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We study generalized Jacobi weight functions in terms of their (generalized) 
degree. We obtain sharp lower and upper bounds for the corresponding ChristoEefe’. 
functions, and for the distance of the consecutive zeros of the corresponding 
orthogonal polynomials. The novelty of our results is that our constants depend 
only on the degree of the weight function but not on the weight itse!f. !C 1992 
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1. INTRODUCTION ANO NOTATION 

The sets of all real-valued algebraic polynomials and trigonometric 
polynomials of degree at most n will be denoted by 17, and N,,, respec- 
tively. The function 

will be called a generalized Jacobi weight function of degree 

N=i:rj (1.2! 

j-l 

with positive exponents. The set of all generalized Jacobi weight functions 
of degree at most N with positive exponents will be denoted by ]GCAP/,$.. 
This notation comes from the fact that the function IV defined by (1.1) is 
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the modulus of a generalized complex algebraic polynomial of degree N 
defined by (1.2). In the trigonometric case, the function 

w#0,zjEc,ZEc,rj>o, (1.3) 

will be called a generalized trigonometric Jacobi weight function of degree 

N=;,i l-j 
J--L 

(1.4) 

with positive exponents. The set of all generalized trigonometric Jacobi 
weight functions of degree at most N with positive exponents will be 
denoted by IGCTP(,. The function w defined by (1.3) is the modulus of a 
generalized complex trigonometric polynomial of degree N defined by (1.4) 
which explains our notation. 

Let M be a nonnegative, finite Bore1 measure in [ - 1, 11. Given 
0 < p < a, we define the Christoffel function A,(R) for n = 1, 2, . . . . by 

&(a, p, 2) = min s 
l IP(r 

___ da(t), ZEC, 
Qcfl.-~ --I [Q(z),~ 

and the generalized Christoffel function A,*(M) for real rz 2 1 by 

For M > 0, we also introduce the functions 

d,(x)=max{M-L~i-X, Mp2}, -1dXb1, 

and 

MJ&)=~,~-~,<~ C.,w(t)dt, -l<x<l, 
. my 

where we assume that w(t) is defined if It -x[ <d,(x). 
For g( 20) E L’(O,27r), the SzegG function D(g) is defined by 

D(g,z)=exp - 
( 1 

4’, ;n log g(Q) 
l+ze-‘OdO 

> l-ze-ie ’ [z( < 1. 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

The boundary value D( g, e”) can be defined as the non-tangential limit of 
D( g, z); this exists for amost every real t. It is important to note that 
D(g) E H*((zl d l), and ID( g, ei’)(’ = Ig(t)l holds for almost every real t. 
Other properties of the Szegii function may be found in, e.g., [6, Chap. V]. 
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In Sections 2 and 3, we give sharp lower and upper bounds for Christoffei 
functions and for generalized Christoffel functions in [ - 1, l] corre- 
sponding to generalized Jacobi weight functions. These results are proved 
in Sections 6 and ‘7. In Section 4, we give sharp iower and upper bounds for 
the distance of consecutive zeros of orthogonal polynomials corresponding 
to generalized Jacobi weight functions with positive exponents. These 
results are proved in Section 8. The properties of generalized Jacobi weight 
functions with positive exponents were the subject of study in a series of 
recent papers [l-5]. A number of these results which are used in this paper 
are summarized in Section 5. 

The novelty of the results in the present paper is that the constants 
depend only on the degree of the weight function but not on the weight 
itself. For fixed generalized Jacobi weights, all our principal results have 
already been known (see [!9, Theorem 63.28, p. 120, and Theorem 9.22, 
p. 1661 for the results corresponding to Theorems 2.1, 2.2, 3.1, and 4.1, 
whereas the “fixed” version of Theorem 3.2 was essentially proved in [7, 
formula (13), p. t-50]). 

2. UPPER BOUNDS FOR &(c(, p,x) FOR -1 <xd 1 

THEOREM 2.1. Given 0 -=c p < x8, 0 < r< 8x, and n = I, 2, . ..~ let 
A4 = 1 + ~(n - 1 )/(r + p + 1). Then there exists an absolute constant cl > G 
such that 

THEOREM~.~. Let O<p<c;cj, O<~c~x, and n=1,2..... Ler 
CI* = dT),/~tJB1, where w(‘) and IV”’ belong to IGCAPI,, md Let dx = w dt. 
Let d denote the number of different zeros qf IV’~)~ The?1 there exi.m an 
absolute constmt c2 > 0 such that 
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M=P(n-w- 
2f+4 

whenever M > 0. 

