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We study generalized Jacobi weight functions in terms of their {generalized)
degree. We obtain sharp lower and upper bounds for the corresponding Christoffe!
functions, and for the distance of the consecutive zeros of the corresponding
orthogonal polynomials. The novelty of our results is that our constants depend
only on the degree of the weight function but not on the weight itself. T 1992
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1. INTRODUCTION AND NOTATION

The sets of ali real-valued algebraic polynomials and trigonometric
polynomials of degree at most » will be denoted by /7, and H,, respec-
tively. The function

k
wiz)=lo| [ lz—z,|", w@#0,zeC,zeC, >0, (L.1)

j=1

will be called a generalized Jacobi weight function of degree

N=Yr, (1.2)

with positive exponents. The set of all generalized Jacobi weight functions
of degree at most N with positive exponents will be denoted by |GCAP| .
This notation comes from the fact that the function w defined by (1.1} is
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the modulus of a generalized complex algebraic polynomial of degree N
defined by (1.2). In the trigonometric case, the function

r

, w#0,z,eC,zeC,r;>0, (1.3)

z—z;

sin

w(z)=lol |]

will be called a generalized trigonometric Jacobi weight function of degree

N= (1.4)

Fy

L

NS

DN =

J

with positive exponents. The set of all generalized trigonometric Jacobi
weight functions of degree at most N with positive exponents will be
denoted by |[GCTP|,. The function w defined by (1.3) is the modulus of a
generalized complex trigonometric polynomial of degree N defined by (1.4)
which explains our notation.

Let o be a nonnegative, finite Borel measure in [—1,1]. Given
0 < p < oo, we define the Christoffel function A,{(«) for n=1, 2, .., by

ot 1))F
Ao, p,2)= do(t), zeC, 15
oo p )= min [ (SECda), e (13)
and the generalized Christoffel function A*(«) for real n > 1 by
L)
* ) —
At P, 2) fe|c;1cr}xP|,,A1 ﬂf"’(z)da([)’ zeC. (16)

For M >0, we also introduce the functions
Ap(x)=max{M ' /1 —x* M}, -1<x<1, (1.7)

and

Wi (x)= w(t) dt, —1<x<1, (1.8)

'flt“)d < Amlx)
where we assume that w(¢) is defined if {z — x| < 4,,(x).
For g(=>0)e L'(0, 2n), the Szegd function D(g) is defined by

1+ze ¥

]_ 2n
D(g,z):exp(z;tfo log g(@)l_ze_iedﬂ), lZl<l.  (19)

The boundary value D(g, e”) can be defined as the non-tangential limit of
D(g, z); this exists for amost every real 1. It is important to note that

D(g)e H*(|z| < 1), and |D(g, e")|?>=|g()| holds for almost every real r.
Other properties of the Szegé function may be found in, e.g., [6, Chap. V1.
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In Sections 2 and 3, we give sharp lower and upper bounds for Christoffel
functions and for generalized Christoffel functions in [ —1, 1] corre-
sponding to generalized Jacobi weight functions. These results are proved
in Sections 6 and 7. In Section 4, we give sharp lower and upper bounds {or
the distance of consecutive zeros of orthogonal polynomials corresponding
to generalized Jacobi weight functions with positive exponents. These
results are proved in Section 8. The properties of generalized Jacobi weight
functions with positive exponents were the subject of study in a series of
recent papers [ 1-5]. A number of these results which are used in this paper
are summarized in Section 5.

The novelty of the results in the present paper is that the constants
depend only on the degree of the weight function but not on the weight
itself. For fixed generalized Jacobi weights, all our principal results have
already been known (see [9, Theorem 6.3.28, p. 120, and Theorem 9.22,
p. 166] for the results corresponding to Theorems 2.1, 2.2, 3.1, and 4.1,
whereas the “fixed” version of Theorem 3.2 was essentiaily proved in [7.
formula (13), p. 150]).

2. UpPER BOUNDS FOR 4,(a, p, X) FOR —1<x<1

THEOREM 2.1. Given O<p<a, 0<I'<o, and n=1,2,.. let
M=1+4 p(n~1)(I'+ p+1). Then there exists an absolute constant ¢, >0
such that

/1,[((1, pax)<6{+p+1"1'"tl("“)> _stgh
for every measure o such that doo=w dt with a we |GCAP| .

THEOREM 2.2. Let O<p<oo, 0<I<ox, and n=1,2,... Ler
w=wT/w'B where w'D and w'® belong to |\GCAP| ., and let du=w dt.
Let d denote the number of different zeros of w'®. Then there exists an
absolute constant ¢, >0 such that

Ao, p,x)<ch PP e (x), —1<x<1,
with

YR Al il
2I'+4+p

whenever M = 1, and

l:‘(as P, X)SC£'+1¥P"M(X), _1<X<1'
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with
pn—-1)—-T
2I'+4

whenever M > 0.

