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Abstract.

Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The collection of all linear
combinations of eλ0t, eλ1t, . . . , eλnt over R will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .

Elements of E(Λn) are called exponential sums of n+1 terms. Let ‖f‖[a,b] denote the uniform

norm of a real valued function f defined on [a, b]. We prove the following results.

Theorem 1. Let n ≥ 2 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a set of

nonnegative real numbers, b ∈ R. Then there is an absolute constant c1 > 0 such that

c1

logn

n
∑

j=0

λj ≤ sup
P

‖P ′‖(−∞,b]

‖P‖(−∞,b]

≤ 9

n
∑

j=0

λj ,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

Theorem 2. Let n ≥ 2 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real

numbers. Let [a, b] be a finite interval with length b − a > 0. There are positive constants

c2 = c2(a, b) and c3 = c3(a, b) depending only on a and b such that

c2



n2 +
1

logn

n
∑

j=0

|λj |



 ≤ sup
P

‖P ′‖[a,b]

‖P‖[a,b]
≤ c3



n2 +

n
∑

j=0

|λj |



 ,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

It is expected that the factor 1/ logn in the above theorems can be dropped.

1. Introduction and Notation

Throughout the paper [a, b] denotes a finite interval of length b− a > 0.
The Markov inequality asserts that

‖p′‖[−1,1] ≤ n2‖p‖[−1,1]

Key words and phrases. Markov inequality, Newman inequality, increasing exponential sums.
2000 Mathematics Subject Classifications: Primary: 41A17

Typeset by AMS-TEX

1



for all polynomials of degree at most n (with real coefficients). Here, and in what follows
‖f‖[a,b] denotes the uniform norm of a real valued function f defined on [a, b].

It has been observed by Bernstein that Markov’s inequality for monotone polynomials
is not essential better than that for all polynomials. He proved that

sup
p

‖p′‖[−1,1]

‖p‖[−1,1]
=

{
1
4(n+ 1)2 , if n is odd

1
4n(n+ 2) , if n is even ,

where the supremum is taken for all polynomials 0 6= p of degree at most n that are
monotone on [−1, 1]. See [16, p. 607], for instance.

In his book [2] Braess writes “The rational functions and exponential sums belong to
those concrete families of functions which are the most frequently used in nonlinear ap-
proximation theory. The starting point of consideration of exponential sums is an approx-
imation problem often encountered for the analysis of decay processes in natural sciences.
A given empirical function on a real interval is to be approximated by sums of the form

n∑

j=1

aje
λjt ,

where the parameters aj and λj are to be determined, while n is fixed.”
Let

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R

}
.

So En is the collection of all n+1 term exponential sums with constant first term. Schmidt
[17] proved that there is a constant c(n) depending only on n so that

‖f ′‖[a+δ,b−δ] ≤ c(n)δ−1‖f‖[a,b]

for every f ∈ En and δ ∈
(
0, 1

2
(b− a)

)
. The main result, Theorem 3.2, of [5] shows that

Schmidt’s inequality holds with c(n) = 2n− 1. That is,

(1.1) sup
0 6=f∈En

|f ′(y)|

‖f‖[a,b]
≤

2n− 1

min{y − a, b− y}
, y ∈ (a, b) .

In this Bernstein-type inequality even the point-wise factor is sharp up to a multiplicative
absolute constant; the inequality

1

e− 1

n− 1

min{y − a, b− y}
≤ sup

0 6=f∈En

|f ′(y)|

‖f‖[a,b]
, y ∈ (a, b) ,

is established by Theorem 3.3 in [5].
Bernstein-type inequalities play a central role in approximation theory via a machinery

developed by Bernstein, which turns Bernstein-type inequalities into inverse theorems of
approximation. See, for example, the books by Lorentz [14] and by DeVore and Lorentz
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[9]. From (1.1) one can deduce in a standard fashion that if there is a sequence (fn)
∞
n=1

of exponential sums with fn ∈ En that approximates g on an interval [a, b] uniformly with
errors

‖g − fn‖[a,b] = O
(
n−m(logn)−2

)
, n = 2, 3, . . . ,

where m ∈ N is a fixed integer, then g is m times continuously differentiable on (a, b). Let
Pn be the collection of all polynomials of degree at most n with real coefficients. Inequality
(1.1) can be extended to En replaced by

Ẽn :=

{
f : f(t) = a0 +

N∑

j=1

Pmj
(t)eλjt , a0, λj ∈ R , Pmj

∈ Pmj
,

N∑

j=1

(mj + 1) ≤ n

}
.

