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Abstract. The principal result of this paper is the following Markov-type inequality
for Müntz polynomials.

Theorem (Newman’s Inequality in Lp[a, b] for [a, b] ⊂ (0,∞)). Let Λ :=
(λj)

∞

j=0 be an increasing sequence of nonnegative real numbers. Suppose λ0 = 0

and there exists a δ > 0 so that λj ≥ δj for each j. Suppose 0 < a < b and

1 ≤ p ≤ ∞. Then there exists a constant c(a, b, δ) depending only on a, b, and δ so

that

‖P ′‖Lp[a,b] ≤ c(a, b, δ)

0

@

n
X

j=0

λj

1

A ‖P‖Lp[a,b]

for every P ∈ Mn(Λ), where Mn(Λ) denotes the linear span of {xλ0 , xλ1 , . . . , xλn}
over R.

When p = ∞ this has been shown in [5]. When [a, b] = [0, 1] and with ‖P ′‖Lp [a,b]

replaced with ‖xP ′(x)‖Lp [a,b] this was proved by D. Newman [13] for p = ∞ and by

P. Borwein and T. Erdélyi [3] for 1 ≤ p ≤ ∞. Note that the interval [0, 1] plays a
special role in the study of Müntz spaces Mn(Λ). A linear transformation y = αx+β

does not preserve membership in Mn(Λ) in general (unless β = 0). So the analogue
of Newman’s Inequality on [a, b] for a > 0 does not seem to be obtainable in any
straightforward fashion from the [0, b] case.

1. Introduction and Notation

Let Pn denote the collection of all algebraic polynomials of degree at most n with
real coefficients. For notational convenience let ‖·‖[a,b] := ‖·‖L∞[a,b]. The following
two inequalities, together with their various extensions, play an important role in
approximation theory. See, for example, DeVore and Lorentz [8], Lorentz [10], and
Natanson [12].

Theorem 1.1 (Markov’s Inequality). If p ∈ Pn, then

‖p′‖[−1,1] ≤ n2 ‖p‖[−1,1] .
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Theorem 1.2 (Bernstein’s Inequality). If p ∈ Pn, then

|p′(x)| ≤ n√
1 − x2

‖p‖[−1,1] , −1 < x < 1 .

Let Λ := (λj)
∞
j=0 be a sequence of distinct real numbers. The linear span of

{xλ0 , xλ1 , . . . , xλn}

over R will be denoted by

Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn} .

Elements of Mn(Λ) are called Müntz polynomials.

Newman’s inequality [13] is an essentially sharp Markov-type inequality for
Mn(Λ), where Λ := (λj)

∞
j=0 is a sequence of distinct nonnegative real numbers.

Theorem 1.3 (Newman’s Inequality). Let Λ := (λj)
∞
j=0 be a sequence of dis-

tinct nonnegative real numbers. Then

2

3

n
∑

j=0

λj ≤ sup
06=P∈Mn(Λ)

‖xP ′(x)‖[0,1]

‖P‖[0,1]
≤ 11

n
∑

j=0

λj .

Frappier [9] shows that the constant 11 in Newman’s inequality can be replaced
by 8.29. In [3], by modifying (and simplifying) Newman’s arguments, we showed
that the constant 11 in the above inequality can be replaced by 9. But more impor-
tantly, this modification allowed us to prove the following Lp version of Newman’s
inequality [4] (an L2 version of which was proved earlier in [6]).

Theorem 1.4 (Newman’s Inequality in Lp[0, 1]). Let 1 ≤ p ≤ ∞. Let Λ :=
(λj)

∞
j=0 be a sequence of distinct real numbers greater than −1/p. Then

‖xP ′(x)‖Lp[0,1] ≤
(

1/p + 12

(

n
∑

j=0

(λj + 1/p)

))

‖P‖Lp[0,1]

for every P ∈ Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

In this paper, using the fact that the constant 11 in Theorem 1.3 can be replaced
by 8.29, we will show that the constant 12 in Theorem 1.4 can be replaced by 8.29
as well. See Theorems 2.1 and 2.2.

On the basis of considerable computation, in [3] we speculate that the best pos-
sible constant in Newman’s inequality is 4. (We remark that an incorrect argument
exists in the literature claiming that the best possible constant in Newman’s in-
equality is at least 4 +

√
15 = 7.87 . . . .)

It is proved in [2] that under a growth condition, which is essential, ‖xP ′(x)‖[0,1]

in Newman’s inequality can be replaced by ‖P ′‖[0,1]. More precisely, the following
result holds.



