# Large Sieve Inequalities via Subharmonic Methods and the Mahler Measure of the Fekete Polynomials

T. Erdélyi\* D.S. Lubinsky<sup>†</sup>

March 10, 2005

#### Abstract

We investigate large sieve inequalities such as

$$\frac{1}{m} \sum_{j=1}^{m} \psi\left(\log\left|P\left(e^{i\tau_{j}}\right)\right|\right) \leq \frac{C}{2\pi} \int_{0}^{2\pi} \psi\left(\log\left[e\left|P\left(e^{i\tau}\right)\right|\right]\right) d\tau,$$

where  $\psi$  is convex and increasing, P is a polynomial or an exponential of a potential, and the constant C depends on the degree of P, and the distribution of the points  $0 \le \tau_1 < \tau_2 < \cdots < \tau_m \le 2\pi$ . The method allows greater generality and is in some ways simpler than earlier ones. We apply our results to estimate the Mahler measure of Fekete polynomials.

# 1 <sup>1</sup>Results

The large sieve of number theory [14, p. 559] asserts that if

$$P(z) = \sum_{k=-n}^{n} a_k z^k$$

is a trigonometric polyonomial of degree  $\leq n$ , and

$$0 \le \tau_1 < \tau_2 < \dots < \tau_m \le 2\pi,$$

<sup>\*</sup>The Department of Mathematics, Texas A&M University, College Station, TX 77843,  ${\tt terdelyi@math.tamu.edu}$ 

<sup>&</sup>lt;sup>†</sup>The School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 USA, lubinsky@math.gatech.edu, fax:404-894-4409

<sup>&</sup>lt;sup>1</sup>Research supported in part by NSF grant DMS 0400446

and

$$\delta := \min \left\{ \tau_2 - \tau_1, \tau_3 - \tau_2, \dots, \tau_m - \tau_{m-1}, 2\pi - (\tau_m - \tau_1) \right\},\,$$

then

$$\sum_{j=1}^{m} \left| P\left(e^{i\tau_{j}}\right) \right|^{2} \leq \left(\frac{n}{2\pi} + \delta^{-1}\right) \int_{0}^{2\pi} \left| P\left(e^{i\tau}\right) \right|^{2} d\tau. \tag{1}$$

There are numerous extensions of this to  $L_p$  norms, or involving  $\psi\left(\left|P\left(e^{i\tau}\right)\right|^p\right)$  where  $\psi$  is a convex function, and p>0 [8], [12]. There are versions of this that estimate Riemann sums, for example,

$$\sum_{j=1}^{m} \left| P\left(e^{i\tau_{j}}\right) \right|^{2} \left(\tau_{j} - \tau_{j-1}\right) \leq C \frac{1}{2\pi} \int_{0}^{2\pi} \left| P\left(e^{i\tau}\right) \right|^{2} d\tau, \tag{2}$$

with C independent of  $n, P, \{\tau_1, \tau_2, \dots, \tau_m\}$ . These are often called forward Marcinkiewicz-Zygmund inequalities. Converse Marcinkiewicz-Zygmund Inequalities provide estimates for the integrals above in terms of the sums on the left-hand side [11], [13], [16].

A particularly interesting case is that of the  $L_0$  norm. A result of the first author asserts that if  $\{z_1, z_2, \ldots, z_n\}$  are the *n*th roots of unity, and *P* is a polynomial of degree  $\leq n$ ,

$$\prod_{j=1}^{n} |P(z_j)|^{1/n} \le 2M_0(P),$$
(3)

where

$$M_0(P) := \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \log |P(e^{it})| dt\right)$$

is the Mahler measure of P.

The focus of this paper is to show that methods of subharmonic function theory provide a simple and direct way to generalize previous results. We also extend (3) to points other than the roots of unity. Given  $c \geq 0$ ,  $\kappa \in$ 

 $[0, \infty)$ , and a positive measure  $\nu$  of compact support and total mass at most  $\kappa \geq 0$  on the plane, we define the associated exponential of its potential by

$$P(z) = c \exp \left( \int \log |z - t| d\nu(t) \right).$$

We say that this is an exponential of a potential of mass  $\leq \kappa$ , and that its degree is  $\leq \kappa$ . The set of all such functions is denoted by  $\mathbb{P}_{\kappa}$ . Note that if P is a polynomial of degree  $\leq n$ , then

$$|P| \in \mathbb{P}_n$$
.