3. Lower BounDs FOR A%(a, p, x) FOR —1<x<

Since AX*(a, p) < 4,(x, p), we will give lower bounds for 4*(a, p) instead
of A,(a, p). Our first theorem deals with the case do(z)=w(z) dt, where
we [{GCAP|,, and the second one gives a lower bound in a more general
case, when the weight function w satisfies the Szegd condition of
logarithmic integrability.

THEOREM 3.1. Given O<p<ow, 0<I'<w, and l<n<ow, let
M=1+4pn—1V)/(I'+ p+1). Then there exists an absolute constant ¢, >0
such that

L+p+1

l:(a’ p,X)ZC:;, WA,{(X), —lgxgla

Jor every measure o such that du=w dt with we |GCAP| .

THEOREM 3.2. Let w be a nonnegative, integrable weight function in
[~1,1] such that log(w(cos-))eL}(~mn,n). Let 0<p<oo, and let
du=wdt. Then there exists an absolute constant ¢, >0 such that

/1:‘(&, p, x)>c4 Ap(n~1)+1(x)lD(w(cos ')’ rei@)‘2’ —lsxg 15

where r = (p(n— 1)+ 1)/(p(n—1)+3), x=cos 8, and D(g) is the Szegd
Sfunction defined by (1.9).

4. ZEROS OF ORTHOGONAL POLYNOMIALS CORRESPONDING TO
GENERALIZED JACOBI WEIGHTS WITH POSITIVE EXPONENTS

We will use the standard notations. Let o be a nonnegative, finite Borel
measure with supp(a)c [—1, 1], and let {p,(a)}2 o denote the corre-
sponding orthonormal polynomials. In addition, {x,,(a)}7_, denote the
zeros of p,(«) in decreasing order, x,,=1, x,,,,= —1, and x;,=cos 8,
for j=1, 2, .., n. The main goal of this paper is to establish sharp lower
and upper bounds for the distance of consecutive zeros of orthogonal poly-

nomials associated with generalized Jacobi weight functions with positive
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exponents. The novelty of these estimates lies in the fact that our constants
depend only on the degree of the weight function.

THEOREM 4.1. Let 0<I'<oo and let dx=w dt, where we |GCAP| .
Then there exist two absolute constants ¢s >0 and cg> 0 such that the zeros
of the corresponding orthogonal polynomials satisfy

CF—H
ej,n - 9j~ i,n < 5_’ ]= 17 27 oy L (4};
n
and
Cl"+1
0.,~0,_1,>——, j=23,..m (4.2)
n
forn=1,2,...

We believe that (4.2) actually holds for j=1 and j=n+1 as well, but,
alas, our method does not seem to work in these cases. The latter wouid
generalize [8, Theorem 3, p. 367; 9, Theorem 9.22, p. 166].

5. AUXILIARY RESULTS

The extremal properties of generalized Jacobi weight functions with
positive exponents were studied in a number of recent papers. In this
section we list those theorems which will be used to prove our new results
in Sections 2-4. We will use a pointwise Remez-type inequality for which
we introduce the class

iGCAP|y(s)={fe|GCAP|y:m({xe[ -1, 1]: f(x)<1})=22—5s},

O<s<2,

where m(A) denotes the Lebesgue measure of a measurable set 4 < R. The
following theorem was proved in [1, Theorem 4].

THEOREM 5.1. There exists an absolute constant ¢, >0 such that, given
0K N< oo and 0 <s <1, the inequality

f(x)<exp (c7Nmin {—\/TS;—Z-, J;}), —1<x<],
- X

holds for every f e |GCAP|(s).



116 ERDELYI AND NEVAI

We will need Nikol'skii-type inequalities for the classes |GCAP|, and
|IGCTP|, as well (see Section1 for the notations). For 0< N< oo and
fe|GCAP|,y or for n=0,1,2,.., and fell,, let

1 l/p
o= max 1700 and 1fl,=(] wrd)’ 0<p<c,

whereas for 0S N< o and fe|GCTP|, or for n=0,1,2, .., and feH,,
let

n 1/p
I71lo= max 1@ and 1f1,=({" 10N ) . 0<p<an
The following two inequalities were proved in [5, Theorems 5 and 6].

THEOREM 5.2. Given 0 < N < o0, there exists an absolute constant ¢z>0
such that

11, <Les(1+gN)1**=27]ifll,,  O<g<p<oo,

holds for every f € |\GCAP| . For instance, cy = e*(2n)~" is a suitable choice.

THEOREM 5.3. Given Q0 < N < o, there exists an absolute constant ¢4 >0
such that

AN, < Leo(L+gN)1Y 2| f]l,,  O<g<p<oo,

holds for every fe |GCTP| . For instance, cg=e(dn) ™" is a suitable choice.