MARKOV AND BERNSTEIN TYPE INEQUALITIES 3

Theorem 1.5 (Newman’s Inequality Without the Factor x). Let Λ :=
(λj)

∞
j=0 be a sequence of distinct real numbers with λ0 = 0 and λj ≥ j for each

j. Then

‖P ′‖[0,1] ≤ 16.58

(

n
∑

j=1

λj

)

‖P‖[0,1]

for every P ∈ Mn(Λ).

Note that the interval [0, 1] plays a special role in the study of Müntz polynomials.
A linear transformation y = αx + β does not preserve membership in Mn(Λ) in
general (unless β = 0), that is P ∈ Mn(Λ) does not necessarily imply that Q(x) :=
P (αx + β) ∈ Mn(Λ). Analogues of the above results on [a, b], a > 0, cannot be
obtained by a simple transformation. Nevertheless in [5], under a growth condition,
which is essential, we have established a version of Newman’s inequality on intervals
[a, b], a > 0. Here we prove an analogue of this result in Lp[a, b] with a > 0 and
1 ≤ p < ∞.

The rational functions and exponential sums belong to those concrete families
of functions which are the most frequently used in nonlinear approximation theory.
See, for example, Braess [7]. The starting point of consideration of exponential
sums is an approximation problem often encountered for the analysis of decay
processes in natural sciences. A given empirical function on a real interval is to be
approximated by sums of the form

n
∑

j=1

aje
λjt ,

where the parameters aj and λj are to be determined, while n is fixed.

In [4] we proved the “right” Bernstein-type inequality for exponential sums. This
inequality is the key to proving inverse theorems for approximation by exponential
sums. Let

En :=

{

f : f(t) = a0 +

n
∑

j=1

aje
λjt , aj , λj ∈ R

}

.

So En is the collection of all n + 1 term exponential sums with constant first term.
Schmidt [14] proved that there is a constant c(n) depending only on n so that

‖f ′‖[a+δ,b−δ] ≤ c(n)δ−1‖f‖[a,b]

for every f ∈ En and δ ∈
(

0, 1
2 (b − a)

)

. Lorentz [11] improved Schmidt’s result

by showing that for every α > 1
2 , there is a constant c(α) depending only on α so

that c(n) in the above inequality can be replaced by c(α)nα log n (Xu improved this
to allow α = 1

2 ), and he speculated that there may be an absolute constant c so
that Schmidt’s inequality holds with c(n) replaced by cn. We [1] proved a weaker
version of this conjecture with cn3 instead of cn. The main result of [4] shows that
Schmidt’s inequality holds with c(n) = 2n − 1. This essentially sharp result can
also be formulated as
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Theorem 1.6. We have

1

e − 1

n − 1

min{y − a, b − y} ≤ sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n − 1

min{y − a, b − y}

for all y ∈ (a, b).

This result complements Newman’s Markov-type inequality (see [13] and [5])
given by Theorem 1.3. In this paper we establish an Lp version of Theorem 1.6.
See Theorem 3.4.

Bernstein-type inequalities play a very important role in approximation theory
via a machinery developed by Bernstein, which turns Bernstein-type inequalities
into inverse theorems of approximation. See, for example Lorentz [10] and DeVore
and Lorentz [8].

2. New Results: Newman’s Inequality

in Lp[0, 1] with the constant 8.29

Theorem 2.1. Let 1 ≤ p ≤ ∞. Let Λ := (λj)
∞
j=0 be a sequence of distinct real

numbers greater than −1/p. Then

‖xS′(x)‖Lp[0,1] ≤
(

1/p + 8.29

(

n
∑

j=0

(λj + 1/p)

))

‖S‖Lp[0,1]

for every S ∈ Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

Theorem 2.2. Let 1 ≤ p ≤ ∞. Let Γ := (γj)
∞
j=0 be a sequence of distinct positive

numbers. Then

‖Q′‖Lp[0,∞) ≤ 8.29





n
∑

j=0

γj



 ‖Q‖Lp[0,∞)

for every Q ∈ En(Γ) := span{e−γ0t, e−γ1t, . . . , e−γnt}.

The L∞[0, 1] version of the above inequalities are due to Newman [13] with
the constant 11 rather than 8.29. The L∞[0, 1] version of the above inequalities
is proved in [9]. A slightly simplified version of Newman’s proof in the L∞[0, 1]
case as well as the above Lp[0, 1] inequalities with the constant 12 rather than 8.29
are given in both [1] and [2]. Here we will reduce the proof of the above Lp[0, 1]
inequalities to Newman’s inequality given by Theorem 1.3, by recalling, as we have
already remarked, that the constant 11 in Theorem 1.3 can be replaced by 8.29.