More generally, the generalized polynomials studied by several authors [3], [7] also lie in  $\mathbb{P}_{\kappa}$ , for an appropriate  $\kappa$ . We prove:

**Theorem 1.1** Let  $\psi : \mathbb{R} \to [0, \infty)$  be nondecreasing and convex. Let  $m \ge 1$ ,  $\kappa > 0$ ,  $\alpha > 0$ , and

$$0 < \tau_1 \le \tau_2 \le \dots \le \tau_m \le 2\pi.$$

Let  $w_i \geq 0$ ,  $1 \leq j \leq m$  with

$$\sum_{j=1}^{m} w_j = 1.$$

Let  $\mu_m$  denote the corresponding Riemann-Stieltjes measure, defined for  $\theta \in [0, 2\pi]$  by

$$\mu_m\left([0,\theta]\right) := \sum_{j: \tau_j \le \theta} w_j.$$

Let

$$\Delta := \sup \left\{ \left| \mu_m \left( [0, \theta] \right) - \frac{\theta}{2\pi} \right| : \theta \in [0, 2\pi] \right\}$$
 (4)

denote the discrepancy of  $\mu_m$ . Then for  $P \in \mathbb{P}_{\kappa}$ ,

$$\sum_{j=1}^{m} w_{j} \psi \left( \log P\left(e^{i\tau_{j}}\right) \right) \leq \left( 1 + \frac{8}{\alpha} \kappa \Delta \right) \frac{1}{2\pi} \int_{0}^{2\pi} \psi \left( \log \left[ e^{\alpha} P\left(e^{i\theta}\right) \right] \right) d\theta. \tag{5}$$

Example 1 Let us choose all equal weights,

$$w_j = \frac{1}{m}, \qquad 1 \le j \le m.$$

Then  $\mu_m$  is counting measure,

$$\mu_m([0,\theta]) = \frac{1}{m} \# \{j : \tau_j \in [0,\theta]\}.$$

If we take  $\psi(t) = \max\{0, t\}$ , and  $\alpha = 1$ , and use the notation  $\log^+ t = \max\{0, \log t\}$ , we obtain

$$\frac{1}{m} \sum_{j=1}^{m} \log^{+} P\left(e^{i\tau_{j}}\right) \le \left(1 + 8\kappa\Delta\right) \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \left[eP\left(e^{i\theta}\right)\right] d\theta. \tag{6}$$

This result is new. Previous inequalities have been limited to sums involving  $\psi\left(P\left(e^{i\tau_j}\right)^p\right)$ , some p>0. If we let p>0,  $\psi\left(t\right)=e^{pt}$ , and  $\alpha=\frac{1}{p}$ , (5) becomes

$$\frac{1}{m} \sum_{j=1}^{m} P\left(e^{i\tau_j}\right)^p \le \left(1 + 8p\kappa\Delta\right) \frac{e}{2\pi} \int_0^{2\pi} P\left(e^{i\theta}\right)^p d\theta. \tag{7}$$

This choice of  $\alpha$  is not optimal. The optimal choice is

$$\alpha = 4\kappa\Delta \left[ -1 + \sqrt{1 + \frac{1}{2p\kappa\Delta}} \, \right]$$

but one needs further information on the size of  $p\kappa\Delta$  to exploit this. For example, if  $p\kappa\Delta \leq 1$ , the optimal choice is of order  $\sqrt{\frac{\kappa\Delta}{p}}$ , and choosing this  $\alpha$  in (5), we obtain

$$\frac{1}{m} \sum_{j=1}^{m} P\left(e^{i\tau_j}\right)^p \le \left(1 + C\sqrt{p\kappa\Delta}\right) \frac{1}{2\pi} \int_0^{2\pi} P\left(e^{i\theta}\right)^p d\theta, \tag{8}$$

where C is an absolute constant.

For well distributed  $\{\tau_1, \tau_2, \dots, \tau_m\}$ ,  $\Delta$  is of order  $\frac{1}{m}$ . In particular, when these points are equally spaced and include  $2\pi$ , but not 0, so that

$$\tau_j = \frac{2j\pi}{m}, \qquad 1 \le j \le m,$$

we have

$$\Delta = \frac{2\pi}{m},$$

and (7) becomes

$$\frac{1}{m} \sum_{j=1}^{m} P\left(e^{i\tau_j}\right)^p \le \left(1 + \frac{16\pi p\kappa}{m}\right) \frac{e}{2\pi} \int_0^{2\pi} P\left(e^{i\theta}\right)^p d\theta. \tag{9}$$

**Example 2** Another important choice of the weights  $w_i$  is

$$w_j = \frac{\tau_j - \tau_{j-1}}{2\pi}, \qquad 1 \le j \le m,$$

where now we assume  $\tau_0 = 0$  and  $\tau_m = 2\pi$ . For this case (5) becomes an estimate for Riemann sums,

$$\frac{1}{2\pi} \sum_{j=1}^{m} (\tau_j - \tau_{j-1}) \psi \left( \log P\left(e^{i\tau_j}\right) \right) 
\leq \left( 1 + \frac{8}{\alpha} \kappa \Delta \right) \frac{1}{2\pi} \int_0^{2\pi} \psi \left( \log \left[ e^{\alpha} P\left(e^{i\theta}\right) \right] \right) d\theta.$$
(10)

