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Abstract. The principal result of this paper is the establishment of the essentially
sharp Markov-type inequality

‖xP ′(x)‖Lp [0,1] ≤



1/p+ 12





n
∑

j=0

(λj + 1/p)







 ‖P‖Lp[0,1]

for every P ∈ span{xλ0 , xλ1 , . . . , xλn} with distinct real exponents λj greater than
−1/p and for every p ∈ [1,∞].

A remarkable corollary of the above is the Nikolskii-type inequality

‖y1/pP (y)‖L∞ [0,1] ≤ 13





n
∑

j=0

(λj + 1/p)





1/p

‖P‖Lp [0,1]

for every P ∈ span{xλ0 , xλ1 , . . . , xλn} with distinct real exponents λj greater than
−1/p and for every p ∈ [1,∞].

Some related results are also discussed.

1. Introduction and Notation

Let Λ := {λi}∞i=0 be a sequence of distinct real numbers. The span of

{xλ0 , xλ1 , . . . , xλn}

over R will be denoted by

Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

Elements of Mn(Λ) are called Müntz (or lacunary) polynomials. We first present
a simplified version of Newman’s beautiful proof of a Markov-type inequality for
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Müntz polynomials. This modification gives a better constant, 9, than the constant
11 appearing in Newman’s paper [5]. But more importantly, this modification
allows us to prove the Lp analogues of Newman’s Inequality. Some related results
are stated in Section 4.

2. New Results

Theorem 2.1 (Newman’s Inequality). Let Λ := {λi}∞i=0 be a sequence of dis-
tinct nonnegative real numbers. Then

2

3

n
∑

j=0

λj ≤ sup
06=P∈Mn(Λ)

‖xP ′(x)‖L∞[0,1]

‖P‖L∞[0,1]
≤ 9

n
∑

j=0

λj .

Frappier [4] shows that the constant 11 in Newman’s Inequality can be replaced
by 8.29. We believe on the basis of considerable computation that the best possible
constant in Newman’s Inequality is 4. (We remark that an incorrect argument exists
in the literature claiming that the best possible constant in Newman’s Inequality
is at least 4 +

√
15 = 7.87 . . . .)

Conjecture (Newman’s Inequality with Best Constant). Let Λ := {λi}∞i=0

be a sequence of distinct nonnegative real numbers. Then

‖xP ′(x)‖L∞[0,1] ≤ 4

(

n
∑

j=0

λj

)

‖P‖L∞[0,1]

for every P ∈ Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

Theorem 2.2 (Newman’s Inequality in Lp). Let p ∈ [1,∞). Let Λ := {λi}∞i=0

be a sequence of distinct real numbers greater than −1/p. Then

‖xP ′(x)‖Lp[0,1] ≤
(

1/p+ 12

(

n
∑

j=0

(λj + 1/p)

))

‖P‖Lp[0,1]

for every P ∈ Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

The following Nikolskii-type inequality follows from Theorem 2.2 quite simply.

Theorem 2.3 (Nikolskii-Type Inequality). Let p ∈ [1,∞). Let Λ := {λi}∞i=0

be a sequence of distinct real numbers greater than −1/p. Then

‖y1/pP (y)‖L∞[0,1] ≤ 13

(

n
∑

j=0

(λj + 1/p)

)1/p

‖P‖Lp[0,1]

for every P ∈ Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.

Theorem 2.3 immediately implies the following result.



THE Lp VERSION OF NEWMAN’S INEQUALITY 3

Theorem 2.4 (Müntz-Type Theorem in Lp). Let p ∈ [1,∞). Let Λ := {λi}∞i=0

be a sequence of distinct real numbers greater than −1/p satisfying

∞
∑

j=0

(λj + 1/p) < ∞.

Then
span{xλ0 , xλ1 , . . . }

is not dense in Lp[0, 1].

Much more about Müntz-type theorems in Lp[0, 1] may be found in [2] and the
references therin.