3. New Results: Newman’s Inequality in Lp[a, b] for [a, b] ⊂ (0,∞)

We establish two Markov-type inequalities, one for Mn(Λ) in Lp[a, b] for [a, b] ⊂
(0,∞), and one for En(Γ) in Lp[a, b] for [a, b] ⊂ (−∞,∞). It is very simple to see
that these follow from each other.
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Theorem 3.1 (Markov Inequality for Mn(Λ) in Lp[a, b]). Let Λ := (λj)
∞
j=0

be an increasing sequence of nonnegative real numbers. Suppose λ0 = 0 and there
exists a δ > 0 so that λj ≥ δj for each j. Suppose 0 < a < b < ∞ and 1 ≤ p ≤ ∞.
Then there exists a constant c(a, b, δ) depending only on a, b, and δ so that

‖P ′‖Lp[a,b] ≤ c(a, b, δ)

(

n
∑

j=0

λj

)

‖P‖Lp[a,b]

for every P ∈ Mn(Λ), where Mn(Λ) denotes the linear span of {xλ0 , xλ1 , . . . , xλn}
over R.

Theorem 3.2 (Markov Inequality for En(Λ) in Lp[a, b]). Let Λ := (λj)
∞
j=0

be an increasing sequence of nonnegative real numbers. Suppose λ0 = 0 and there
exists a δ > 0 so that λj ≥ δj for each j. Suppose −∞ < a < b < ∞ and
1 ≤ p ≤ ∞. Then there exists a constant c(a, b, δ) depending only on a, b, and δ so
that

‖P ′‖Lp[a,b] ≤ c(a, b, δ)

(

n
∑

j=0

λj

)

‖P‖Lp[a,b]

for every P ∈ En(Λ), where En(Λ) denotes the linear span of {eλ0t, eλ1t, . . . , eλnt}
over R.

The p = ∞ case of Theorem 3.1 is proved in [5]. The proof of the general case
will be reduced to this one. Notice that Theorem 3.1 follows from Theorem 3.2 by
the substitution x = et. Therefore we need to prove only Theorem 3.2. Observe
also that the p = ∞ case of Theorem 3.2 follows from the p = ∞ case of Theorem
3.1, so it is sufficient to reduce the general case to this one again.

The following example shows that the growth condition λj ≥ δj with a δ > 0 in
the above theorem cannot be dropped. It has been used in [5] as well.

Theorem 3.3. Let Λ := (λj)
∞
j=0, where λj = δj. Let 0 < a < b. Then

max
06=P∈Mn(Λ)

|P ′(a)|
‖P‖[a,b]

= |Q′
n(a)| =

2δaδ−1

bδ − aδ
n2

where, with Tn(x) = cos(n arccosx),

Qn(x) := Tn

(

2xδ

bδ − aδ
− bδ + aδ

bδ − aδ

)

is the Chebyshev “polynomial” for Mn(Λ) on [a, b]. In particular

lim
δ→0

max
06=P∈Mn(Λ)

|P ′(a)|
(

n
∑

j=0

λj

)

‖P‖[a,b]

= ∞.

Theorem 3.3 is a well-known property of differentiable Chebyshev spaces. See,
for example, [2] or [5].

Finally we record the extension of Theorem 1.6 to Lp[a, b] spaces. Note that no
assumptions on the set of exponents are prescribed.
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Theorem 3.4 (Bernstein Inequality in Lp[a, b] for En). Let δ ∈
(

0, b−a
2

)

. We
have

sup
06=f∈En

‖f ′‖Lp[a+δ,b−δ]

‖f‖Lp[a,b]
≤ 2n − 1

δ
.

4. An Interpolation Theorem

To reduce the 1 ≤ p ≤ ∞ case of Theorems 2.2, 3.2, and 3.4 to the p = ∞ case,
the main tool is the Interpolation Theorem below. See [2], page 385.

Interpolation of Linear Functionals. Let C(Q) be the set of real- (complex-)
valued continuous functions on the compact Hausdorff space Q. Let S be an n-
dimensional linear subspace of C(Q) over R (C). Let L 6= 0 be a real- (complex-)
valued linear functional on S. Then there exists points x1, x2, . . . , xr in Q and
nonzero real (complex) numbers a1, a2, . . . , ar, where 1 ≤ r ≤ n in the real case
and 1 ≤ r ≤ 2n − 1 in the complex case, such that

L(s) =

r
∑

i=1

ais(xi) , s ∈ S ,

and

‖L‖ = sup{|L(s)| : s ∈ S, ‖s‖Q ≤ 1} =

r
∑

i=1

|ai| .