3. LOWER BOUNDS FOR ~~(cI,~,x)FoR - 16x61 

Since ,I,T(a, p) d jl,(c~, p), we will give lower bounds for n,*(a, p) instead 
of &(a, p). Our first theorem deals with the case da(t) = w(t) dt, where 
w E (GCAP( r, and the second one gives a lower bound in a more general 
case, when the weight function w satisfies the SzegG condition of 
logarithmic integrability. 

THEOREM 3.1. Given O<p<co, O<r<co, and l<n<co, let 
M= 1 + p(n - l)/(r+ p + 1). Then there exists an absolute constant cg > 0 
such that 

for every measure ct such that da = w dt with w E jGCAP( r. 

THEOREM 3.2. Let w be a nonnegative, integrable weight function in 
[ -1, l] such that log(w(cos .))E L’( -71, n). Let O<p < co, and let 
dot = w dt. Then there exists an absolute constant cq > 0 such that 

%x6 P, x) a c4 dpQz- l~+l(x)I~(w(cos~), reie)12, -l<x<l, 

where r=(p(n-l)+l)/(p(n-1)+3), x=cosB, andD(g) is the Szego” 
function defined bJJ (1.9). 

4. ZEROS OF ORTHOGONAL POLYNOMIALS CORRESPONDING TO 
GENERALIZED JACOBI WEIGHTS WITH POSITIVE EXPONENTS 

We will use the standard notations. Let M. be a nonnegative, finite Bore1 
measure with supp(cr) c C-1, 11, and let (p,(a)},“=, denote the corre- 
sponding orthonormal polynomials. In addition, { .~~.,,(a)}.)= I denote the 
zeros of p,(a) in decreasing order, x~,~ = 1, x, + I+ = -1, and xi ,I = cos 0, ,r 
for j= 1, 2, . . . . n. The main goal of this paper is to establish sharp lower 
and upper bounds for the distance of consecutive zeros of orthogonal poly- 
nomials associated with generalized Jacobi weight functions with positive 
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exponents. The novelty of these estimates lies in the fact that our constants 
depend only on the degree of the weight function. 

THEOREM 4.1. Let 06 r< CC and let da= w dt, where WE /GCAPI,, 
Then there exist two absolute constants c5 > 0 and c6 > 0 such that the zeros 
of the corresponding orthogonal po&omials satisfy 

lrt1 

@j,f, - 6j- l,n < c5 n ’ 
j = 1, 2, . ..) 72 + I, 

and 

l-+1 

8j.t~ - 6j- l,n > cg 
n ’ 

j= 2, 3, . . . . n, 

(4.1) 

(4.2) 

for n = i,2, . . . . 

We believe that (4.2) actually holds for j = 1 and j = n + 1 as well, but, 
alas, our method does not seem to work in these cases. The latter would 
generalize [S, Theorem 3, p. 367; 9, Theorem 9.22, p. 1661. 

5. AUXILIARY RESULTS 

The extremal properties of generalized Jacobi weight functions with 
positive exponents were studied in a number of recent papers. In this 
section we list those theorems which will be used to prove our new results 
in Sections 24. We will use a pointwise Remez-type inequality for which 
we introduce the class 

(GCAP(,(s)={f~JGCAPI,:m({x~[-1, l]:f(x)Q1))>2-sj, 

o<s<2, 

where m(A) denotes the Lebesgue measure of a measurable set A c R. The 
following theorem was proved in [l, Theorem 43. 

THEOREM 5.1. There exists an absolute constant c7 > 0 such that, given 
0 < N < arc, and 0 < s < 1, the inequality 

f(x)Gexp (c,Nmin {e, ,/i}), -l<x<l, 

holds for every f E IGCAP/ ,,,(s). 