If fe{GCAP|y, where O<N<oo, then g(6)=|f(cosf)sinf|e
|GCTP| y ., and, thus, applying Theorem 5.3 to the function g with g=1
and p = o0, we obtain

N+2
1 =x?

for every fe |GCAP|,. This, together with Theorem 5.2, gives

F(x) < 2¢6 filf(t)dt, —1<x<l,

THEOREM 5.4. Given 0 < N < o0, there exists an absolute constani ¢ >0
such that

S <enldua) ™ [ fd  —1<xsy,

holds for every fe|GCAP|,. For instance, c,p=e*(2n)"! is a suitable
choice.
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Using a linear transformation, we easily deduce from Theorem 5.2 that

W (x)<24,,(x) max  w(1)<2c3(F+1)* wy(x), —1<xg,
It —xl < dm{x)
{5.1)

holds for every we |GCAP| , where w,, is defined by (1.8).

To prove (4.2) in Theorem 4.1, we will need weighted Markov and
Bernstein type inequalities. The following results are particular cases of [4,
Theorems | and 3].

THEOREM 5.5. Given n=0, 1, ..., and 0 < ' < o0, there exists an absolute
constant ¢, >0 such that

1wl <cpln+I)|Qwl .

holds for every algebraic polynomial Qe I1, and weight we |GCAP| .

THEOREM 5.6. Given n=0, 1, ..., and 0 < I' < 20, there exists an absoluie
constant ¢, >0 such that

VI Q) wx) M+ Din+ DIQwll..,  —I<x<l,

holds for every Qe ll, and we |GCAP| .

With the notation of (1.7), and combining Theorems 5.5 and 5.6, we
obtain the inequality

4@ x) wix) S cs(T+1)P2[0wl,,  —1<x<1l,  {52)

for every Qell, and we|GCAP|,, where n=1,2,.,0<I'< o, and
¢,;3>0 is an absolute constant.

We think that the factor (F'+1) in Theorems 5.6 can perhaps be
dropped.

6. PROOF OF THEOREMS 2.1 aND 2.2

To prove Theorem 2.1 we need the following

LeMMA 6.1, Given a>0, beR, and 0< I < oo, the inequality

w(y)szra‘riy~b|rb max  w(t), yeR\(b—a, b+a),

—a<r<b+a

holds for every we |GCAP| .
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Proof of Lemma 6.1. Without loss of generality we may assume that
a=1 and b=0; the general case follows from this case by a linear sub-
stitution. Let T,, denote the Chebyshev polynomial of degree m, and
let ~1<xy,<X,,<--<X,,<l denote the zeros of T,, where
Xpm= —Xpm_jm for j=1,2,.,m Given m=1,2,.., a well-known
inequality of Bernstein yields

0O _ITn(2)l _
1ol STl

PA ﬂ (y—x,)<2"y|",  yeR\(—~1,1),
(6.1)

for every Qe Il,,. Now let

k
w(z)=o| [] |1z—2,|"€|GCAP| . (6.2)

j=

If each expoment r; is a positive rational number, say, r;=g¢,/q for
j=1,2,.., k, with some positive integers g; and g, then applying (6.1) to
the polynomial

&
0(z)=0* [] (z—2)¥(z—Z)% € I,
j=1

and taking the 2gth root of its modulus, we obtain the inequality in the
lemma. The case of positive real exponents r; in (6.2) can be reduced to
that of rational exponents by approximation. |

Proof of Theorem 2.1. Let v denote the Chebyshev weight, that is,
v(x)=(1/m)(1 —x*)""72 and let

sin{(m+1)6)

T, (x)=cos(mf) and U, (x)= Py

, —1<x<1,x=cosb,

be the Chebyshev polynomials of first and second kinds, respectively. We
define the corresponding reproducing kernel function K,(v) by

Koloox, =142 Y T,(x) T,(0). (63)
j=1

j=

It is easy to see that

2m+ 1+ U,,,(x)

K, (v, x,x)= 5 s
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and, thus, by a straightforward calculation,
clm+ D<K (0, x, x)<2m+ 1, —ig<x<t, {64)
where ¢, >0 is an absolute constant. Therefore,

2m+1 2

K”Z(U7 x’ t) < <—
Tepm+l) ey

Klﬂ( U’ x) 'x)

I
N

X, t< L (6.5}

In addition, we also have!