In fact, it is well-known that Ẽn is the uniform closure of En on any finite subinterval of
the real number line. For a function f defined on a set A let

‖f‖A := ‖f‖L∞A := ‖f‖L∞(A) := sup
x∈A

|f(x)| ,

and let

‖f‖LpA := ‖f‖Lp(A) :=

(∫

A

|f(x)|p dx

)1/p

, p > 0 ,

whenever the Lebesgue integral exists.
In this paper we make an effort to show that Newman’s type inequality (Theorem 2.1)

for exponential sums on (−∞, b] and its extension to finite intervals [a, b] (the case p = ∞
in Theorem 2.3) remain essentially sharp even if we consider only increasing exponential
sums on the real number line.

2. Some Recent Results

Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The collection of all linear
combinations of eλ0t, eλ1t, . . . , eλnt over R will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .

Elements of E(Λn) are called exponential sums of n+ 1 terms. Newman’s inequality (see
[3] and [15]) is an essentially sharp Markov-type inequality for E(Λn) on (−∞, 0] in the
case when each λj is nonnegative.

Theorem 2.1 (Newman’s Inequality). Let Λn := {λ0 < λ1 < · · · < λn} be a set of

nonnegative real numbers. Let b ∈ R. Then

2

3

n∑

j=0

λj ≤ sup
0 6=P∈E(Λn)

‖P ′‖(−∞,b]

‖P‖(−∞,b]
≤ 9

n∑

j=0

λj .

An Lp version of this is established in [3], [6], [8], and [10].
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Theorem 2.2. Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonnegative real numbers. Let

1 ≤ p ≤ ∞. Let b ∈ R. Then

‖P ′‖Lp(−∞,b] ≤ 9




n∑

j=0

λj


 ‖P‖Lp(−∞,b]

for every P ∈ E(Λn).

Note that in the above theorems the case b = 0 represents the general case. This can
be seen by the substitution u = t− b.

The following Lp[a, b] (1 ≤ p ≤ ∞) analog of Theorem 2.2 has been established in [1].

Theorem 2.3. Let n ≥ 1 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real

numbers. Let 1 ≤ p ≤ ∞. There is a positive constant c4 = c4(a, b) depending only on a
and b such that

sup
0 6=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lp[a,b]
≤ c4

(
n2 +

n∑

j=0

|λj |

)
.

Theorem 2.3 was proved earlier in [4] and [10] under the additional assumptions that
λj ≥ δj for each j with a constant δ > 0 and with c4 = c4(a, b) replaced by c4 = c4(a, b, δ)
depending only on a, b, and δ. The novelty of Theorem 2.3 was the fact that Λn := {λ0 <
λ1 < · · · < λn} is an arbitrary set of real numbers, not even the nonnegativity of the
exponents λj is needed.

In [11] the following Nikolskii-Markov type inequality has been proved for E(Λn) on
(−∞, 0].

Theorem 2.4. Suppose 0 < q ≤ p ≤ ∞. Let Λn := {λ0 < λ1 < · · · < λn} be a set of

nonnegative real numbers. Let µ be a nonnegative integer. Let b ∈ R. There are constants

c5 = c5(p, q, µ) > 0 and c6 = c6(p, q, µ) > 0 depending only on p, q, and µ such that

c5




n∑

j=1

λj




µ+ 1
q
− 1

p

≤ sup
0 6=P∈E(Λn)

‖P (µ)‖Lp(−∞,b]

‖P‖Lq(−∞,b]
≤ c6




n∑

j=1

λj




µ+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and for all µ ≥ 0, while the upper

bound holds when µ = 0 and 0 < q ≤ p ≤ ∞, and when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞.

Also, there are constants c5 = c5(q, µ) > 0 and c6 = c6(q, µ) > 0 depending only on q and

µ such that

c5




n∑

j=1

λj




µ+ 1
q

≤ sup
0 6=P∈E(Λn)

|P (µ)(y)|

‖P‖Lq(−∞,y]
≤ c6




n∑

j=1

λj




µ+ 1
q

for every y ∈ R.