The discrepancy  $\Delta$  in this case is

$$\Delta = \sup_{j} \frac{\tau_{j} - \tau_{j-1}}{2\pi} \,.$$

## Remarks

- (a) In many ways, the approach of this paper is simpler than that in [12] where Dirichlet kernels were used, or that of [8], where Carleson measures were used. The main idea is to use the Poisson integral inequality for subharmonic functions.
- (b) We can reformulate (5) as

$$\int_{0}^{2\pi} \psi\left(\log\left|P\left(e^{i\tau}\right)\right|\right) d\mu_{m}\left(\tau\right)$$

$$\leq \left(1 + \frac{8}{\alpha}\kappa\Delta\right) \frac{1}{2\pi} \int_{0}^{2\pi} \psi\left(\log\left[e^{\alpha}P\left(e^{i\theta}\right)\right]\right) d\theta.$$

In fact this estimate holds for any probability measure  $\mu_m$  on  $[0, 2\pi]$ , not just the pure jump measures above.

(c) The one severe restriction above is that  $\psi$  is nonnegative. In particular, this excludes  $\psi(x) = x$ . For this case, we prove 2 different results:

**Theorem 1.2** Assume that m,  $\kappa$ ,  $\{\tau_1, \tau_2, \ldots, \tau_m\}$  and  $\{w_1, w_2, \ldots, w_m\}$  are as in Theorem 1.1. Let

$$Q(z) = \prod_{j=1}^{m} \left| z - e^{i\tau_j} \right|^{w_j}. \tag{11}$$

Then for  $P \in \mathbb{P}_{\kappa}$ ,

$$\sum_{j=1}^{m} w_j \log P\left(e^{i\tau_j}\right) \le \frac{1}{2\pi} \int_0^{2\pi} \log P\left(e^{i\theta}\right) d\theta + \kappa \log \|Q\|_{L_{\infty}(|z|=1)}. \tag{12}$$

#### Remarks

If we choose all  $w_j = \frac{1}{m}$ , this yields

$$\prod_{j=1}^{m} P\left(e^{i\tau_{j}}\right)^{1/m} \leq \|Q\|_{L_{\infty}(|z|=1)}^{\kappa} \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \log P\left(e^{i\theta}\right) d\theta\right). \tag{13}$$

If we take  $\{e^{i\tau_1}, e^{i\tau_2}, \dots, e^{i\tau_m}\}$  to be the *m*th roots of unity, then

$$Q\left(z\right) = \left|z^{m} - 1\right|^{1/m}$$

and (13) becomes

$$\prod_{i=1}^{m} P\left(e^{i\tau_{j}}\right)^{1/m} \leq 2^{\kappa/m} \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \log P\left(e^{i\theta}\right) d\theta\right). \tag{14}$$

In the case  $\kappa=m=n$ , this gives the first author's inequality (3). In general however, it is not easy to bound  $\|Q\|_{L_{\infty}(|z|=1)}$ . Using an alternative method, we can avoid the term involving Q, when the spacing between successive  $\tau_j$  is  $O\left(\kappa^{-1}\right)$ :

**Theorem 1.3** Assume that  $m, \kappa$  and  $\{\tau_1, \tau_2, \dots, \tau_m\}$  are as in Theorem 1.1. Let  $\tau_0 := \tau_m - 2\pi$  and  $\tau_{m+1} := \tau_1 + 2\pi$ . Let

$$\delta := \max \{ \tau_1 - \tau_0, \tau_2 - \tau_1, \dots, \tau_m - \tau_{m-1} \}.$$

Let A>0. There exists B>0 such that whenever  $\kappa\geq 1$  and

$$\delta \leq A\kappa^{-1}$$
,

then for all  $P \in \mathbb{P}_{\kappa}$ ,

$$\sum_{j=1}^{m} \frac{\tau_{j+1} - \tau_{j-1}}{2} \log P\left(e^{i\tau_j}\right) \le \int_0^{2\pi} \log P\left(e^{i\theta}\right) d\theta + B. \tag{15}$$

One application of Theorem 1.2 is to estimation of Mahler measure. Recall that for a bounded measurable function Q on  $[0, 2\pi]$ , its Mahler measure is

$$M_0(Q) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \log \left| Q\left(e^{i\theta}\right) \right| d\theta\right).$$