3. Proofs

Proof of Theorem 2.1 (Newman’s proof modified). It is equivalent to prove that

(3.1)
2

3

n
∑

j=0

λj ≤ sup
06=P∈En(Λ)

‖P ′‖[0,∞)

‖P‖[0,∞)
≤ 9

n
∑

j=0

λj

where En(Λ) is the linear span of {e−λ0t, e−λ1t, . . . , e−λnt} over R. Without loss of
generality we may assume that λ0 = 0. By a change of scale we may also assume
that

∑n
j=0 λj = 1. We may also assume that n ≥ 2, otherwise the theorem is

trivial. We begin with the first inequality. We define the Blaschke product

B(z) :=

n
∏

j=1

z − λj

z + λj

and the function

(3.2) T (t) :=
1

2πi

∫

Γ

e−zt

B(z)
dz, where Γ := {z ∈ C : |z − 1| = 1}.

By the Residue Theorem

T (t) :=

n
∑

j=1

(B′(λj))
−1e−λjt

so T ∈ En(Λ). We claim that

(3.3) |B(z)| ≥ 1

3
, z ∈ Γ.

Indeed, it is easy to see that 0 < λj ≤ 1 implies

∣

∣

∣

∣

z − λj

z + λj

∣

∣

∣

∣

≥ 2− λj

2 + λj
=

1− λj/2

1 + λj/2
, z ∈ Γ
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so, for z ∈ Γ,

|B(z)| ≥
n
∏

j=1

1− λj/2

1 + λj/2
≥

1− 1
2

n
∑

j=1

λj

1 + 1
2

n
∑

j=1

λj

=
1− 1

2

1 + 1
2

=
1

3
.

Here the inequality

1− x

1 + x

1− y

1 + y
=

1− (x+ y)

1 + (x+ y)
+

2xy(x+ y)

(1 + x)(1 + y)(1 + (x+ y))

≥ 1− (x+ y)

1 + (x+ y
, x, y ≥ 0

is used. From (3.2) and (3.3) we deduce that

(3.4) |T (t)| ≤ 1

2π

∫

Γ

∣

∣

∣

∣

e−zt

B(z)

∣

∣

∣

∣

|dz| ≤ 1

2π
3(2π) = 3, t ≥ 0.

T ′(t) =
1

2πi

∫

Γ

−ze−zt

B(z)
dz

and

(3.5) T ′(0) = − 1

2πi

∫

Γ

z

B(z)
dz = − 1

2πi

∫

|z|=1

z

B(z)
dz.

Also, for |z| > max1≤j≤n λj we have the Laurent series expansion

z

B(z)
=z

n
∏

j=1

1 + λj/z

1− λj/z
= z

n
∏

j=1

(

1 + 2

n
∑

k=1

(λj/z)
k

)

(3.6)

=z



1 + 2

(

n
∑

j=1

λj

)

z−1 + 2

(

n
∑

j=1

λj

)2

z−2 + · · ·





=z + 2 + 2z−1 + · · ·

which, together with (3.5), yields that T ′(0) = −2. Hence, by (3.4)

|T ′(0)|
‖T ‖[0,∞)

≥ 2

3
=

2

3

n
∑

j=1

λj

so the lower bound of the theorem is proved.

To prove the upper bound in (2.1), first we show that if

U(t) :=
1

2πi

∫

Γ

e−zt

(1− z)B(z)
dz, Γ := {z ∈ C : |z − 1| = 1}
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then

(3.7)

∫ ∞

0

|U ′′(t)| dt ≤ 6.

Indeed, observe that if z = 1 + e−θ then |z|2 = 2 + 2 cos θ, so (3.3) and Fubini’s
Theorem yield that

∫ ∞

0

|U ′′(t)| dt =
∫ ∞

0

1

2π

∣

∣

∣

∣

∫

Γ

z2e−zt

(1− z)B(z)
dz

∣

∣

∣

∣

dt

≤ 1

2π

∫ ∞

0

∫ 2π

0

|z|2|e−zt|
|B(z)| dθ dt

≤ 3

2π

∫ ∞

0

∫ 2π

0

(2 + 2 cos θ)e−(1+cos θ)t dθ dt

=
3

2π

∫ 2π

0

(2 + 2 cos θ)
1

1 + cos θ
dθ = 6.