Motivated by a question of Michel Weber (Strasbourg) in [13] we proved the following
couple of theorems.
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Theorem 2.5. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. Suppose

0 < q ≤ p ≤ ∞. There are constants c7 = c7(p, q, a, b) > 0 and c8 = c8(p, q, a, b) > 0
depending only on p, q, a, and b such that

c7



n2 +

n∑

j=1

|λj |





1
q
− 1

p

≤ sup
0 6=P∈E(Λn)

‖P‖Lp[a,b]

‖P‖Lq[a,b]
≤ c8



n2 +

n∑

j=1

|λj |





1
q
− 1

p

.

Theorem 2.6. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. Suppose

0 < q ≤ p ≤ ∞. There are constants c9 = c9(p, q, a, b) > 0 and c10 = c10(p, q, a, b) > 0
depending only on p, q, a, and b such that

c9


n2 +

n∑

j=1

|λj|




1+ 1
q
− 1

p

≤ sup
0 6=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lq[a,b]
≤ c10


n2 +

n∑

j=1

|λj |




1+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper bound holds when

p ≥ 1 and 0 < q ≤ p ≤ ∞.

The lower bounds in these inequalities were shown by a method with the Pinkus-Smith
Improvement Theorem in the center. We formulate the useful lemmas applied in the
proofs of these lower bounds. To emphasize the power of the technique of interpolation,
we present the short proofs of these lemmas, versions of which will be used in the proofs of
our new results. We also note that essentially sharp Bernstein-type inequalities for linear
combinations of shifted Gaussians are proved in [12].

In fact, a closer look at the proof of Theorem 2.6 presented in [13] gives the following
results.

Theorem 2.5*. Suppose 0 ≤ λ0 < λ1 < · · · < λn, 0 < q ≤ ∞. There are constants

c7 = c7(q, a, b) > 0 and c8 = c8(q, a, b) > 0 such that

c7


n2 +

n∑

j=1

λj




1
q

≤ sup
0 6=P∈E(Λn)

|P (b)|

‖P‖Lq[a,b]
≤ c8


n2 +

n∑

j=1

λj




1
q

.

Theorem 2.5**. Suppose λ0 < λ1 < · · · < λn ≤ 0, 0 < q ≤ ∞. There are constants

c7 = c7(q, a, b) > 0 and c8 = c8(q, a, b) > 0 such that

c7


n2 +

n∑

j=1

|λj|




1
q

≤ sup
0 6=P∈E(Λn)

|P (a)|

‖P‖Lq[a,b]
≤ c8


n2 +

n∑

j=1

|λj |




1
q

.
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Theorem 2.6*. Suppose 0 ≤ λ0 < λ1 < · · · < λn, 0 < q ≤ ∞. There are constants

c9 = c9(q, a, b) > 0 and c10 = c10(q, a, b) > 0 such that

c9


n2 +

n∑

j=1

λj




1+ 1
q

≤ sup
0 6=P∈E(Λn)

|P ′(b)|

‖P‖Lq[a,b]
≤ c10


n2 +

n∑

j=1

|λj |




1+ 1
q

.

Theorem 2.6**. Suppose λ0 < λ1 < · · · < λn ≤ 0, 0 < q ≤ ∞. There are constants

c9 = c9(q, a, b) > 0 and c10 = c10(q, a, b) > 0 such that

c9


n2 +

n∑

j=1

|λj |




1+ 1
q

≤ sup
0 6=P∈E(Λn)

|P ′(a)|

‖P‖Lq[a,b]
≤ c10


n2 +

n∑

j=1

|λj|




1+ 1
q

.

3. New Results

We make an effort to show that Newman’s inequality (Theorem 2.1) on (−∞, b] and its
extension to finite intervals [a, b] with length b − a > 0 (the case p = ∞ in Theorem 2.3)
remain essentially sharp even if we consider only increasing exponential sums on the real
number line.

Theorem 3.1. Let n ≥ 2 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a set of

positive real numbers, b ∈ R. Then there is an absolute constant c1 > 0 such that

c1
logn

n∑

j=0

λj ≤ sup
P

‖P ′‖(−∞,b]

‖P‖(−∞,b]
≤ 9

n∑

j=0

λj ,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

Theorem 3.2. Let n ≥ 2 be an integer. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real

numbers. There are positive constants c2 = c2(a, b) and c3 = c3(a, b) depending only on a
and b such that

c2



n2 +
1

logn

n∑

j=0

|λj|



 ≤ sup
P

‖P ′‖[a,b]

‖P‖[a,b]
≤ c3

(
n2 +

n∑

j=0

|λj |

)
,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

It is expected that the factor 1/ logn in the above theorems can be dropped.