116 ERDiLYI .4ND NJS’AI 

We will need Nikol’skii-type inequalities for the classes (GCAP(, and 
IGCTPI, as well (see Section 1 for the notations). For 0 <N c a and 

f E IGCAP( N or for n = 0, 1, 2, . . . . and f E II,, let 

llfll m = -~;~l If(t)1 and llfllp=(~', If(t)lP dt)"'v o<p<cO, 
. . 

whereas for O<N<xz and fE\GCTP(, or for n=0,1,2,..., andfEH,, 
let 

The following two inequalities were proved in [5, Theorems 5 and 61. 

THEOREM 5.2. Given 0 < N < co, there exists an absolute constant c8 > 0 
such that 

Ilf Ilpd Ccdl +$W”‘q-2’PIlf llq, O<q<pdoo, 

holds for eoery f E )GCAP( N. For instance, c8 = e2(2z)- ’ is a suitable choice. 

THEOREM 5.3. Given 0 <NC 03, there exists an absolute constant cg > 0 
such that 

Ilf llpd [cdl + OW1’q -“PIIfllqr o<q<p<oo, 

holds for every f E (GCTP[ N. For instance, cg = e(47c)-’ is a suitable choice. 

If f E [GCAPI,, where 0 < N < CCI, then g(8) = If(cos 8) sin 01 E 
IGCTPIiv,,, and, thus, applying Theorem 5.3 to the function g with q = 1 
and p = co, we obtain 

for every f E ) GCAPl N. This, together with Theorem 5.2, gives 

THEOREM 5.4. Given 0 d N < co, there exists an absolute constant c,,> 0 
such that 

holds .for every f E IGCAPI,. For instance, CT,,,= e*(2n))’ is a suitable 
choice. 
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Using a linear transformation, we easily deduce from Theorem 5.2 that 

holds for every 11’ E IGCAPI r, where bvLM is defined by i 1.8). 
To prove (4.2) in Theorem 4.1, we will need weighted Markov and 

Bernstein type inequalities. The following results are particular cases of [4, 
Theorems 1 and 31. 

THEOREM 5.5. Given n = O? 1, . . . . and 0 d r< S, there e.Cts an absolute 
constant cl1 >O such that 

holds .for every algebraic polynomial Q E Iln and weight w E lCXAP[ rw 

THEOEM 5.6. Given n = 0, 1, . . . . and 0 < r < ,x, there exists an absolute 
constant cl2 > 0 such that 

holds for every Q E 17, and IV E IGCAP( r. 

With the notation of (1.7), and combining Theorems 5.5 and 5.6, we 
obtain the inequality 

for every QED,, and NE(GCAP(~, where r2=1:2,...,OdT<1r,, and 
cl3 > 0 is an absolute constant. 

We think that the factor (I’+ 1) in Theorems 5.6 can perhaps be 
dropped. 

6. PROOF OF THEOREMS 2.1 AND 2.2 

To prove Theorem 2.1 we need the following 

LEMMA 6.1. Given a > 0, b E 53, and 0 < l- < XI, the inequality 

io(y)<2=a-rly-b6(r max 
b--a<r<b+a 

w(t), yER\(b-a, b+a), 

holds for every w E j GCAPI I- 
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Proof of Lemma 6.1. Without loss of generality we may assume that 
a = 1 and b = 0; the general case follows from this case by a linear sub- 
stitution. Let T,,, denote the Chebyshev polynomial of degree m, and 
let - 1 <x 1,m < X2.m -c . . . < -‘cm,* < 1 denote the zeros of T,,,, where 
Xi, fir = -Xm-j,n* for j= 1, 2, . . . . m. Given m = 1, 2, . . . . a well-known 
inequality of Bernstein yields 

YER\(--1, I), 

(6.1) 

for every Q E 17,. Now let 

W(Z) = (01 fi Iz - zjlrjE \GCAPJ,. 
j=l 

(6.2) 

If each exponent rj is a positive rational number, say, rj= qj/q for 
j= 1, 2, . ..) k, with some positive integers qj and q, then applying (6.1) to 
the polynomial 

Q(z)=o? fi (z-zj)qj(z--j)“‘E172q~, 
i=l 

and taking the 2qth root of its modulus, we obtain the inequality in the 
lemma. The case of positive real exponents rj in (6.2) can be reduced to 
that of rational exponents by approximation. 1 