Now we show that

(3.8)

∫ ∞

0

e−λjtU ′′(t) dt = 3− λj .

To see this we write the left-hand side as

∫ ∞

0

e−λjtU ′′(t) dt =

∫ ∞

0

e−λjt
1

2πi

∫

Γ

z2e−zt

(1 − z)B(z)
dz dt

=
1

2πi

∫ ∞

0

∫

Γ

z2e−(z+λj)t

(1− z)B(z)
dz dt =

1

2πi

∫

Γ

z2

(z + λj)(1 − z)B(z)
dz

=
1

2πi

∫

|z|=2

z

z + λj

z

1− z

1

B(z)
dz

where in the third equality Fubini’s Theorem is used. Here, for |z| > 1, we have
the Laurent series expansions

z

z + λj
=1− λjz

−1 + λ2
jz

−2 + · · ·
z

1− z
=1 + z−1 + z−2 + · · ·

and, as in (3.6),
1

B(z)
= 1 + 2z−1 + 2z−2 + · · · .

Now (3.8) follows from the Residue Theorem. Let P ∈ En(Λ) be of the form

P (t) =

n
∑

j=0

cje
−λjt, cj ∈ R.
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Then

∫ ∞

0

P (t+ a)U ′′(t) dt =

∫ ∞

0

n
∑

j=0

cje
−λjae−λjtU ′′(t) dt

=

n
∑

j=0

cje
−λja

∫ ∞

0

e−λjtU ′′(t) dt =

n
∑

j=0

cj(3− λj)e
−λja

=3P (a)− P ′(a)

therefore

(3.9) |P ′(a)| ≤ 3|P (a)|+
∫ ∞

0

|P (t+ a)U ′′(t)|dt.

Combining this with (3.7), we obtain

‖P ′‖[0,∞) ≤ 3 ‖P‖[0,∞) + 6 |P‖[0,∞) = 9 ‖P‖[0,∞)

and the theorem is proved. �

Proof of Theorem 2.2. First we show that it is sufficient to prove that if Γ := {γi}∞i=0

is a sequence of distinct positive real numbers then

(3.10) ‖P ′‖Lp[0,∞) ≤ 12

(

n
∑

j=0

γj

)

‖P‖Lp[0,∞)

for every P ∈ En(Γ) and p ∈ [1,∞), where En(Γ) is, as before, the linear span of
{e−γ0t, e−γ1t, . . . , e−γnt} over R.

Indeed, if {λi}∞i=0 is a sequence of distinct real numbers greater than −1/p and
γi := λi+1/p for each i then {γi}∞i=1 is a sequence of distinct positive real numbers.
Let Q ∈ Mn(Λ). Applying (3.10) with

P (t) := Q(e−t)e−t/p ∈ En(Γ)

and using the substitution x = e−t, we obtain that

(∫ 1

0

∣

∣

∣

∣

x
(

x1/pQ(x)
)′
∣

∣

∣

∣

p

x−1 dx

)1/p

≤ 12

(

n
∑

j=0

(λj + 1/p)

)

‖Q‖Lp[0,1].

Now the product rule of differentiation and Minkowski’s Inequality yield

‖xQ′(x)‖Lp[0,1] ≤
(

1/p+ 12

(

n
∑

j=0

(λj + 1/p)

))

‖Q‖Lp[0,1]

which is the inequality of the theorem.
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Let P ∈ En(Γ) and p ∈ [1,∞) be fixed. As in the proof of Theorem 3.1, by a
change of scale, without loss of generality we may assume that

∑n
j=0 γj = 1. It

follows from (3.9) and Hölder’s Inequality that

|P ′(a)|p ≤ 2p−1

(

3p|P (a)|p +
(∫ ∞

0

|P (t+ a)U ′′(t)| dt)
)p)