4. Lemmas

Let q ∈ (0,∞] and let w be a not identically zero continuous function defined on [a, b].
Our first lemma can be proved by a simple compactness argument and may be viewed as
a simple exercise.
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Lemma 4.1. Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real numbers. Let c ∈ [b,∞).
Then there exists a 0 6= T ∈ E(∆n) such that

|T (c)|

‖Tw‖Lq[a,b]
= sup

0 6=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]
,

and there exists a 0 6= S ∈ E(∆n) such that

|S′(c)|

‖Sw‖Lq[a,b]
= sup

0 6=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]
.

Our next lemma is an essential tool in proving our key lemmas, Lemmas 4.3 and 4.4.

Lemma 4.2. Let ∆n := {δ0 < δ1 < · · · < δn} be a set of real numbers. Let c ∈ (b,∞).
Let T and S be the same as in Lemma 4.1. Then T has exactly n zeros in [a, b] by counting

multiplicities. Under the additional assumption δn ≥ 0, S also has exactly n zeros in [a, b]
by counting multiplicities.

The heart of the proof of our theorems is the following pair of comparison lemmas.
The proof of the next couple of lemmas is based on basic properties of Descartes systems,
in particular on Descartes’ Rule of Sign, and on a technique used earlier by P.W. Smith
and Pinkus. Lorentz ascribes this result to Pinkus, although it was P.W. Smith [18] who
published it. I have learned about the the method of proofs of these lemmas from Peter
Borwein, who also ascribes it to Pinkus. This is the proof we present here. Section 3.2 of
[3], for instance, gives an introduction to Descartes systems. Descartes’ Rule of Signs is
stated and proved on page 102 of [3].

Lemma 4.3. Let ∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn} be sets of

real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let c ∈ [b,∞). Then

sup
0 6=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]
≤ sup

0 6=P∈E(Γn)

{
|P (c)|

‖Pw‖Lq[a,b]

}
.

Under the additional assumption δn ≥ 0 we also have

sup
0 6=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]
≤ sup

0 6=P∈E(Γn)

|P ′(c)|

‖Pw‖Lq[a,b]
.

In addition, the above inequalities hold if the supremums are taken over all nonnegative

not identically zero P ∈ E(∆n) and P ∈ E(Γn), respectively.

The result below follows from Lemma 4.3 by a standard compactness argument.

Lemma 4.3*. The statements of Lemma 4.3 remain valid if δ0 > 0, the interval [a, b] is
replaced by (−∞, b], and w is a not identically zero, continuous, and bounded function on

on (−∞, b].
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Lemma 4.4. Let ∆n := {δ0 < δ1 < · · · < δn} and Γn := {γ0 < γ1 < · · · < γn} be sets of

real numbers satisfying δj ≤ γj for each j = 0, 1, . . . , n. Let c ∈ (−∞, a]. Then

sup
0 6=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]
≥ sup

0 6=P∈E(Γn)

|P (c)|

‖Pw‖Lq[a,b]
.

Under the additional assumption γ0 ≤ 0 we also have

sup
0 6=P∈E(∆n)

|Q′(c)|

‖Qw‖Lq[a,b]
≥ sup

0 6=P∈E(Γn)

|Q′(c)|

‖Qw‖Lq[a,b]
.

In addition, the above inequalities hold if the supremums are taken over all nonnegative

not identically zero P ∈ E(∆n) and P ∈ E(Γn), respectively.

The result below follows from Lemma 4.4 by a standard compactness argument.

Lemma 4.4*. The statements of Lemma 4.4 remain valid if γn < 0, the interval [a, b] is
replaced by [a,∞), and w is a not identically zero, continuous, and bounded function on

[a,∞).

5. Proofs of the Lemmas

Proof of Lemma 4.1. Since ∆n is fixed, the proof is a standard compactness argument.
We omit the details. �

To prove Lemma 4.2 we need the following two facts. (a) Every 0 6= f ∈ E(∆n) has at
most n real zeros by counting multiplicities. (b) If t1 < t2 < · · · < tm are real numbers and
k1, k2, . . . , km are positive integers such that

∑m
j=1 kj = n, then there is a 0 6= f ∈ E(∆n)

having a zero at tj with multiplicity kj for each j = 1, 2, . . . , m.