Proof of Theorem 2.1. Let v denote the Chebyshev weight, that is, 
v(x) = (l/x)( 1 - x2)- ‘I*, and let 

T,(x) = cos(m0) and U,(x) = 
sin((m + 1)0) 

sine ’ 
-1~x~1,x=c0s8, 

be the Chebyshev polynomials of first and second kinds, respectively. We 
define the corresponding reproducing kernel function K,,(v) by 

K,(v, x, t) = 1 + 2 f Tj(x) T,(t). 
j=l 

It is easy to see that 

(6.3) 

K,( v, x, x) = 
2m + 1 + U,,(x) 

2 ’ 
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and, thus, by a straightforward calculation, 

c14(m + 1) < K,(tl, X, X) < 2m + 1, -ldX<l, (624) 

where cL4 > 0 is an absolute constant. Therefore, 

In addition, we also have1 

-1 dx, t< 1, m= I, 2, ,.., (6.6) 

with an absolute constant c,,>O. To show (6.6), we may assume without 
loss of generality that 0 <x,< 1, that is, x= cos y with 0 ,< 7 <n/2. By the 
Christoffel-Darboux formula, 

First, by (6.3), 

Second, if t = cos 0 with 0 < 0 < 243, then 

IT,,(~) T,*-r(t)- T,,(t) Tm-l(X)1 

= IT,,- ,t’t)(T,,,(-x) - Tm- I(-‘t)) - T,,- i(.r)(Tm(t) - Tm - l!f))l 

d Icos(nzy) - cos((m - l)y)l + lcos(mC?) - cos((m - 1)8)l 

<2Isin((2m- 1)1~/2) sin(y/2)/ +2Isin((2m- l)Q,i2) sin(8/2)! 

Thus, inequality (6.6) follows from (6.8) and (6.9). 
Now, given 0 <p < co, 0 d r< cc, and n = 1, 2, . . . . let’ 

2r+4 
.S= [ 1 - +1 and 

P 

(6.9) 

(6.10) 

’ See [9, Lemma 6.3.8, p. 1081 where the constant 1 was accidentally left out. 
’ Here [ .] denotes the integer part. 
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Given x E [ - 1, 11, define the polynomial Q = QX E 17,, _ i by 

(6.11) 

If m = 0, then ~(n - 1) < 2r+ 4 and Q(t) E 1, so we can obtain the 
inequality in Theorem 2.1 immediately as an application of (5.1) and 
Lemma 6.1. More specifically, 

-ldx<l, 

where c,~ > 0 is an absolute constant. 
Thus, in what follows, we may assume m > 1. We may also assume 

without loss of generality that 0 dx< 1. For the sake of brevity, we 
introduce the intervals 

L(x) = L-x - A,(x), x + A&)1, -1dxdl. 

It follows from (6.5), (6.10), and (6.11 j that the inequality 

s I ,l)r c~l l, IP(t u’(t) dt< c:?+~+~A,(x) max w(t) (6.12) 
m. I % TE &n(x) 

holds with an absolute constant cl7 > 0. By Lemma 6.1, 

for every u’ E 1 GCAP) Ir. 



GENERALIZED JACOBI WEIGHTS 121 

Using (6.11), (6.10), (6.6): (6.4), and elementary estimates, it can be 
shown that the inequalities 

IQ(t)1 t E [2x - 1, r]‘\,,mi,,,(x), (6.l4j 

IQ(t)lp~~:~+4+pmn2r-~4, x, tE c-1, 11, [t-xl 20.5, (6.16) 

hold with some absolute constant cL8 > 0, and we can assume that cl8 2 4. 
For instance, to prove (6.14), we notice that sp > T+ 2, and 
I + (%/m +,,&?)lx- t( PI on the right-hand side of (6.6) can 
be estimated by 54’1 - x2 ix - tj PI for I E [2x - 1, l]‘V,,,(x), whereas 
for (6.15), we use 1-x<l-t and O<x-tdl-t,<2jx--t) for 
t E [ -0.5, 2x - 11 and x 3 0.5. 