≤6p|P (a)|p + 2p−1

(

(∫ ∞

0

|P (t+ a)|p|U ′′(t)| dt
)1/p (∫ ∞

0

|U ′′(t)| dt
)1/q

)p

for every a ∈ [0,∞) where q ∈ (1,∞] is the conjugate exponent to p defined by
1/p+ 1/q = 1. Combining the above inequality with (3.7), we obtain that

|P ′(a)|p ≤ 6p|P (a)|p + 2p−16p/q
∫ ∞

0

|P (t+ a)|p|U ′′(t)|dt

for every a ∈ [0,∞). Integrating with respect to a, then using Fubini’s Theorem
and (3.7), we conclude

‖P ′‖pLp[0,∞] ≤6p‖P‖pLp[0,∞] + 2p−16p/q
∫ ∞

0

∫ ∞

0

|P (t+ a)|p|U ′′(t)| dt da

≤6p‖P‖pLp[0,∞] + 2p−16p/q
∫ ∞

0

∫ ∞

0

|P (t+ a)|p|U ′′(t)| da dt

≤6p‖P‖pLp[0,∞] + 2p−16p/q‖P‖pLp[0,∞]

∫ ∞

0

|U ′′(t)|dt

≤6p‖P‖pLp[0,∞] + 2p−16p/q+1‖P‖pLp[0,∞]

=(6p + 2p−16p)‖P‖pLp[0,∞] ≤ 12p‖P‖pLp[0,∞]

and the proof is finished. �

Proof of Theorem 2.3. After the scaling x → yx and the substitution x = e−t,
it is sufficient to prove that if Γ := {γi}∞i=0 is a sequence of distinct positive real
numbers then

(3.11) |P (0)| ≤ 13

(

n
∑

j=0

γj

)1/p

‖P‖Lp[0,∞]

for every P ∈ En(Γ) and p ∈ [1,∞), where En(Γ) is, as before, the linear span of
{e−γ0t, e−γ1t, . . . , e−γnt} over R.

Indeed, if {λi}∞i=0 is a sequence of distinct real numbers greater than −1/p and
γi := λi+1/p for each i then {γi}∞i=1 is a sequence of distinct positive real numbers.
Let Q ∈ Mn(Λ) and y ∈ [0, 1]. Applying (3.11) with

P (t) := Q(ye−t)e−t/p ∈ En(Γ)

and using the substitution x = e−t, we obtain that

|y1/pQ(y)| ≤13

(

n
∑

j=0

(λj + 1/p)

)1/p

‖Q‖Lp[0,y]

≤13

(

n
∑

j=0

(λj + 1/p)

)1/p

‖Q‖Lp[0,1].
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which is the inequality of the theorem.

Now let P ∈ En(Γ). As in the proof of Theorem 3.1, by a change of scale, without
loss of generality we may assume that

∑n
j=0 γj = 1. Using Hölder’s Inequality, we

obtain that

|P (0)| ≤‖P (t)e−t‖L∞[0,∞) ≤ ‖(P (t)e−t)′‖L1[0,∞)

≤‖P ′(t)e−t|‖L1[0,∞) + ‖P (t)e−t‖L1[0,∞)

≤‖P ′‖Lp[0,∞) + ‖P‖Lp[0,∞).

Combining this with (3.10) and
∑n

j=0 γj = 1, we conclude (3.11). �

Remarks. Theorem 2.1 is due to Newman [5] with 11 instead of 9. We presented a
modified version of Newman’s original proof of Theorem 2.1. He worked with T in-
stead of U , and instead of (3.9) he established a more complicated identity involving
the second derivative of P . Therefore, he needed an application of Kolmogorov’s
Inequality to finish his proof.

4. Related Results

In this section we state some related results without proof. Proofs will be pre-
sented in [1].

Theorem 4.1 (Sharpness of Theorem 2.2). Let Λ := {λi}∞i=0 be a sequence
of distinct real numbers with λ0 = 0 and λk ≥ k for each k. Then there exists an
absolute constant c > 0 (independent of Λ or p) so that

sup
P∈Mn(Λ)

‖xP ′(x)‖Lp[0,1]

‖P‖Lp[0,1]
≥ c

n
∑

j=0

λj .

for every p ∈ [2,∞).