Proof of Lemma 4.2. We prove the statement for T first. Suppose to the contrary that
t1 < t2 < · · · < tm are real numbers in [a, b] such that tj is a zero of T with multiplicity
kj for each j = 1, 2, . . . , m, k :=

∑m
j=1 kj < n, and T has no other zeros in [a, b] different

from t1, t2, . . . , tm. Let tm+1 := c and km+1 := n−k ≥ 1. Choose an 0 6= R ∈ E(∆n) such
that R has a zero at tj with multiplicity kj for each j = 1, 2, . . . , m+ 1, and normalize so
that T (t) and R(t) have the same sign at every t ∈ [a, b]. Let Tε := T − εR. Note that T
and R are of the form

T (t) = T̃ (t)

m∏

j=1

(t− tj)
kj and R(t) = R̃(t)

m∏

j=1

(t− tj)
kj ,

where both T̃ and R̃ are continuous functions on [a, b] having no zeros on [a, b]. Hence, if
ε > 0 is sufficiently small, then |Tε(t)| < |T (t)| at every t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Tεw‖Lq[a,b] < ‖Tw‖Lq[a,b] .

This, together with Tε(c) = T (c), contradicts the maximality of T .
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Now we prove the statement for S. Without loss of generality we may assume that
S′(c) > 0. Suppose to the contrary that t1 < t2 < · · · < tm are real numbers in [a, b] such
that tj is a zero of S with multiplicity kj for each j = 1, 2, . . . , m, k :=

∑m
j=1 kj < n, and

S has no other zeros in [a, b] different from t1, t2, . . . , tm. Choose a

0 6= Q ∈ span{eδn−kt, eδn−k+1t, . . . , eδnt} ⊂ E(∆n)

such that Q has a zero at tj with multiplicity kj for each j = 1, 2, . . . , m, and normalize
so that S(t) and Q(t) have the same sign at every t ∈ [a, b]. Note that S and Q are of the
form

S(t) = S̃(t)
m∏

j=1

(t− tj)
kj and Q(t) = Q̃(t)

m∏

j=1

(t− tj)
kj ,

where both S̃ and Q̃ are continuous functions on [a, b] having no zeros on [a, b]. Let
tm+1 := c and km+1 := 1. Choose an

0 6= R ∈ span{eδn−k−1t, eδn−kt, . . . , eδnt} ⊂ E(∆n)

such that R has a zero at tj with multiplicity kj for each j = 1, 2, . . . , m+1, and normalize
so that S(t) and R(t) have the same sign at every t ∈ [a, b]. Note that S and R are of the
form

S(t) = S̃(t)

m∏

j=1

(t− tj)
kj and R(t) = R̃(t)

m∏

j=1

(t− tj)
kj ,

where both S̃ and R̃ are continuous functions on [a, b] having no zeros on [a, b]. It can be
easily seen that δn ≥ 0 implies that Q′(t) does not vanish on (tm,∞) (divide by eδnt and
then use Rolle’s Theorem). Similarly, since δn ≥ 0, it is easy to see that if Q′ is positive
on (tm,∞), then R′ is negative on (c,∞). Hence Q′(c)R′(c) < 0, so the sign of Q′(c) is
different from the sign of R′(c). Let U := Q if Q′(c) < 0 and let U := R if R′(c) < 0.
Let Sε := S − εU . Hence, if ε > 0 is sufficiently small, then |Sε(t)| < |T (t)| at every
t ∈ [a, b] \ {t1, t2, . . . , tm}, so

‖Sεw‖Lq[a,b] < ‖Sw‖Lq[a,b] .

This, together with S′
ε(c) > S′(c) > 0, contradicts the maximality of S. �

Proof of Lemma 4.3. We begin with the first inequality. We may assume that a < b < c.
The general case when a < b ≤ c follows by a standard continuity argument. Let k ∈
{0, 1, . . . , n} be fixed and let

γ0 < γ1 < · · · < γn , γj = δj , j 6= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the above cases since the
general case follows from this by a finite number of pairwise comparisons. By Lemmas 4.1
and 4.2, there is a 0 6= T ∈ E(∆n) such that

|T (c)|

‖Tw‖Lq[a,b]
= sup

0 6=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]
,

9



where T has exactly n zeros in [a, b] by counting multiplicities. Denote the distinct zeros
of T in [a, b] by t1 < t2 < · · · < tm, where tj is a zero of T with multiplicity kj for
each j = 1, 2, . . . , m, and

∑m
j=1 kj = n. Then T has no other zeros in R different from

t1, t2, . . . , tm. Let

T (t) =:
n∑

j=0

aje
δjt , aj ∈ R .