Using (6.13) and (6.14) we obtain 

(6.17) 

En addition, by (6.13), (6.15), and by 0 6x-t 6 1 -t, 

s 
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for 0.5<x< 1. Finally, from (6.13) and (6.16) we obtain 

s [-i,l]\,r.~-o.j,.~+0.5] 'Q(t)'"'v(t)d* 

~4=C:~+4+%7-4(m~d,(x))-r 
,za$) w(y) m 

G c::+4+ p d,,(x) ,pa, w(y) (6.19) 

by a generous estimate, where we used the fact that Ix - tl < 2 in (6.13). 
Since Q E ZZ,- i and Q(x) = 1, the extremal property (1.5) and the 
inequalities (6.12) and (6.17)-(6.19) yield 

&(a, p, x)S]’ IQ(t)lP w(t) dt <c&+p+l d,(x) max ~(47) (6.20) 
-1 YE M.~) 

with an absolute constant c,,34. By (6.10), 

Pb - 1) <m<Pw) 
2i-s4+p’ ‘2rl-4’ 

(6.21) 

Therefore, Lemma 6.1, inequalities (6.21), the facts that m > 1 and 
M= I+ ~(n - l)/(r + p + l), and inequality (5.1) imply 

with some appropriately chosen absolute constants czo>O and czl >O, 
which together with (6.20) yields Theorem 2. t. 1 

Proof of Theorem 2.2. We will prove the appropriate upper bound for 
;C, only; the corresponding estimate for nz is analogous, and it requires 
only minor modifications of the following proof. Let 

w@)(z)= (co( fi lz-zjlqe (GCAPI,, zi#zj if i#j. (6.22) 
j=l 

Set3 

2f+4 ,y= - [ 1 P 

P(*)=lo( fi (-Zj)"EzIq, 

j= I 

(6.23) 

(6.24) 

(6.25) 

3 Here [ .] denotes the integer part. 
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and 

where 

Let 

P,(.)=lol If (.-2pEnq, -1 <x6 I, (6.26) 

j=l 

- i 
52 if 

zj= x - d,(x), 
Jzi - x1 > $4,(x) 

if Izj- x/ < +4,n(x). 
(6.27) 

(6.28) 

Obviously, 

IQ(x)1 p = lpx(x)lp. (6.29 ‘r 

Introducing the sets 

J, = [x - d,(x), x + 4,(x)] fl [ - 1, 1 -j and J,= t-1, l]\,J,, 
(6.30 j 

replacing w by W= IP,i p WE (GCAP[ r+pd in the proof of Theorem 2.1, 
and using (6.22)-(6.30) and (5.1), we obtain 

<41-fpdC;z+pd+p+I 
. 

s 
jP(t)( p iv(e j dt (6.31) 

II- XI c d,~xj 

with an absolute constant cz2 >O chosen in such a way that 
~-$,+~~+~+~c~(r+pd + 1)2<c&fpd+pt1. Here we used that I?,(t)/ d 
4rtPd(P(t)J for every t E J, which follows from (6.22)-(6.27). Observe that 
(6.22)-(6.27) and (6.30) imply (P(t)(P< 2r+pdlH,(~)IP for every t E J?. 
This, together with (6.31), yields 

with an absolute constant c,,>O. In addition, (6.22)-(6.27) and (6.30) 
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imply IP,c(t)l” d 3“‘@ ]b,(x)lp for every teJ,, so that by (6.28), (6.23), 
(6.24), and (6.5) 

s J, jQ(t)l”w(t)dtQc;:+4+pj. IH,(t)lPw(t)dt 
JI 

<&+4+p3Wd ij I Jx)l p jJ, W dt 

,,:;cpd+p+l[~~~(x)~p~~,~~(t)dt, (6.33) 

where c,,>O and cl5 > 0 are absolute constants. Therefore, the extremal 
property (1.5) and formulas (6.32), (6.33), (6.30), (6.28), (6.23), and (6.24) 
yield 

I,(a,p,x)~lP,(x)l-‘S1 IQ(t)~pw(t)dt&,+pd+p+lwm(x) 
I 

Gc26 r+pd+p+lW&), 

where c16 >O is an absolute constant and M= (p(n- 1 -d)-r)/(2r+4+p), 
and, hence, the theorem has completely been proved. 1 

7. PROOF OF THEOREMS 3.1 AND 3.2 

Proof of Theorem 3.1. Let x E [ - 1, l] be fixed, N= r + p(n - l), and 
M=I+p(n-l)/(f+p+1),andlet4 

Inl,,(x)=[Ix-rld,(x),x+9d,(x)l, O<q<l. 