[T JR—
. M=x2t J2 42
|Knlv, %, 1)| < 15 min {m, E ;]/ L

4

1€ t<,m=1,2,.., (66

with an absolute constant ¢,5>0. To show (6.6), we may assume without
loss of generality that 0 < x< 1, that is, x=cosy with 0<y<n/2. By the
Christoffel-Darboux formula,

T (x) " — l( ) m(t) T l(x)‘

= 7Y
Koo, % 1) = — (67)
First, by (6.3),
I1K,,(v, x, 1) <2m+ 1, -1l (6.8)
Second, if = cos § with 0 < 0 < 2n/3, then
| :(Y m— l(t) Tm(t) T -l(x)‘
=T (N T () = Ty - (X)) = Ty (XN T (1) = T (1))
< [cos(my) — cos((m — 1)y)| + |cos(mf) — cos({m — 1)8)]
< 21sin{(2m— 1)y/2) sin(y/2)| + 2 |sin((2m — 1)6/2) sin(6/2)]
l sin y I sin 6 5
<212 1—1 6.9
lcos(y/Z) cos(6/2) (V1-=x +\/ - (69)
Thus, inequality (6.6) follows from (6.8) and (6.9).
Now, given 0<p<w, 0<I'< oo, and n=1, 2, ..., let’
s=[2r+4]+1 and mzt’?;l]. (6.10)
p 4

! See [9, Lemma 6.3.8, p. 108 ] where the constant | was accidentally left out.
> Here [ -] denotes the integer part.
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Given xe [ —1, 1], define the polynomial Q=Q, eI, _, by

K, (v, x, t))s

K (0%, x) (6.11)

Q(t)=(

If m=0, then p(n—1)<2I'+4 and Q(f)=1, so we can obtain the
inequality in Theorem 2.1 immediately as an application of (5.1) and
Lemma 6.1. More specifically,

L

A, p, x)sj 1 w(f)dt <2 max 1w(z‘)

- ~l<1<

4 !
) ma i)
4

(
(5

[

[

) 457(6) AT+ 1) wae ()

o 2
1+ M)] cs(L+ 1) wy(x)

( I'+p+1
( 2r+4

2r+2
+1’+p+1>] Rl + 1Y@ (x) i way (x),

where ¢,,> 0 is an absolute constant.

Thus, in what follows, we may assume m>1. We may also assume
without loss of generality that 0 <x<1. For the sake of brevity, we
introduce the intervals

L(x)=[x—4,(x), x+4,x)], —1<x<Ll
It follows from (6.5), (6.10), and (6.11) that the inequality

fl 1O(0)]? w(t) dt < +4+74,,(x) max w(t) (6.12)

m(x)~[—1,1] te Iy(x)

holds with an absolute constant ¢,;>0. By Lemma 6.1,

2}t—xl]r

wie) S[ %)

max) w(y), t¢ 1, (x), (6.13)

v € Im(x

for every we |GCAP|,.
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Using (6.11), (6.10), (6.6), (6.4), and eclementary estimates, it can be
shown that the inequalities

\//I_XZ

m|x—t| )

FES

r+2
07 < e ( ) L rel2x—1, 1T L (x) (6.1

QNP <cig P H7 (my/1— 1) 724, te[—0.5 2x — I N {x), x=05,

s
(6.15

joy
e

and
QNP <l rm=2"% x1e[—1,1], [1—x| 205, (6.16)

hold with some absolute constant ¢ >0, and we can assume that ¢g = 4.
For instance, to prove (6.14), we notice that sp>7I+2, and
1+ (J/1—x"+/1—1*)|x—1t]"" on the right-hand side of (6.6) can
be estimated by 5./1 —x?{x —¢ ' for 1€ [2x — 1, I]\],(x), whereas
for {6.15), we use l—x<1—r and O0<x—r<l—<2{x—1¢) for
te[—05,2x—17 and x=0.5.

Using (6.13) and (6.14) we obtain

|Q()|P w(t) dt
1—.’(2 I ,
) £2(x)

r. 2r+4 N
L2lepg A e
md,(x)

Y2x— 1.1\ dp(x)

x max w(y) |t—x|"2dt

v € fm(x) J[z,v — LIV Imlx)

e rA (x) max w(y). (6.17}

Y€ ln(x)

In addition, by (6.13), (6.15), and by 0<x—1<1—1,

1Q()]” w(t) dt

JA[ —0.5.2x — t P\ dm(x)

L2724+ Py =2 =4 max w(y)

V€ Lu(x) r
. 1—1¢2 e -
Xj |:( )] (l_t_r)-172a!t
[-0.5,2x— 11vInix) | Am(X)

e 4 Pm 4 max w(y)f
y & lpix) [ ~0.52x— 13 2l x)

(1—1*)"2adr
Sefy P Pm Tt 4, (x) max w(y)<celf TP 4, (x) max w(y)
Ve In(x) ye in(x)

(6.18)
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for 0.5 < x < 1. Finally, from (6.13) and (6.16) we obtain

1Q(N)]* w(z) dt

'([“1, I [x—0.5,x+0.5]

<47 Pm~4(m? 4,,(x)) "7 max w(y)

ve fy(x)

Sttt P, (x) max w(y) (6.19)
.ye m X)
by a generous estimate, where we used the fact that |x—¢ <2 in (6.13).