Without loss of generality we may assume that T (c) > 0. We have T (t) > 0 for every
t > c, otherwise, in addition to its n zeros in [a, b] (by counting multiplicities), T would
have at least one more zero in (c,∞), which is impossible. Hence

an := lim
t→∞

T (t)e−δnt ≥ 0 .

Since E(∆n) is the span of a Descartes system on (−∞,∞), it follows from Descartes’
Rule of Signs that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .

So, in particular, an > 0. Choose R ∈ E(Γn) of the form

R(t) =

n∑

j=0

bje
γjt , bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j = 1, 2, . . . , m, and normalize
so that R(c) = T (c)(> 0) (this R ∈ E(Γn) is uniquely determined). Similarly to an ≥ 0
we have bn ≥ 0. Since E(Γn) is the span of a Descartes system on (−∞,∞), Descartes’
Rule of Signs yields,

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

So, in particular, bn > 0. We have

(T −R)(t) = ake
δkt − bke

γkt +
n∑

j=0

j 6=k

(aj − bj)e
δjt .

Since T − R has altogether at least n + 1 zeros at t1, t2, . . . , tm, and c (by counting
multiplicities), it does not have any zero on R different from t1, t2, . . . , tm, and c. Since

(eδ0t, eδ1t, . . . , eδkt, eγkt, eδk+1t, . . . , eδnt)

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies that the sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak, −bk, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−kak > 0, this implies that an − bn < 0 if k < n,
and −bn < 0 if k = n, so

(T −R)(t) < 0 , t > c .
10



This can be seen by dividing the left hand side by eγnt and taking the limit as t → ∞.
Since each of T , R, and T −R has a zero at tj with multiplicity kj for each j = 1, 2, . . . , m;∑m

j=1 kj = n, and T −R has a sign change (a zero with multiplicity 1) at c, we can deduce

that each of T , R, and T − R has the same sign on each of the intervals (tj, tj+1) for
every j = 0, 1, . . . , m with t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |T (t)| holds for all
t ∈ [a, b] ⊂ [a, c] with strict inequality at every t different from t1, t2, . . . , tm. Combining
this with R(c) = T (c), we obtain

|R(c)|

‖Rw‖Lq[a,b]
≥

|T (c)|

‖Tw‖Lq[a,b]
= sup

0 6=P∈E(∆n)

|P (c)|

‖Pw‖Lq[a,b]
.

Since R ∈ E(Γn), the first conclusion of the lemma follows from this.
Now we start the proof of the second inequality of the lemma. Although it is quite similar

to that of the first inequality, we present the details. We may assume that a < b < c and
δn > 0. The general case when a < b ≤ c and δn ≥ 0 follows by a standard continuity
argument. Let k ∈ {0, 1, . . . , n} be fixed and let

γ0 < γ1 < · · · < γn , γj = δj , j 6= k , and δk < γk < δk+1

(let δn+1 := ∞). To prove the lemma it is sufficient to study the above cases since the
general case follows from this by a finite number of pairwise comparisons. By Lemmas 4.1
and 4.2, there is an 0 6= S ∈ E(∆n) such that

|S′(c)|

‖Sw‖Lq[a,b]
= sup

0 6=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]
,

where S has exactly n zeros in [a, b] by counting multiplicities. Denote the distinct zeros
of S in [a, b] by t1 < t2 < · · · < tm, where tj is a zero of S with multiplicity kj for
each j = 1, 2, . . . , m, and

∑m
j=1 kj = n. Then S has no other zeros in R different from

t1, t2, . . . , tm. Let

S(t) =:

n∑

j=0

aje
δjt , aj ∈ R .

Without loss of generality we may assume that S(c) > 0. Since δn > 0, we have
limt→∞ S(t) = ∞, otherwise, in addition to its n zeros in (a, b), S would have at least
one more zero in (c,∞), which is impossible.