It is well known that

$$M_0(Q) = \lim_{p \to 0+} M_p(Q),$$

where for p > 0,

$$M_p\left(Q\right) := \|Q\|_p := \left(\frac{1}{2\pi} \int_0^{2\pi} \left|Q\left(e^{i\theta}\right)\right|^p d\theta\right)^{1/p}.$$

It is a simple consequence of Jensen's formula that if

$$Q(z) = c \prod_{k=1}^{n} (z - z_k)$$

is a polynomial, then

$$M_0(Q) = |c| \prod_{k=1}^n \max\{1, |z_k|\}.$$

The construction of polynomials with suitably restricted coefficients and maximal Mahler measure has interested many authors. The Littlewood polynomials,

$$L_n := \left\{ p : p(z) = \sum_{k=0}^{n} \alpha_k z^k, \ \alpha_k \in \{-1, 1\} \right\},$$

which have coefficients  $\pm 1$ , and the unimodular polynomials,

$$K_n := \left\{ p : p(z) = \sum_{k=0}^{n} \alpha_k z^k, |\alpha_k| = 1 \right\}$$

are two of the most important classes considered. Beller and Newman [1] constructed unimodular polynomials of degree n whose Mahler measure is at least  $\sqrt{n} - c/\log n$ . Here we show that for Littlewood polynomials, we can achieve almost  $\frac{1}{2}\sqrt{n}$ , by considering the Fekete polynomials.

For a prime number p, the pth Fekete polynomial is

$$f_p(z) = \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) z^k,$$

where

$$\left(\frac{k}{p}\right) = \begin{cases} 1, & \text{if } x^2 \equiv k \pmod{p} \text{ has a non-zero solution } x \\ 0, & \text{if } p \text{ divides } k \\ -1, & \text{otherwise.} \end{cases}$$

Since  $f_p$  has constant coefficient 0 it is not a Littlewood polynomial, but

$$g_p(z) = f_p(z)/z$$

is a Littlewood polynomial, and has the same Mahler measure as  $f_p$ . Fekete polynomials are examined in detail in [2, pp. 37–42].

**Theorem 1.4** Let  $\varepsilon > 0$ . For large enough prime p, we have

$$M_0(f_p) = M_0(g_p) \ge \left(\frac{1}{2} - \varepsilon\right)\sqrt{p}.$$
 (16)

## Remarks

From Jensen's inequality,

$$M_0(f_p) \le ||f_p||_2 = \sqrt{p-1}$$
.

However  $\frac{1}{2} - \varepsilon$  in Theorem 1.4 cannot be replaced by  $1 - \varepsilon$ . Indeed if p is prime, and we write p = 4m + 1, then  $g_p$  is self-reciprocal, that is,

$$z^{p-1}g_p\left(\frac{1}{z}\right) = g_p(z),$$

and hence

$$g_p(e^{2it}) = e^{i(p-2)t} \sum_{k=0}^{(p-3)/2} a_k \cos((2k+1)t), \quad a_k \in \{-2, 2\}.$$

A result of Littlewood [10, Theorem 2] implies that

$$M_0(f_p) = M_0(g_p) \le \frac{1}{2\pi} \int_0^{2\pi} |g_p(e^{2it})| dt \le (1 - \varepsilon_0) \sqrt{p - 1},$$

for some absolute constant  $\varepsilon_0 > 0$ . It is an interesting question whether there is a sequence of Littlewood polynomials  $(f_n)$  such that for an arbitrary  $\varepsilon > 0$ , and n large enough,

$$M_0(f_n) \ge (1 - \varepsilon) \sqrt{n}$$
.

The results are proved in the next section.

# 2 Proofs

We assume the notation of Theorem 1.1. We let

$$r = 1 + \frac{\alpha}{\kappa},\tag{17}$$

and define the Poisson kernel for the ball  $|z| \le r$  (cf. [15, p. 8]),

$$\mathcal{P}_r\left(se^{i\theta}, re^{it}\right) = \frac{r^2 - s^2}{r^2 - 2rs\cos\left(t - \theta\right) + s^2},$$

where  $0 \le s < r$  and  $t, \theta \in \mathbb{R}$ .