Since Qell,_; and Q(x)=1, the extremal property (1.5) and the
inequalities (6.12) and (6.17)-(6.19) yield

1
L p. ) <[ QMNP w(e) dE <7+t A,(x) max w(y) (620)
—1 y € lylx
with an absolute constant ¢4 =>4. By (6.10),
pn—1) <m
2I'+4+p

pin—1)
Sar+4”

(6.21)

Therefore, Lemma 6.1, inequalities (6.21), the facts that m>1 and
M=1+4+p(n—1)/(I" + p+1), and inequality (5.1) imply

4,,(x) max w(p)<caet? " Ay (x) max w(y)<cit P wy(x)
>y €ln(x) yely(x)

with some appropriately chosen absolute constants ¢,,>0 and c,; >0,
which together with (6.20) yields Theorem 2.1. ||

Proof of Theorem 2.2. We will prove the appropriate upper bound for
i, only; the corresponding estimate for A} is analogous, and it requires
only minor modifications of the following proof. Let

d
wB(z)=|o| [ |z—2z|7e|GCAP|,,  z;%#z, if i#j. (622)

“j
i=t
Set?
r; k '+ pd
qj=[_l:|+1’ g=3 g<—P2 (6.23)
14 j=1 p
2I'+4 —1—
s=[ + ]+1, m=["———q]>1, (6.24)
p s
d
P()=lol [] (-—z)0e1T,, (6.25)

3 Here [ -] denotes the integer part.
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and
. d
P()=lol ] (-—2)%emn,  —1<x<1, (6.26)
J=1
where
i f i— X Z‘I‘A { R
z,-={2” f iz 23d,(x) (6.27)
Xx—d,(x), i lz—xl<34,0x).
Let
Km(v9x9') e
J={2—— P )ell,_,. 28}
o(-) (Km(v’x,x)) {)ell, (6.28}
Obviocusly,
|Q(x)| 7= 1P (x)[”. (6.29)

Introducing the sets
=[x—4,(x),x+4,(x)]n[—1,1] and J=[—-1L 1N,
(6.30)

replacing w by W=|P_|? we|GCAP| , pa 10 the proof of Theorem 2.1,
and using (6.22)-(6.30) and (5.1), we obtain

[ townewnai=[ |ZEEEDI B o wieyds

» K, (v, x, x)

K—Lﬂ—)l \P())? w(t) dt

r d
<4T+r

K.q(v, x, x

v

<41 +pdc§2+pd+p+l

f PP w(n)d:  (6.31)
|t— x| < dpix)

with an absolute constant c¢,, >0 chosen in such a way that
el PP (M 4 pd +1)2 < ehy P9+ 7+ 1 Here we used that [P (1)<
47+ 74| p(1)| for every teJ, which follows from (6.22)—(6.27). Observe that
(6.22)~(6.27) and (6.30) imply |P(1)|?<27+74|P (x)|? for every teJ,.
This, together with (6.31), yields

f |0(6)] 7 w(t) di < 8T+ Pkt pd+ P+ 1| B (x))7 J w(7) dt

[t = x| € dpix)

et rr+ B e | witydt  (6.32)
I — x| < dmlx)

with an absolute constant ¢,;>0. In addition, (6.22)-(6.27) and (6.30}



124 ERDELYI AND NEVAI

imply | P (£)|” <3 74P (x)|” for every teJ,, so that by (6.28), (6.23),
(6.24), and (6.5)

[, 1017wy dr<e3= 7 [ 1PN wio) dr

Ji

Sc%{*“p.’yr“’dlf’x(x)[”J wi(z) dt
J1

<o B [ wd, (633)
1

where ¢,,>0 and c,;>0 are absolute constants. Therefore, the extremal
property (1.5) and formulas (6.32), (6.33), (6.30), (6.28), (6.23), and (6.24)
yield

i, XV IO QU w(0) di < et 748w, )

IF+pd+p+1
ey TP T I (x),

where ¢, >0 is an absolute constant and M= (p(n—1—d)—~TI)/2+4+p),
and, hence, the theorem has completely been proved. |

7. PROOF OF THEOREMS 3.1 AND 3.2

Proof of Theorem 3.1. let xe[—1,1] be fixed, N=T + p(n—1), and
M=1+pn—1)/(I+p+1), and let’

IAL”(JC)=[X—YIAM(X),X‘F?’AIW(X)], 0<’1<1
Let the weight we |[GCAP| - be of the form

k k
wiz)=lo| [11z—2z1",  w#0,zeC,2¢C,r;>0, Y r,<I. (7.1)
j=1 j=1

In what follows, A4,/(x) denotes the open disk in the complex plane
centered at x with radius 0.125- 4,,(x). Define Z; and w by