Let the weight w E IGCAPI ,- be of the form 

w(z) = IOJI fi )z - zjlrj, 

k 

w#O, ZjEC, ZEC, rj>o, c Yj<K (7.1) 
j= 1 j=l 

In what follows, A,(x) denotes the open disk in the complex plane 
centered at x with radius 0.125 .dM(x). Define Fj and 1;~ by 

{ 

zjv 

‘= x-0.125.sgn(x)d,(x), 
if Z~E C\A,(x) 
if zj~AM(x), (7.2) 

and 

@(-I= 14 fi l.-Fjlr”~ IGCAPI,, 
i=l 

(7.3) 

4 See formula (1.7) for the definition of d,,(x). 
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respectively. In what follows, we assume that Q E !GCAPi, _ i. Observe 
that QE IGCAPI,,-, and ICE IGCAPI, imply IQIPS~ IGCAP/,%,. with 
N= r + p(n - 1 ), and, therefore, using Theorem 5.1 with 0 <s = 
d,,(.x)< 1, where M= 1 +p(n- l)/(T+p-t l), we obtain 

m({fE[-I, 11: IQ(t)l~~~(t)~exp(-~,(T’+p+l))/~(.~)l~~~(xp)) 

k 4,(x!. 

Hence, there is a set 

Ec[-1, 1]\[.x-O.25~4,(x),x~O.25~,i1,(x)] (7.4) 

such that 

A,(x)d2m(E) (7.5) 

and 

IQ(t)/” $f)aexp(-c,(T+p+ l))lQ(.~)l~ ii,(x). teE. (7.6) 

Observe that (7.1), (7.2), (7.3), and (7.4) yield 

4.d 9 (2/3)r IEi~o;~j(X, dt) (7.7) 

and 

W(t) 3 3 --riqtj, t E E. (7.8) 

From inequalities (7.5), (7.6), and (7.7) we obtain 

We can use this estimate combined with (7.8 j and Lemma 6.1 to obtain the 
existence of an absolute constant cl7 > 0 such that 

