Qβ,n − f‖[1/3,1] = 0

and

(3.6) lim
n→∞ ‖Qγ,n − g‖[0,2/3] = 0
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with some continuous functions f and g on [1, 3, 1] and [0, 2/3], respectively. By (3.4),
(3.5), and (3.6) we have f = −g on [1/3, 2/3], so the function

(3.7) h(x) :=

{
f(x) ,

−g(x) ,

x ∈ [1/3, 1]

x ∈ [0, 2/3]

is well-defined. By (3.4) – (3.7) we can deduce that

(3.8) lim
n→∞ ‖Qβ,n − h‖[0,1] = 0

and

(3.9) lim
n→∞ ‖Qγ,n − h‖[0,1] = 0 .

Using (3.3), (3.8), Theorem 2.4, and
∑∞

j=1 βj ≤ η we can deduce that

h(x)− h(1) ≤ 18η , x ∈ [1/2, 1] .

Note that (3.3), (3.5), and (3.7) imply that ‖h‖[0,1] = 1 and h(0) = 0. Now observe that
the function h− h(1) is in the uniform closure of

Hγ = span{1, xγ1, xγ2 , . . .} ,

hence Theorem 2.1 implies

‖h− h(1)‖[0,1] ≤ c(Γ, 1/2) ‖h− h(1)‖[1/2,1] ≤ c(Γ, 1/2) 18η < 1/2 .

This contradicts the facts that h(0) = 0 and ‖h‖[0,1] = 1. Hence the proof of (3.1) is
finished. The proof of (3.2) goes in the same way, so we omit it.

Let H denote the uniform closure of a subspace H ⊂ C[0, 1]. We want to prove that
Hβ + Hγ + Hδ ⊂ A, where A ⊂ C[0, 1] denotes the collection of functions f ∈ C[0, 1],
which can be represented as an analytic function on {z ∈ C \ (−∞, 0] : |z| < 1} restricted
to (0, 1). Since Hδ is finite dimensional, Theorem 2.6 implies that

Hβ + Hγ + Hδ ⊂ Hβ + Hγ + Hδ .

so it is sufficient to prove that

(3.10) Hβ + Hγ ⊂ A

However, (3.1) and (3.2) imply that

Hβ + Hγ ⊂ Hβ + Hγ ,

where Hβ ⊂ A by Theorem 2.3 and Hγ ⊂ A by Theorem 2.2. Hence (3.10) holds, indeed,
and the proof of the theorem is finished. �
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