Z:{Zj’ if z;eC\A(x) (7.2)
7 {x—0.125 -sgn(x) 4,,(x), if z;€d,/(x), )
and
k
w(-)=|w| [] |-—%)|7e|GCAP|, (7.3)
i=1

*See formula (1.7) for the definition of 4,,(x).
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respectively. In what follows, we assume that Qe |GCAP]|,_,. Observe
that Qe|GCAP|,_, and we|GCAP|, imply [Q|?%e|GCAP|, with
N=I4+pn—1), and, therefore, using Theorem 5.1 with O<s=
A lxy<l, where M=1+4+ p(n—1)/(I'+ p+1), we obtain

m({tre [— 1L 1]:1Q(0)|*#(2) = exp(—cs(L+ p+ 1)) |Q(x)| 7 (x)})

= A (x)
Hence, there is a set
Ec[—-1LIN[x—025-4,,(x), x+025-4,,(x}] (7.4;
such that
A (X)L 2m(E) (7.5
and

O w(1) Z exp( — (I + p+ 1)) |Q(x)]? #¥(x), te k. (7.6)
Observe that (7.1), (7.2), (7.3), and (7.4) yield

w(x)=(2/3)" max  wit) (7.7)

1€ im0.06235(x)

and
w(t) =3 1(z), teE. (7.8}

From inequalities (7.5), (7.6), and (7.7) we obtain
2exp(c,(I"+ p+ 1))

A4 (x)

2[Q(x)]7w(x) > |Q(x)|7(2/3)"  max w(z).

L€ Inmgo62stx})

[ 10017 ) a

We can use this estimate combined with (7.8} and Lemma 6.1 to obtain the
existence of an absolute constant c,; > 0 such that
1

1Q(0)]? w(r) dt

—1

ey

> [ 10w de=37 [ 10017 ) dr

Je
>3 Texp(—c,(F+ 1) 27! 4, (0)(2/3)71Q(x)|” _max w(1)

€ Iar,00625(x)

25 P A, ()07 max  w() =l PO P wa(x).

|t — x| < dar(x)

(7.9)

640/69 2-2



126 ERDELYI AND NEVAI

Since (7.9) holds for every Q € |GCAP|,_,, Theorem 3.1 has completely
been proved in view of the extremal property (1.6) of the generalized
Christoffel function 4*. {

Proof of Theorem 3.2. In what follows we will assume that 0 < p< o
and xe [ —1, 1]. We start with the inequality

2 4 . ;
P78 < EEEE [T b ey () a,
(7.10)
L o
!“l_17 r—pn+2:

which holds for every ge H*(|z|<1) and for every complex algebraic
polynomial P, of degree at most n=1,2,.. (cf. [7, Theorem 6, p. 148]).
A simple calculation shows that for every real trigonometric polynomial
R, of degree at most n there is an algebraic polynomial P,, € IT,, such
that R%(0) = | P,,(e")|. Therefore, (7.10) yields

IR, )17 glre)*< EEUE (" 1R (o)1 15t o,
(7.11)
__m
veR, "Tmy2

holds for every real trigonometric polynomial R, and for every
ge H*(|z| €1). First, we extend (7.11) to every f e |GCTP|,, writing N in
place of n. To this end, first assume f can be written as

zZ—2Z

J
2

sin

r] k
, w#0,zeC,zeC, ¥ r;<2N,
j=1

=
with some rational exponents r;> 0. If r,= g;/¢ with some positive integers

g, and g for 1< j<k, then, applying (7.11) with p/(2g) instead of p to the
trigonometric polynomial R, of degree at most 2gN, where

& —Z. — Z\%
R,(z)=|o¥ [] (sinz % sin = zf) :
R 2 2

we obtain

(14 pN)e

LS 1glre)I? <

[” 1o 1gey> ao,

yER, r= PN ,
pN+2

(7.12)
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for every fe|GCTP|y and for every ge H*(|z] <1). Now let 1 <n< oo,
O0<p<oo, and let Qe |GCAP|,_,. Applying (7.12) with f, where f(0)=
[Q(cos 0)] |sin )P e |GCTP|,_,41,, and choosing g=D(w(cos-}}e
H?(|z] < 1), we obtain

{O(cos 7)]? [sin )| | D(w(cos 8), re”)|?