5. Proofs

First we show that Theorem 2.1 follows from Theorem 2.2. Indeed, assume that
λ0, λ1, . . . , λn are distinct real numbers greater than −1/p. Let

S ∈ span{xλ0 , xλ1 , . . . , xλn} .

Then γi := λi + 1/p (i = 0, 1, . . . , n), are distinct positive numbers. Applying
Theorem 2.2 with

Q(t) := S(e−t)e−t/p ∈ span{e−γ0t, e−γ1t, . . . , e−γnt}

and using the substitution x = e−t, we obtain

∫ 1

0

∣

∣

∣

∣

x
(

x1/pS(x)
)′
∣

∣

∣

∣

p

x−1 dx ≤ 8.29





n
∑

j=0

(λj + 1/p)





p
∫ 1

0

|S(x)|p dx .

Now the product rule of differentiation and Minkowski’s inequality yield

∫ 1

0

|xS′(x)|p dx ≤



1/p + 8.29





n
∑

j=0

(λj + 1/p)









p
∫ 1

0

|S(x)|p dx ,
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which is the inequality of Theorem 2.1. Now we prove Theorem 2.2.

Proof of Theorem 2.2. Note that the fact that En(Γ) is a finite dimensional vector
space implies that there is a b > 0 such that

‖s‖[0,∞) ≤ ‖s‖[0,b]

for every s ∈ En(Γ). We apply the Interpolation Theorem of Section 4 with Q :=
[0, b], S := En(Γ), and L(s) := s′(0). As we have already remarked, Theorem 1.3
(Newman’s inequality) holds with the constant 8.29 rather than 11. This implies
that

‖L‖ ≤ c(Γ) := 8.29

(

n
∑

j=0

γj

)

.

We deduce that there are x1, x2, . . . , xr in [0, b] and c1, c2, . . . , cr ∈ R so that for
every s ∈ En(Γ) we have

|s′(0)|
c(Γ)

≤
∣

∣

∣

∣

∣

r
∑

i=1

cis(xi)

∣

∣

∣

∣

∣

≤
r
∑

i=1

|ci||s(xi)|

with
∑r

i=1 |ci| = 1 and 1 ≤ r ≤ n + 1. Now let ϕ : [0,∞) 7→ [0,∞) be a nonde-
creasing convex function. Using monotonicity and convexity, we obtain

ϕ

( |s′(0)|
c(Γ)

)

≤ ϕ

(

r
∑

i=1

|ci| |s(xi)|
)

≤
r
∑

i=1

|ci|ϕ(|s(xi)|) .

Applying this with s(t) := P (t + y) ∈ En(Γ) , we deduce

ϕ

( |P ′(y)|
c(Γ)

)

≤
r
∑

i=1

|ci|ϕ(|P (xi + y)|)

for every P ∈ En(Γ) and y ∈ [0,∞), where xi ∈ [0, b] and y ∈ [0,∞) imply that
xi + y ∈ [0,∞) for each i = 1, 2, . . . , r. Integrating on the interval [0,∞) with
respect to y, we obtain

∫ ∞

0

ϕ

( |P ′(y)|
c(Γ)

)

dy ≤
r
∑

i=1

∫ ∞

0

|ci|ϕ(|P (xi + y)|) dy

≤
r
∑

i=1

∫ ∞

0

|ci|ϕ(|P (t)|) dt ≤
∫ ∞

0

ϕ(|P (t)|) dt ,

where
∑r

i=1 |ci| = 1 has been used. Now the choice of ϕ(x) := xp (1 ≤ p < ∞)
gives the theorem. �

Now we prove Theorem 3.2 (see the remark after Theorem 3.2).

Proof of Theorem 3.2. Let c := (a + b)/2. We apply the Interpolation Theorem
of Section 4 with Q := [c, b], S := En(Λ), and L(s) := s′(b). As we have already
remarked, the L∞ case of the theorem has been proved in [5]. This yields that

‖L‖ ≤ c(a, b, δ, Λ) := c(a, b, δ)

(

n
∑

j=0

λj

)

.
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We deduce that there are x1, x2, . . . , xr in [c, b] and c1, c2, . . . , cr ∈ R so that for
every s ∈ En(Λ) we have

|s′(b)|
c(a, b, δ, Λ)

≤
∣

∣

∣

∣

∣

r
∑

i=1

cis(xi)

∣

∣

∣

∣

∣

≤
r
∑

i=1

|ci||s(xi)|

with
∑r

i=1 |ci| = 1 and 1 ≤ r ≤ n + 1. Now let ϕ : [0,∞) 7→ [0,∞) be a nonde-
creasing convex function. Using monotonicity and convexity, we obtain

ϕ

( |s′(b)|
c(a, b, δ, Λ)

)

≤ ϕ

(

r
∑

i=1

|ci| |s(xi)|
)

≤
r
∑

i=1

|ci|ϕ(|s(xi)|) .