#### Proof of Theorem 1.1

## Step 1 The Basic Inequality

Let  $P \in \mathbb{P}_{\kappa} \setminus \{0\}$ , so that for some c > 0 and some measure  $\nu$  with total mass  $\leq \kappa$  and compact support,

$$\log P(z) = \log c + \int \log |z - t| d\nu(t).$$

As  $\log P$  is subharmonic, and as  $\psi$  is convex and increasing,  $\psi(\log P)$  is subharmonic [15, Theorem 2.6.3, p. 43]. Then we have for |z| < r, the inequality [15, Theorem 2.4.1, p. 35]

$$\psi\left(\log P\left(z\right)\right) \leq \frac{1}{2\pi} \int_{0}^{2\pi} \psi\left(\log P\left(re^{it}\right)\right) \mathcal{P}_{r}\left(z, re^{it}\right) dt.$$

Choosing  $z = e^{i\tau_j}$ , multiplying by  $w_j$ , and adding over j gives

$$\sum_{j=1}^{m} w_{j} \psi \left( \log P\left(e^{i\tau_{j}}\right) \right) - \frac{1}{2\pi} \int_{0}^{2\pi} \psi \left( \log P\left(re^{it}\right) \right) dt$$

$$\leq \frac{1}{2\pi} \int_{0}^{2\pi} \psi \left( \log P\left(re^{it}\right) \right) \mathcal{H}(t) dt \tag{18}$$

where

$$\mathcal{H}(t) := \sum_{j=1}^{m} w_{j} \mathcal{P}_{r} \left( e^{i\tau_{j}}, r e^{it} \right) - 1$$
$$= \int_{0}^{2\pi} \mathcal{P}_{r} \left( e^{i\tau}, r e^{it} \right) d \left( \mu_{m} \left( \tau \right) - \frac{\tau}{2\pi} \right).$$

Here we have used the elementary property of the Poisson kernel, that it integrates to 1 over any circle center 0 inside its ball of definition.

## Step 2 Estimating $\mathcal{H}$

We integrate this relation by parts, and note that both  $\mu_m[0,0]=0$  and

 $\mu_m [0, 2\pi] = 1$ . This gives

$$\mathcal{H}\left(t\right) = -\int_{0}^{2\pi} \left(\frac{\partial}{\partial \tau} \mathcal{P}_{r}\left(e^{i\tau}, re^{it}\right)\right) \left(\mu_{m}\left(\left[0, \tau\right]\right) - \frac{\tau}{2\pi}\right) d\tau$$

and hence

$$|\mathcal{H}(t)| \le \Delta \int_0^{2\pi} \left| \frac{\partial}{\partial \tau} \mathcal{P}_r \left( e^{i\tau}, re^{it} \right) \right| d\tau.$$
 (19)

Now

$$\frac{\partial}{\partial \tau} \mathcal{P}_r \left( e^{i\tau}, r e^{it} \right) = \frac{\left( r^2 - 1 \right) 2r \sin \left( t - \tau \right)}{\left( r^2 - 2r \cos \left( t - \tau \right) + 1 \right)^2}$$

so a substitution  $s=t-\tau$  and  $2\pi-$ periodicity give

$$\int_{0}^{2\pi} \left| \frac{\partial}{\partial \tau} \mathcal{P}_{r} \left( e^{i\tau}, r e^{it} \right) \right| d\tau = \int_{-\pi}^{\pi} \left| \frac{\partial}{\partial s} \mathcal{P}_{r} \left( e^{is}, r \right) \right| ds$$

$$= -2 \int_{0}^{\pi} \frac{\partial}{\partial s} \mathcal{P}_{r} \left( e^{is}, r \right) ds$$

$$= -2 \left[ \mathcal{P}_{r} \left( e^{i\pi}, r \right) - \mathcal{P}_{r} \left( 1, r \right) \right] = \frac{8r}{r^{2} - 1}. \tag{20}$$

Combining (18)–(20), gives

$$\sum_{i=1}^{m} w_{j} \psi\left(\log P\left(e^{i\tau_{j}}\right)\right) \leq \left(1 + \Delta \frac{8r}{r^{2} - 1}\right) \frac{1}{2\pi} \int_{0}^{2\pi} \psi\left(\log P\left(re^{it}\right)\right) dt. \quad (21)$$

#### Step 3 Return to the unit circle

Next, we estimate the integral on the right-hand side in terms of an integral over the unit circle. Let us assume that  $\nu$  has total mass  $\lambda (\leq \kappa)$ . Let

$$S(z) = |z|^{\lambda} P\left(\frac{r}{z}\right)$$

so that

$$\log S(z) = \log c + \int \log |r - tz| d\nu(t),$$

a function subharmonic in  $\mathbb{C}$ . Then the same is true of  $\psi(\log S)$ , so its integrals over circles centre 0 increase with the radius [15, Theorem 2.6.8, p. 46]. In particular

$$\frac{1}{2\pi} \int_0^{2\pi} \psi\left(\log S\left(e^{i\theta}\right)\right) d\theta \le \frac{1}{2\pi} \int_0^{2\pi} \psi\left(\log S\left(re^{i\theta}\right)\right) d\theta$$