S%—Q)ﬁf |Q,(cos 0)17 [sin 6] | D(w(cos- ), &®)|* db,
(7.13)
pn—1)+1

Tpn—1)+3

for every Qe|GCAP|,_,. Since |D(w(cos-), e?)|> =w{cos 8) for almost
every real 6, we can use the change of variables t=cos § and x=cos 1 to
obtain from (7.13) the inequality

10()I” /1T—%

< |D(w(cos-), re®)| ~2 MJ

107 w(t) dt,

4n _
_pn—=1)+1
T pn—1)+3

for every Q € [GCAP|,_,. To finish the proof, we refer to our Schur-type
inequality [5, Theorem 7] which states that given 0<N<oo and
O<p<oo,

max [Q(N]7<e(l+pN) max (/T=2[Q(1)(")

for every Qe|GCAP|,. Now Theorem 3.2 follows from the last two
inequalities, and from the definition of 4,,(x) in {1.7). §

8. PROOF OF THEOREM 4.1

Proof of Theorem 4.1. Given n=1,2,. and 0<I <o, let
M=1+2(n—-1)/(I" +3). First we prove (4.1). It is sufficient to prove the
existence of a positive constant c,g such that
xm~l,n mn\C28 (A |/I( m— 1n)+A ( mn)) mzlv 27 “"n+1’ (81"

since (8.1) implies (4.1) by a straightforward calculation (cf. {1.7)). Assume
that there is an integer m such that 1 <m<n+1 and

xm~ 1,n— xm.n > A;’li(xm— l,n) + AM'(xm.n)f (82)
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since, otherwise, we already have the desired upper bound for this
particular value of m. We introduce the Christoffel numbers

D=0 2, Xpy)y m=0,1,n+ L. (8.3)

m,n

By the Markov-Stieltjes inequality [6, formula (5.4), p. 297] we have

| " dt <Ay gt s m=1,2, 1. (8.4)

Xm.n

Since w e |GCAP| -, Theorem 2.1 yields

w(t) dt

Ir+3., — +3
Am,ngcl n’M(xm,n)"‘ Cl _!‘
1t — Xm,nl < Ap(Xm,n)

<34 (X n) max w(t), m=0,1,.,n+1 (8.5)

[t = Xm,pl < Apt(Xm.n)

Observe that assumption (8.2) and Lemma 6.1 imply

max wt)<6/ max w(1), m=12,..n+1, (8.6)
[t — Xl S Ap{Xnn) XmnS S Xp—1la
and
max w(t)<6”  max  w(1), m=12.,n+1 (87)
£ — xm— 10l < Ar{Xm—1.0) Xmn SIS Xm-1n

Now inequalities (8.4)—(8.7) and Theorem 5.2 yield

(xm— 1,n xm,u) max W(t)

X SIS Xm—Ln

<2+ [ w0 dr <2 + D2t )

Xm,n

szc%([‘_‘_ 1)2 C{+36F(Aﬁl(xnz~l,n)+AM(xm, n)) max W(l)’

mn SIS Xm—1,n

form=1,2,..,n+1, and, thus, (8.1) follows. Hence, (4.1) has been proved.
The proof of (4.2) is somewhat more complicated; it is based on a method

of Erdds and Turan (cf. 6, pp. 111-112; 8, p. 369; 9, pp. 164-1657). Given

n=1,2,.,and 0<I'< oo, let M=1+2(n~—1)/(I" +3), and let

IM,n(x)=[x__rldlw(x):x_l'r’AM(x)]’ 0<’1<1
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Let {/, .}n_ denote the fundamental polynomials of Lagrange interpoia-
tion deﬁned by

A= ) P and LpnlX ) =0, im=1,2,...n, (8.8)

jon

where 6, ,, is the Kronecker-delta symbol. The identity

1 =3
Ao, 2, 1)

Z jn(t) (89)

i=1 A

where 1;, is given by (8.3), is well known (cf. [6, formula (4.7), p. 251}
From (8.9), Theorems 2.1 and 3.1, Lemma 6.1, and (5.1} we obtain

([)_12 n(t) i l] n - lrn.n
Bt <
m " ’J‘m.n m " ",n m ! /{ 1(0(, 21 1)
3 Aa(Xp ) MAX) o 1oy w(y)
< gg.;.g. m,n | ¥ = Ximnl < AppXmn) < (.“;0+ 1’ re ” LA L 1’

Ay (1) MaX |y _ gy < gy W{ ¥)
{8.10)

with some appropriate absolute constants ¢,, >0 and c;,>0. Let A4, (x}
denote the open disk centered at x with radius 0.5-4,(x). Given

k k
wi)=T]1-—zl" Y rn<T, (8.11)
i=1 j=1
we define
z if z,eC\A4,0 .
5= ! 7€ EAA X ) {8.12)
/ xm,nﬂo's 'sgn(xm,n) AM(xm,n), i Zje/{n(xnz,n)#
and
k
wC)=111-—2I" (8.13)

We will estimate

To this end we introduce the sets

Ji=Iy (X} [—1, 1] and Joy=[-1L1NJ,. (8.14)
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It follows from (8.10)

flfn,n(t)wu)dtscgo“AM(xm,,,) max ()
Ji

16~ Xin,nl < Aa1 (Xm,n)

<ciot da(x,,,) -8 max Ww(t). (8.15)
{t— xmn <0.25 - Apg(xpm.n)