j;, lQ(f,lp dt) dt 

~~~IQ(t)~“,~(t)dt~3-~~~~lQ(t)l”le(t)dt 

2 3-‘exp( -c,(T+ 1)) 2-i A,(x)(2/3)rjQ(xjlp max N(Z) 
~E~.%f,OO625(X1 

>c~+~+I A,(x)JQ(x)Ip max .- 27 If--Xl Gdnr(.r) 
w(t)>Cfi+p+l I Qb,l p l.v>w (xi 

(7.9) 

640.‘69 2-i 
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Since (7.9) holds for every Q E (GCAP(+ i, Theorem 3.1 has completely 
been proved in view of the extremal property (1.6) of the generalized 
Christoffel function I*. 1 

Proof of Theorem 3.2. In what follows we will assume that 0 < p < co 
and x E [ - 1, 1). We start with the inequality 

IP,(z)l”lg(rz)l,~(2+8fln)eS~ IP,~(eie)lPlg(eie)12 4 --x 
(7.10) 

I,71 = 1, r=pn 
pn+2' 

which holds for every g E H*( IzI < 1) and for every complex algebraic 
polynomial P,, of degree at most n = 1,2, . . . (cf. [7, Theorem 6, p. 1481). 
A simple calculation shows that for every real trigonometric polynomial 
R, of degree at most n there is an algebraic polynomial Pz,,~ flxn such 
that R:(B) = JP,,(e”)J*. Therefore, (7.10) yields 

lR,(g)l~lg(re”)l’$(‘+qnPn)‘S= IR,(Wl p ldeie)12 do, --1[ 
(7.11) 

YER r=pn 
pn+2’ 

holds for every real trigonometric polynomial R, and for every 
gEiY’((zI d 1). First, we extend (7.11) to every f E (GCTPI,, writing N in 
place of n. To this end, first assume f can be written as 

f(z)=101 fi lsinyl’, CO#O,ZjEC~ZEC, 5 rj<2N, 
j=l j=l 

with some rational exponents rj > 0. If rj = qj/q with some positive integers 
qi and q for 1 < j < k, then, applying (7.11) with p/(2q) instead of p to the 
trigonometric polynomial R, of degree at most 2qN, where 

R,(z)= )ml*q fi 

j=l 

sinysiny)', 

we obtain 

(7.12) 



GENERALIZED JACOBI WEIGHI- 127 

for every f E IGCTPl, and for every gE H2(jzj 6 1). Now let 1 <n < aJ, 
0 < p < a, and let Q E IGCAPI,,- r. Applying (7.12) with J where f’(s) = 
lQ(cos e)l jsinelr~~~ IGCTP/,,+,+,i,, and choosing g = D( ~(ces . ) ) E 
H’( /z/ < l), we obtain 

lQ(cos y)lp /sin ?/)I ID(~(cos O), ve’if)l’ 

G(2+p(n- l))e n 
47c .r IQJcos 6)lp /sin O( /D(stjcos.), eid)i2 &I, OH 

r=P(n- I)+ 1 
(7.13) 

p(n- 1)+3’ 

for every Q E IGCAPj,,-,. Since ~D(w(cos.), e”)/‘= w(cos 0) for almost 
every real 0, we can use the change of variables t = cos 0 and I; = CDS y to 
obtain from (7.13) the inequality 

IQ(x)l” &? 

d (D(w(cos.), reie)l -’ (2+p(n-1j)2e m1 
4n L, 

lQ(t)lPl+.(t)& , 

p(n- 1)+ 1 
r= 

p(n-1)+3’ 

for every Q E IGCAPI,,- r. To finish the proof, we refer to our Schur-type 
inequality [S, Theorem 71 which states that given 0 < N< w and 
o<p<ca, 

for every Q E IGCAPI,. Now Theorem 3.2 follows from the last two 
inequalities, and from the definition of d, (x) in { 1.7). 

8. E~KMIF OF THEOREM 4.1 

Proof qf Theorem 4.1. Given n = 1,2, . . . and 0 ,< r < m, let 
M= 1+ 2(n - l)/(r + 3). First we prove (4.1). It is sufficient to prove the 
existence of a positive constant c2x such that 

x n2-Ln-Xm~C28 ‘+‘(d,(x,-,,,)+d,(x,.,,)), m= 1, 2, ..~, n+ 1, (8.11 

since (8.1) implies (4.1) by a straightforward calculation (cf~ ( 1.7) j. Assume 
that there is an integer m such that 1< m < fz f 1 and 
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since, otherwise, we already have the desired upper bound for this 
particular value of m. We introduce the Christoffel numbers 

L,n = &A& 2, x,,,,), m=O,l,..., nfl. (8.3) 

By the Markov-Stieltjes inequality [6.. formula (5.4), p. 291 we have 

I 

x, - I,n 
w(t)dt~~,-,,,+~,,,~, m = 1, 2, . . . . n + 1. (8.4) 

“m.n 

Since w E )GCAP( r, Theorem 2.1 yields 

Observe that assumption (8.2) and Lemma 6.1 imply 