and a substitution  $\theta \to -\theta$  gives

$$\frac{1}{2\pi} \int_{0}^{2\pi} \psi\left(\log P\left(re^{i\theta}\right)\right) d\theta \leq \frac{1}{2\pi} \int_{0}^{2\pi} \psi\left(\lambda \log r + \log P\left(e^{i\theta}\right)\right) d\theta 
\leq \frac{1}{2\pi} \int_{0}^{2\pi} \psi\left(\kappa \log r + \log P\left(e^{i\theta}\right)\right) d\theta 
\leq \frac{1}{2\pi} \int_{0}^{2\pi} \psi\left(\alpha + \log P\left(e^{i\theta}\right)\right) d\theta,$$

recall our choice (17) of r. Then (21) becomes

$$\sum_{j=1}^{m} w_{j} \psi \left( \log P \left( e^{i\tau_{j}} \right) \right)$$

$$\leq \left( 1 + \Delta \frac{8r}{r^{2} - 1} \right) \frac{1}{2\pi} \int_{0}^{2\pi} \psi \left( \log \left[ e^{\alpha} P \left( e^{i\theta} \right) \right] \right) d\theta$$

$$\leq \left( 1 + 8\Delta \frac{\kappa}{\alpha} \right) \frac{1}{2\pi} \int_{0}^{2\pi} \psi \left( \log \left[ e^{\alpha} P \left( e^{i\theta} \right) \right] \right) d\theta.$$

## Proof of Theorem 1.2

Write

$$\log P(z) = \log c + \int \log |z - t| d\nu(t)$$

so

$$\sum_{j=1}^{m} w_{j} \log P\left(e^{i\tau_{j}}\right) = \log c + \int \left(\sum_{j=1}^{m} w_{j} \log\left|e^{i\tau_{j}} - t\right|\right) d\nu\left(t\right)$$

$$= \log c + \int \log Q\left(t\right) d\nu\left(t\right), \tag{22}$$

recall (11). Now as all zeros of Q are on the unit circle,

$$g\left(u\right):=\log Q\left(u\right)-\log \|Q\|_{L_{\infty}\left(|z|=1\right)}-\log |u|$$

is harmonic in the exterior  $\{u : |u| > 1\}$  of the unit ball, with limit 0 at  $\infty$ , and with  $g(u) \le 0$  for |u| = 1. By the maximum principle for subharmonic functions,

$$g\left(u\right) \le 0, \qquad |u| > 1.$$

We deduce that for |u| > 1,

$$\log Q(u) \le \log ||Q||_{L_{\infty}(|z|=1)} + \log^{+} |u|.$$

Moreover, inside the unit ball, we can regard Q as the absolute value of a function analytic there (with any choice of branches). So the last inequality holds for all  $u \in \mathbb{C}$ . Then assuming (as above) that  $\nu$  has total mass  $\lambda \leq \kappa$ ,

$$\int \log Q(t) \, d\nu(t) \le \lambda \log \|Q\|_{L_{\infty}(|z|=1)} + \int \log^{+} |t| \, d\nu(t) 
= \lambda \log \|Q\|_{L_{\infty}(|z|=1)} + \int \left(\frac{1}{2\pi} \int_{0}^{2\pi} \log \left| e^{i\theta} - t \right| d\theta \right) d\nu(t) 
\le \kappa \log \|Q\|_{L_{\infty}(|z|=1)} + \frac{1}{2\pi} \int_{0}^{2\pi} \left(\int \log \left| e^{i\theta} - t \right| d\nu(t) \right) d\theta.$$
(23)

In the second line we used a well known identity [15, Exercise 2.2, p. 29], and in the last line we used the fact that the sup norm of Q on the unit circle is larger than 1. This is true because

$$\frac{1}{2\pi} \int_0^{2\pi} \log Q\left(e^{i\theta}\right) d\theta = \sum_{j=1}^m w_j \frac{1}{2\pi} \int_0^{2\pi} \log \left| e^{i\tau_j} - e^{i\theta} \right| d\theta = 0,$$

while  $\log Q < 0$  in a neighborhood of each  $\tau_j$ , so that  $\log Q\left(e^{i\theta}\right) > 0$  on a set of  $\theta$  of positive measure. Substituting (23) into (22) gives

$$\sum_{j=1}^{m} w_j \log P\left(e^{i\tau_j}\right) \le \kappa \log \|Q\|_{L_{\infty}(|z|=1)} + \frac{1}{2\pi} \int_0^{2\pi} \log \left| P\left(e^{i\theta}\right) \right| d\theta. \quad \Box$$