Observe that (8.11)—(8.14) imply w(z) <37w(¢) for te J, and w(1) <37W(s)
for tel,q,5(x,.,) Therefore, by the Gauss—Jacobi quadrature formula
(cf. [6, formula (3.9), p.23]), Theorem 2.1 and Lemma 6.1 yield

| 10wy de

1
<3Fj 12, (1) w(t) dt<3fj 12, () w(t) dt=3"1,,,,
J 1

=3rj‘n(a’ 2’ Xm n)<3rcf+3 AM(xm n) max VV([)
! ’ [t — Xm,nl < Apg(Xm,n)

<3rc{+3A}ll(xm,n)'8r max W(t)
12— Xyl <0.25 - Apr(xpm,n)

<37l 3 4y (xp0) - 87237 max w(t). (8.16)

|t — Xim,nl <025 - Ay (xin,n)

Summarizing (8.15) and (8.16), we get

1
[ B0 di<ch Ay () max w(1)  (8.17)
-1

12— Xm,nl €0.25 - 431 (Xm,n)

with an appropriate absolute constant c3, >0. When proving (4.2), we can
assume without loss of generality that x,, ,<0. We may also assume that
Xm_1..<0.25; otherwise, there is nothing to prove. Now Theorem 5.4,
(8.17), and the inequalities x,, , <0 and x,,_, ,<0.25 imply

1
L) W) S C1oldan r(0) ™' | 120) (0

<elLti(4 x))" 4, (x max Wit
~=t32 ( 2n+F( )) M( m,n) 1= Xl <025 - Apg(Xmom) ( )
<citt max W(t),

le— xm,nl < 0.25- Apy(Xm, n)

1% S 1% nl +0.5- (1= [x,,,), (8.18)
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[hive

with appropriate absolute constants c;, >0 and ¢,; > 0. Assume that

Xt = Xmn $0.25 -4 4,(x,, ), {8.19}

since, otherwise, we already have the desired lower bound for this
particular value of m. In view of (8.11)—(8.13) and (8.19), we have

‘~( mn) (1 S)FﬁV(é) VCE[V”I” m~1;‘z] (820)

and

max W) < (1.5)7 W(x,, ). (8.21)

|t — Xm,al < 0.25 - Ay (X, p)

Finally, using (8.8), the Mean Value Theorem, inequality (5.2) trans-
formed linearly to the interval

[—y’ }'] = [_- lxm,nl —0.5- (1 - ]xm,nl)’ !xm,n! + 0.5- (1 - ,xm,nl )]9

the assumptions x,,, <0 and x,,_, ,<0.25, and inequalities (8.18), (8.20),
and (8.21), we can find a point £e(x,, ,, X,,_ ) such that
By = e X = 1.0) = L g (X )] ()

= (% 10— X | (L) (€) WXy )]

S Xme 10— Xm ) (15) 7101 5,) (E) P(E)

SO =Xm) Cal L+ 12y 171 (Ey) max w(x)

|t < |Xpyal + 0.5 - (1 — e nl}

/A

(xm—-l,n_xm,n) C§5+1 A_ ( mn) Cr+l max W(”)
11— Xmal 025 - Ap{Xm,n)

S e 10— Xomn) €367 A3 (6 ) (15) T H(x,5,)

with appropriate absolute constants c¢3, >0, ¢55>0, and ¢;3> 0, and this,
together with (1.7), gives the lower bound in (4.2). Thus, the theorem has
completely been proved. |}

REFERENCES

1. T. ErDELYI, Remez-type inequalities on the size of generalized polynomials, J. Lonrdor
Math. Soc., to appear.

2. T. ErRpELYI, Markov and Bernstein type inequalities for generalized non-negative polyno-
mials, Canad. J. Math. 43 (1991), 495-505.

3. T. ErpELvi, Nikol'skii-type inequalities for generalized polynomials and zeros of
orthogonal polynomials, J. Approx. Theory 66 (1991), 80-92.



132 ERDELYI AND NEVAI

4. T. ErDELYI, Weighted Markov and Bernstein type inequalities for generalized non-negative
polynomials, J. Approx. Theory 68 (1992), 283-305.

5. T. ErDELYI, A. MATE, AND P. NEvaAl, Inequalities for generalized non-negative polyno-
mials, Constr. Approx., to appear.

6. G. Freup, “Orthogonal Polynomials,” Pergamon, Oxford, 1971.

7. A. MATE AnND P. NEval, Berstein’s inequality in L? for 0< p<1 and (C, 1) bounds for
orthogonal polynomials, Ann. of Marh. 111 (1980), 145-154.

8. P. NEval, Mean convergence of Lagrange interpolation, I, J. Approx. Theory 18 (1976),
363-377.

9. P. Neval, “Orthogonal Polynomials,” Mem. Amer. Math. Soc., Vol. 213, Amer. Math. Soc.,
Providence, RI, 1979.