max w(t) < 6r max 4th m = 1, 2, . . . . n + 1, (8.6) 
If -.hvll 64d%“.“) .Tm.n =s f < .r, - 1.n 

and 

max w(t) e 6r max $t), m = 1, 2, . . . . n + 1. 
If-xm-I.,d i4M-~m-I,.) 

(8.7) x,,.<f<-x,-l.n 

Now inequalities (8.4)-(8.7) and Theorem 5.2 yield 

bm- 1,n - -%,J max w(t) 
xm..~f$xm-l.,t 

6 2&r + 1)2 sXm-‘,n w(t) dt<2c;(f + l)*(&-r,,+d,,,) 
J+lLn 

for m = 1, 2, . . . . n + 1, and, thus, (8.1) follows. Hence, (4.1) has been proved. 
The proof of (4.2) is somewhat more complicated; it is based on a method 

of ErdGs and Turan (cf. [6, pp. 111-112; 8, p. 369; 9, pp. 164-1651). Given 
n = 1, 2, . ..) and 0 d r< co, let M= 1 + 2(12 - l)/(r + 3), and let 

~,,,~~~=[I~-vl~,~~~~~+rl~,~~~l~ O<~<l. 
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Let. ( 6,. n > i, = l denote the fundamental polynomials of Lagrange interpola- 
tion defined by 

L,n~~,,-l and Im,,,(xj,,,) = dj.,,, j, 112 = 1, 2, .~., II, (8.8) 

where 8.i,,m is the Kronecker-delta symbol. The identity 

(8.9) 

where i,.,, is given by (8.3), is well known (cf. [6, formula (4.7), p. 25jj, 
From (8.9) Theorems 2.1 and 3.1, Lemma 6.1, and (5.1) we obtain 

with some appropriate absolute constants cz9 >O and c,,>O. Let A,,(x) 
denote the open disk centered at x with radius 0.5. d,(x). Given 

we define 

and 

We will estimate 

)q.)= fi 
j=l 

/.--;,I”. 

s 

1 
Zf,,,Jt) K-(t) dt. 

-1 

To this end we introduce the sets 

J1=~M,l(xm,n)n C-1, 11 and 

(8. ‘3’ 1 I 
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It follows from (8.10) 

< cco+ ’ Aw(x,,,,) . 8r max G(t). (8.15) 
If - &n.nl G 0.25 dhf(sm.n) 

Observe that (8.11)-(8.14) imply fi(t)<3rw(t) for teJz and ~(t)<3~fi(t) 
for tgl M,0,25(~m.n). Therefore, by the Gauss-Jacobi quadrature formula 
(cf. [6, formula (3.9), p.23]), Theorem 2.1 and Lemma 6.1 yield 

s Z;Jt) G(t) dt 
J2 

d3r j- Z:,,(t) w(t) dt < 3r [’ Z;,,(t) w(t) dt = 3’-,I,,, 
J? --I 

= 3r&(a, 2, x,,,,) < 3y+3 A,(x,,,) max *v(t) If - .%nl s ~YcGvt) 

<3rc:+3A,,(x,,,).8r \ max w(t) 
If- &n,nl s 0.25 ‘dd-Gn,n) 

<3%ff3 A d~n,,,).8~.3~ max 
lr-&n,nl <0.25~dY(+i,n) 

q t). (8.16) 

Summarizing (8.15) and (8.16), we get 

J‘ 
1 

Z;,,(t) G(t) dt < cf,” A,w(x,,z,,) max I;,(t) (8.17) 
-1 of- xm,d ~0.25 ~d.d.~~,,,) 

with an appropriate absolute constant c~, > 0. When proving (4.2), we can 
assume without loss of generality that x,~,, < 0. We may also assume that 
x,,- I n < 0.25; otherwise, there is nothing to prove. Now Theorem 5.4, 
(8.17), and the inequalities x,,, d 0 and x,_ I,n < 0.25 imply 

l:,,(x) ):7(x) < c,,(A zn+r(X))-’ j’, Z:,,(t) a(t) dt 

< cc2+ ‘(A zn+r(x))-’ Aw(x,,,) max G(t) 
If - &n,“l co.25 ~d,dxmn) 

r+I 
dc33 max 

II ~ %n,.l 60.25. d,kf(x,,,,) 
G(t), 

l-4 d Ix,,,l -I- 0.5 . (1 - lx,,,1 ), (8.18) 
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with appropriate absolute constants c32 > 0 and c33 > 0. Assume that 

since, otherwise, we already have the desired lower bound for this 
particular value of m. In view of (8.11)-(8.13) and (8.191, we have 

and 

Finally, using (8.8), the Mean Value Theorem, inequality (5.2j trans- 
formed linearly to the interval 

C-4’~Yl=r-l&z,,r I - 0.5 . (1 - LL7,.w ), kn,,I + 0.5 (1 - IGf,,,l iI* 

the assumptions x,,, d 0 and x, _ I,n ~0.25, and inequalities (8.18), (8.208, 
and (X.21), we can find a point TV (x,.~, x,,-~,~) such that 

with appropriate absolute constants cjq > 0, cjg > 0, and c36 > 0, and this, 
together with (1.7), gives the lower bound in (4.2). Thus, the theorem has 
completely been proved. 1 
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