#### Proof of Theorem 1.3

Note first that our choice of  $\tau_0, \tau_{m+1}$  give

$$\sum_{j=1}^{m} \frac{\tau_{j+1} - \tau_{j-1}}{2} = 2\pi.$$

It suffices to prove that for every  $a \in \mathbb{C}$ ,

$$\sum_{j=1}^{m} \frac{\tau_{j+1} - \tau_{j-1}}{2} \log |e^{i\tau_{j}} - a| \le \int_{0}^{2\pi} \log |e^{it} - a| dt + B\kappa^{-1}$$

$$= 2\pi \log^{+} |a| + B\kappa^{-1}. \tag{24}$$

For, we can integrate this against the measure  $d\nu(a)$  that appears in the representation of  $P \in \mathbb{P}_{\kappa}$ . Since

$$\log |e^{i\tau} - a| = \log |e^{i\tau} - \overline{a}^{-1}| + \log |a|$$

for  $\tau \in \mathbb{R}$  and |a| < 1, we can assume that  $|a| \ge 1$ . Moreover it is sufficient to prove (24) in the case  $|a| \ge 1 + \kappa^{-1}$ . Indeed the case  $|a| \in [1, 1 + \kappa^{-1}]$  follows easily from the case  $|a| = 1 + \kappa^{-1}$ , and the fact that the left-hand and right-hand sides in (24) increase as we increase |a|, while keeping arg (a) fixed. We may also assume that  $a \in [1 + \kappa^{-1}, \infty)$ , simply rotate the unit circle. To prove (24), we use the integral form of the error for the trapezoidal rule [6, p. 288, (4.3.16)]: if f'' exists and is integrable in  $[\alpha, \beta]$ ,

$$\int_{\alpha}^{\beta} f(t) dt - \frac{\beta - \alpha}{2} \left( f(\alpha) + f(\beta) \right) = \frac{1}{2} \int_{\alpha}^{\beta} f''(t) (\alpha - t) (\beta - t) dt.$$

From this we deduce that if f'' does not change sign on  $[\alpha, \beta]$ ,

$$\left| \int_{\alpha}^{\beta} f(t) dt - \frac{\beta - \alpha}{2} \left( f(\alpha) + f(\beta) \right) \right| \leq \frac{(\beta - \alpha)^2}{2} \left| f'(\beta) - f'(\alpha) \right|. \tag{25}$$

Moreover, if f'' changes sign at most twice, then

$$\left| \int_{\alpha}^{\beta} f(t) dt - \frac{\beta - \alpha}{2} \left( f(\alpha) + f(\beta) \right) \right| \le 3 \left( \beta - \alpha \right)^{2} \max_{t \in [\alpha, \beta]} \left| f'(t) \right|. \tag{26}$$

Now let

$$f(t) := \log \left| e^{it} - a \right|.$$

Then

$$f'(t) = \frac{a \sin t}{1 + a^2 - 2a \cos t}$$
 and  $f''(t) = \frac{-2a^2 + (1 + a^2) a \cos t}{(1 + a^2 - 2a \cos t)^2}$ .

Elementary calculus shows that |f'| achieves its maximum on  $[0, 2\pi]$  when  $\cos t = \frac{2a}{1+a^2}$ . Then  $|\sin t| = \frac{a^2-1}{a^2+1}$ . Hence, as  $a \ge 1 + \kappa^{-1}$ , and  $\kappa \ge 1$ ,

$$|f'(t)| \le (a - a^{-1})^{-1} \le \kappa, \qquad t \in \mathbb{R}.$$
 (27)

Also, since f'' has at most two zeros in the period, the total variation  $V_0^{2\pi}f'$  on  $[0, 2\pi]$  satisfies

$$V_0^{2\pi} f' \le 6 \max_{[0,2\pi]} |f'| \le 6\kappa.$$
 (28)

Now we apply (25) to (28) to the interval  $[\alpha, \beta] = [\tau_{j-1}, \tau_j]$  and add over j. We also use our conventions on  $\tau_{m+1}$  and  $\tau_m$ . Then

$$\left| \int_{0}^{2\pi} f(t) dt - \sum_{j=1}^{m} \frac{\tau_{j+1} - \tau_{j-1}}{2} f(\tau_{j}) \right|$$

$$= \left| \sum_{j=1}^{m} \left( \int_{\tau_{j-1}}^{\tau_{j}} f(t) dt - \frac{\tau_{j} - \tau_{j-1}}{2} \left[ f(\tau_{j-1}) + f(\tau_{j}) \right] \right) \right|$$

$$\leq \frac{1}{2} \delta^{2} V_{0}^{2\pi} f' + 6 \delta^{2} \kappa \leq 9 A^{2} \kappa^{-1}.$$

So we have (24) with  $B = 9A^2$ .