Because of the extremal property of S, S′(c) 6= 0. We show that S′(c) > 0. To see
this observe that Rolle’s Theorem implies that S′ ∈ E(∆n) has at least n − 1 zeros in
[t1, tm] (by counting multiplicities). If S′(c) < 0, then S(tm) = 0 and limt→∞ S(t) = ∞
imply that S′ has at least 2 more zeros in (tm,∞). Thus S′(c) < 0 would imply that S′

has at least n + 1 zeros in [a,∞), which is impossible. Hence S′(c) > 0, indeed. Also
an := limt→∞ S(t)e−δnt ≥ 0 . Since E(∆n) is the span of a Descartes system on (−∞.∞),
it follows from Descartes’ Rule of Signs that

(−1)n−jaj > 0 , j = 0, 1, . . . , n .
11



So, in particular, an > 0. Choose R ∈ E(Γn) of the form

R(t) =

n∑

j=0

bje
γjt , bj ∈ R ,

so that R has a zero at each tj with multiplicity kj for each j = 1, 2, . . . , m, and normalize
so that R(c) = S(c)(> 0) (this R ∈ E(Γn) is uniquely determined). Similarly to an ≥ 0
we have bn ≥ 0. Since E(Γn) is the span of a Descartes system on [a, b], Descartes’ Rule
of Signs implies that

(−1)n−jbj > 0 , j = 0, 1, . . . , n .

So, in particular, bn > 0. We have

(S −R)(t) = ake
δkt − bke

γkt +
n∑

j=0

j 6=k

(aj − bj)e
δjt .

Since S −R has altogether at least n+1 zeros at t1, t2, . . . , tm, and c (by counting multi-
plicities), it does not have any zero on R different from t1, t2, . . . , tm, and c. Since

(eδ0t, eδ1t, . . . , eδkt, eγkt, eδk+1t, . . . , eδnt)

is a Descartes system on (−∞,∞), Descartes’ Rule of Signs implies that the sequence

(a0 − b0, a1 − b1, . . . , ak−1 − bk−1, ak, −bk, ak+1 − bk+1, . . . , an − bn)

strictly alternates in sign. Since (−1)n−kak > 0, this implies that an− bn < 0 if k < n and
−bn < 0 if k = n, so

(S −R)(t) < 0 , t > c .

Since each of S, R, and S−R has a zero at tj with multiplicity kj for each j = 1, 2, . . . , m;∑m
j=1 kj = n, and S−R has a sign change (a zero with multiplicity 1) at c, we can deduce

that each of S, R, and S − R has the same sign on each of the intervals (tj , tj+1) for
every j = 0, 1, . . . , m with t0 := −∞ and tm+1 := c. Hence |R(t)| ≤ |S(t)| holds for all
t ∈ [a, b] ⊂ [a, c] with strict inequality at every t different from t1, t2, . . . , tm. Combining
this with 0 < S′(c) ≤ R′(c) (recall that R(c) = S(c) > 0), we obtain

|R′(c)|

‖Rw‖Lq[a,b]
≥

|S′(c)|

‖Sw‖Lq[a,b]
= sup

0 6=P∈E(∆n)

|P ′(c)|

‖Pw‖Lq[a,b]
.

Since R ∈ E(Γn), the second conclusion of the lemma follows from this. The proof of the
last statement of the lemma is very similar. We omit the details. �

Proof of Lemma 4.4. The lemma follows from Lemma 4.3 by the substitution u = −t. �

12



6. Proofs of the Theorems

Proof of Theorem 3.1. In the light of Theorem 2.1 we need to prove only the lower bound.
Moreover, it is sufficient to prove only that for every a < b there is a 0 6= Q ∈ E(Λn)
increasing on (−∞,∞) such that

|Q′(b)|

‖Q‖[a,b]
≥

c1
logn

n∑

j=0

λj

with an absolute constant c1 > 0, and the lower bound of the theorem follows by a standard
compactness argument. Let

λ :=
1

3 logn

n∑

j=0

λj .

Then there is a k ∈ {0, 1, . . . , n} such that

λk ≥
λ

n− k + 1
.

Let ε > 0, m := ⌊n−k
2

⌋,

δ̃j :=
λ

2(n− k + 1)
+ jε , j = 0, 1, . . . , m .

Let ∆̃m := {δ̃0 < δ̃1 < · · · < δ̃m}. By Theorem 2.4 there is a 0 6= Rm ∈ E(∆̃m) such that

|Rm(b)|

‖Rm‖L2[a,b]
≥

|Rm(b)|

‖Rm‖L2(−∞,b]
≥ c5




m∑

j=0

δ̃j




1/2

≥ c5

(
(m+ 1)λ

2(n− k + 1)

)1/2

≥
c5
2
λ1/2 .