Applying this with s(t) := P (t + y − b) ∈ En(Λ) , we deduce

ϕ

( |P ′(y)|
c(a, b, δ, Λ)

)

≤
r
∑

i=1

|ci|ϕ(|P (xi + y − b)|)

for every P ∈ En(Λ) and y ∈ [c, b], where xi ∈ [c, b] and y ∈ [c, b] imply that
xi + y − b ∈ [a, b] for each i = 1, 2, . . . , r. Integrating on the interval [c, b] with
respect to y, we obtain

∫ b

c

ϕ

( |P ′(y)|
c(a, b, δ, Λ)

)

dy ≤
r
∑

i=1

∫ b

c

|ci|ϕ(|P (xi + y − b)|) dy

≤
r
∑

i=1

∫ b

a

|ci|ϕ(|P (t)|) dt ≤
∫ b

a

ϕ(|P (t)|) dt ,

where
∑r

i=1 |ci| = 1 has been used. It can be shown exactly in the same way that

∫ c

a

ϕ

( |P ′(y)|
c(a, b, δ, Λ)

)

dy ≤
∫ b

a

ϕ(|P (t)|) dt .

Combining the last two inequalities and choosing ϕ(x) := xp (1 ≤ p < ∞), we
conclude the theorem. �

Proof of Theorem 3.4. We apply the Interpolation Theorem of Section 4 with Q :=
[−δ, δ], S := En(Λ), and L(s) := s′(0). The L∞ case of the theorem is given by
Theorem 1.6. This yields that

‖L‖ ≤ 2n − 1

δ
.

We deduce that there are x1, x2, . . . , xr in [−δ, δ] and c1, c2, . . . , cr ∈ R so that for
every s ∈ En(Λ) we have

|s′(0)|δ
2n − 1

≤
∣

∣

∣

∣

∣

r
∑

i=1

cis(xi)

∣

∣

∣

∣

∣

≤
r
∑

i=1

|ci||s(xi)|
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with
∑r

i=1 |ci| = 1 and 1 ≤ r ≤ n + 1. Now let ϕ : [0,∞) 7→ [0,∞) be a nonde-
creasing convex function. Using monotonicity and convexity, we obtain

ϕ

( |s′(0)|δ
2n − 1

)

≤ ϕ

(

r
∑

i=1

|ci| |s(xi)|
)

≤
r
∑

i=1

|ci|ϕ(|s(xi)|) .

Applying this with s(t) := P (t + y) ∈ En(Λ) , we deduce

ϕ

( |P ′(y)|δ
2n − 1

)

≤
r
∑

i=1

|ci|ϕ(|P (xi + y)|)

for every P ∈ En(Λ) and y ∈ [a + δ, b − δ], where xi ∈ [−δ, δ] and y ∈ [a + δ, b − δ]
imply that xi + y ∈ [a, b] for each i = 1, 2, . . . , r. Integrating on the interval
[a + δ, b − δ] with respect to y, we obtain

∫ b−δ

a+δ

ϕ

( |P ′(y)|δ
2n − 1

)

dy ≤
r
∑

i=1

∫ b−δ

a+δ

|ci|ϕ(|P (xi + y)|) dy

≤
r
∑

i=1

∫ b

a

|ci|ϕ(|P (t)|) dt ≤
∫ b

a

ϕ(|P (t)|) dt ,

where
∑r

i=1 |ci| = 1 has been used. Choosing now ϕ(x) := xp (1 ≤ p < ∞), we
conclude the theorem. �
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polynomials, Trans. Amer. Math. Soc. 342 (1994), 523–542.

7. D. Braess, Nonlinear Approximation Theory, Springer-Verlag, Berlin, 1986.

8. R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.

9. C. Frappier, Quelques problemes extremaux pour les polynomes at les fonctions entieres de

type exponentiel, Ph. D. Dissertation Universite de Montreal (1982).

10. G. G. Lorentz, Approximation of Functions, 2nd ed., Chelsea, New York, N.Y., 1986.

11. G. G. Lorentz, Notes on approximation, J. Approx. Theory 56 (1989), 360–365.
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