It can be proved that under a growth condition ‖xp′(x)‖L∞[0,1] in Newman’s
Inequality can be replaced by ‖p′‖L∞[0,1]. More precisely, the following result holds.

Theorem 4.2 (Newman’s Inequality Without the Factor x). Let Λ :=
{λi}∞i=0 be a sequence of distinct real numbers with λ0 = 0 and λk ≥ k for each k.
Then

‖P ′‖[0,1] ≤ 18

(

n
∑

j=1

λj

)

‖P‖[0,1]

for every P ∈ Mn(Λ).

The next result shows that the growth condition in Theorem 4.2 cannot be
dropped in general.
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Theorem 4.3. For every δ ∈ (0, 1) there exists a sequence Λ := {λi}∞i=0 with
λ0 = 0, λ1 ≥ 1, and

λi+1 − λi ≥ δ, i = 0, 1, 2, . . .

so that

lim
n→∞

sup
P∈Mn(Λ)

|P ′(0)|
(

∑n
j=0 λj

)

‖P‖[0,1]
= ∞.

The following L2 version of Newman’s Inequality is proved in Borwein, Erdélyi,
and J. Zhang [3]. This theorem offers an L2 analogue of Theorem 3.1 even for com-
plex exponents. It also improves the multiplicative constant 12 in the L2 inequality
of Theorem 3.2.

Theorem 4.4 (Newman’s Inequality in L2[0, 1]). If Λ := {λi}∞i=0 is a set of
distinct complex numbers with Re(λi) > −1/2, and Mn(Λ) denotes the linear span
of {xλ0 , xλ1 , . . . , xλn} over C then

sup
06=P∈Mn(Λ)

‖xP ′(x)‖L2[0,1]

‖P‖L2[0,1]

≤
(

n
∑

j=0

|λj |2 +
n
∑

j=0

(1 + 2Re(λj))

n
∑

k=j+1

(1 + 2Re(λk))

)1/2

for every n ∈ N.

If 0 ≤ λ0 < λ1 < · · · are real, and Mn(Λ) denotes the linear span of

{xλ0 , xλ1 , . . . , xλn}

over R then

1

2
√
30

n
∑

j=0

λj ≤ sup
06=P∈Mn(Λ)

‖xP ′(x)‖L2[0,1]

‖P‖L2[0,1]
≤ 1√

2

n
∑

j=0

(1 + 2λj)

for every n ∈ N.

Note that the interval [0, 1] plays a special role in the study of Müntz polyno-
mials. Analogues of the results on [a, b], a > 0, cannot be obtained by a linear
transformation. We can however prove the following result.

Theorem 4.5 (Newman’s Inequality on [a, b] ⊂ [0,∞)). Let Λ := {λi}∞i=1 be
a sequence of nonnegative real numbers. Assume that there exists an α > 0 so that
λi − λi−1 ≥ α for each i. Suppose that [a, b] ⊂ [0,∞). Then there exists a constant
c(a, b, α) depending only on a, b, and α so that

‖P ′‖[a,b] ≤ c(a, b, α)

(

n
∑

j=0

λj

)

‖P‖[a,b]
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for every p ∈ Mn(Λ) where Mn(Λ) denotes the linear span of {xλ0 , xλ1 , . . . , xλn}
over R.

It is also shown that the above result does not necessarily hold without the gap
condition λi − λi−1 ≥ α > 0.

When p = 2 the best possible constant in the Nikolskili-type inequality of Corol-
lary 2.3 is found in [3]. We have the following result.

Theorem 4.6. Let Λ := {λi}∞i=0 be a sequence of distinct real numbers greater
than −1/2. Then

max
P∈Mn(Λ)

|P (1)|
‖P‖L2[0,1]

=

(

n
∑

j=0

(1 + 2λj)

)1/2

.
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1. P. B. Borwein and T. Erdélyi, Polynomials and Polynomials Inequalities, Springer-Verlag,
New York, N.Y. (to appear).
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