Moreover, by Lemma 4.2 we may assume that Rm has m zeros in [a, b]. Now let

γj := λj+k and δj :=
λ

n− k + 1
+ jε , j = 0, 1, . . . , 2m,

∆2m := {δ0 < δ1 < · · · < δ2m} and Γ2m := {γ0 < γ1 < · · · < γ2m} .

Then
P2m = R2

m ∈ E(∆2m)

is nonnegative on (−∞,∞) having 2m zeros in (−∞, b] by counting multiplicities. Now,
by Lemma 4.3* (if ε > 0 is sufficiently small, then the assumptions are satisfied) there is
a 0 6= Q2m ∈ E(Γ2m) ⊂ E(Λn) such that

|Q2m(b)|

‖Q2m‖L1(−∞,b]
≥

|P2m(b)|

‖P2m‖L1(−∞,b]
=

|Rm(b)|2

‖Rm‖2L2(−∞,b]

≥
c25
4
λ .
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Now let S2m ∈ E(Γ2m) ⊂ E(Λn) be defined by

S2m(x) =

∫ x

−∞

Q2m(t) dt .

Then S2m is increasing on (−∞,∞) and

|S′
2m(b)|

‖S2m‖[a,b]
≥

|S′
2m(b)|

‖S2m‖(−∞,b]
≥

|Q2m(b)|

‖Q2m‖L1(−∞,b]
≥

c25
4
λ .

Note that the constant c25/4 above is absolute and as such it is independent of a as well.
Hence the standard compactness argument in the beginning of the proof can be imple-
mented. �

Proof of Theorem 3.2. The upper bound of the theorem follows from Theorem 2.5. Now
we turn to the proof of the lower bound. Assume that

λ0 < λ1 < · · · < λm < 0 ≤ λm+1 < λm+2 < · · · < λn .

We distinguish four cases.

Case 1:
∑n

j=m+1 |λj | ≥
1
2

∑n
j=0 |λj | ≥ n2 logn. In this case the lower bound of Theorem

3.1 gives the lower bound of the theorem.

Case 2:
∑m

j=0 |λj | ≥
1
2

∑n
j=0 |λj | ≥ n2 log n. In this case the lower bound of Theorem 3.1

gives the lower bound of the theorem after the substitution u = −t.

Case 3: 1
2

∑n
j=0 |λj| ≤ n2 logn and m < n/2. Let k = ⌊n/4⌋−1. Without loss of generality

we may assume that n ≥ 8, hence k ≥ 1. Let

∆k := {δ0 < δ1 < · · · < δk} , δj := jε , j = 0, 1, . . . , k .

By Theorem 2.5* there is an 0 6= Rk ∈ E(∆k) such that

|Rk(b)|

‖Rk‖L2[a,b]
≥ c7n .

Moreover, by Lemma 4.2 we may assume that Rk has k zeros in [a, b]. Now let

∆2k := {δ0 < δ1 < · · · < δ2k} , δj := jε , j = 0, 1, . . . , 2k ,

and

Γ2k := {γ0 < γ1 < · · · < γ2k} := {λn−2k < λn−2k+1 < · · · < λn} .

Then

P2k = R2
k ∈ E(∆2k)
14



is nonnegative on (−∞,∞) and has 2k zeros in [a, b] by counting multiplicities. Now, by
Lemma 4.3* (if ε > 0 is sufficiently small, then the assumptions are satisfied) there is a
0 6= Q2k ∈ E(Γ2k) ⊂ E(Λn) such that

|Q2k(b)|

‖Q2k‖L1[a,b]
≥

|P2k(b)|

‖P2k‖L1[a,b]
=

|Rk(b)|
2

‖Rk‖
2
L2[a,b]

≥ c27n
2 .

Now let S2k ∈ E(Γ2k) ⊂ E(Λn) be defined by

S2k(x) =

∫ x

−∞

Q2k(t) dt .

Then S2k is increasing on (−∞,∞) and

|S′
2k(b)|

‖S2k‖[a,b]
≥

|Q2k(b)|

‖Q2k‖L1([a,b]
≥ c27n

2 .

Case 4: 1
2

∑n
j=0 |λj| ≤ n2 logn and m ≥ n/2. The proof follows from that in Case 3 by

the substitution u = −t. �
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