## Proof of Theorem 1.4

We begin by recalling two facts about zeros of Littlewood and unimodular polynomials:

- (I)  $\exists c > 0$  such that every unimodular polynomial of degree  $\leq n$  has at most  $c\sqrt{n}$  real zeros [4].
- (II)  $\exists c > 0$  such that every Littlewood polynomial of degree  $\leq n$  has at most  $c \log^2 n / \log \log n$  zeros at 1 [5].

Now suppose that 1 is a zero of  $f_p$  with multiplicity m = m(p). By (I) or (II),  $m = O(p^{1/2})$ . Let

$$h_m(z) = (z-1)^m$$

and

$$F_{p}(z) = f_{p}(z) / h_{m}(z).$$

Note that all coefficients of  $F_p$  are integers (as  $1/h_m(z)$  has Maclaurin series with integer coefficients), so  $F_p(1)$  is a non-zero integer. Also  $h_m$  is monic

and has all zeros on the unit circle, so its Mahler measure is 1. Then as Mahler measure is multiplicative,

$$M_0(f_p) = M_0(F_p) M_0(h_m) = M_0(F_p).$$

Let  $z_p = \exp\left(\frac{2\pi i}{p}\right)$ . The special case (3) of Theorem 1.2 gives

$$M_{0}(f_{p}) \geq \frac{1}{2} \left( |F_{p}(1)| \prod_{k=1}^{p-1} \left| F_{p}\left(z_{p}^{k}\right) \right| \right)^{1/p}$$

$$\geq \frac{1}{2} \left( 1 \cdot \prod_{k=1}^{p-1} \left| \frac{f_{p}\left(z_{p}^{k}\right)}{\left(z_{p}^{k}-1\right)^{m}} \right| \right)^{1/p}.$$

It is known [2, Section 5] that for  $1 \le k \le p-1$ ,

$$f_p\left(z_p^k\right) = \sqrt{\left(\frac{-1}{p}\right)p}.$$

Then

$$M_0(f_p) \ge \frac{1}{2} \left( \frac{\sqrt{p}^{p-1}}{p^m} \right)^{1/p} = \frac{1}{2} \sqrt{p} p^{-\left(\frac{1}{2} + m\right)/p}.$$

Since  $m = O(p^{1/2})$ , the bound (16) follows for large p.

# References

- [1] E. Beller and D.J. Newman, An Extremal Problem for the Geometric Mean of Polynomials, Proc. Amer. Math. Soc., 39(1973), 313-317.
- [2] P. Borwein, Computational Excursions in Analysis and Number Theory, Springer, New York, 2002.
- [3] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
- [4] P. Borwein, T. Erdélyi, On the Zeros of Polynomials with Restricted Coefficients, Illinois J. Math., 41(1997), 667-675.

- [5] D. Boyd, On a Problem of Byrnes Concerning Polynomials with Restricted Coefficients, Math. Comput., 66(1997), 1697-1703.
- [6] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd edition, Academic Press, San Diego, 1984.
- [7] T. Erdélyi, X. Li, and E.B. Saff, Remez and Nikolskii type inequalities for logarithmic potentials, SIAM J. Math. Anal. 25 (1994), 365-383.
- [8] L. Golinskii, D.S. Lubinsky, P. Nevai, Large Sieve Estimates on Arcs of a Circle, J. Number Theory, 91(2001), 206-229.
- [9] C.K. Kobindarajah, D.S. Lubinsky, Marcinkiewicz-Zygmund Inequalities for all Arcs of the Circle, to appear in "Advances in Constructive Approximation", Vanderbilt University Press.
- [10] J.E. Littlewood, The Real Zeros and Value Distributions of Real Trigonometric Polynomials, J. London Math. Soc., 41(1966), 336-342.
- [11] D.S. Lubinsky, Marcinkiewicz-Zygmund Inequalities: Methods and Results, Recent Progress in Inequalities (ed. G.V. Milovanovic et al.), Kluwer Academic Publishers, Dordrecht, 1998, pp. 213-240.
- [12] D.S. Lubinsky, A. Mate, P. Nevai, Quadrature Sums Involving pth Powers of Polynomials, SIAM J. Math. Anal., 18(1987), 531-544.
- [13] G. Mastroianni, M.G. Russo, Weighted Marcinkiewicz Inequalities and Boundedness of the Lagrange Operator, Mathematical Analysis and Applications (ed. T.M. Rassias), Hadronic Press, Palm Harbor, 1999, pp. 149-182.
- [14] H.L. Montgomery, The Analytic Principle of the Large Sieve, Bull. Amer. Math. Soc., 84(1978), 547-567.

- [15] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
- [16] L. Zhong and L.Y. Zhu, The Marcinkiewicz-Zygmund Inequality on a Simple Arc, J. Approx. Theory, 83(1995), 65-83.