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Abstract. A highlight of the paper states that there are absolute constants c1 > 0
and c2 > 0 such that

exp
(

−c1
√
n
)

≤ inf
06=p∈Fn

‖p‖[0,1] ≤ exp
(

−c2
√
n
)

for every n ≥ 2, where Fn denotes the set of polynomials of degree at most n with
coefficients from {−1, 0, 1}.

This Chebyshev-type problem is closely related to the question of how many zeros
a polynomial from the above classes can have at 1. We also give essentially sharp
bounds for this problem. Among others we prove that there is an absolute constant
c > 0 such that every polynomial p of the form

p(x) =
n
∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = |an| = 1 , aj ∈ C

has at most c
√
n real zeros. This improves the old bound c

√
n logn given by Schur

in 1933 as well as more recent related bounds of Bombieri and Vaaler, and up to the
constant c this is the best possible result.
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0. Main Results

We consider the problem of minimizing the uniform norm on [0, 1] over polyno-
mials 0 6= p of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ C ,

where the modulus of the first non-zero coefficient is at least δ > 0. Essentially
sharp bounds are given for this problem. An interesting related result states that
there are absolute constants c1 > 0 and c2 > 0 such that

exp
(
−c1

√
n
)
≤ inf

06=p∈Fn

‖p‖[0,1] ≤ exp
(
−c2

√
n
)

for every n ≥ 2, where Fn denotes the set of polynomials of degree at most n with
coefficients from {−1, 0, 1}.

This Chebyshev-type problem is closely related to the question of how many
zeros a polynomial from the above classes can have at 1. We also give essentially
sharp bounds for this problem.

Inter alia we prove that there is an absolute constant c > 0 such that every
polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = |an| = 1 , aj ∈ C

has at most c
√
n real zeros. This improves the old bound c

√
n logn given by Schur

in 1933 as well as more recent related bounds of Bombieri and Vaaler, and up to
the constant c this is the best possible result.

All the analysis rests critically on the key estimate stating that there are absolute
constants c1 > 0 and c2 > 0 such that

|f(0)|c1/a ≤ exp
(c2
a

)
‖f‖[1−a,1]

for every f ∈ S and a ∈ (0, 1], where S denotes the collection of all analytic
functions f on the open unit disk D := {z ∈ C : |z| < 1} that satisfy

|f(z)| ≤ 1

1− |z| , z ∈ D .

1. Introduction, History, and Notation

We examine a number of problems concerning polynomials with coefficients re-
stricted in various ways. We are particularly interested in how small such polyno-
mials can be on the interval [0, 1]. For example, we prove that there are absolute
constants c1 > 0 and c2 > 0 such that

exp
(
−c1

√
n
)
≤ inf

06=p∈Fn

‖p‖[0,1] ≤ exp
(
−c2

√
n
)
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for every n ≥ 2, where Fn denotes the set of polynomials of degree at most n with
coefficients from {−1, 0, 1}.

Littlewood considered minimization problems of this variety on the unit disk,
hence, the title of the paper. His most famous, now solved, conjecture was that the
L1 norm of an element f ∈ Fn on the unit circle grows at least as fast as c logN ,
where N is the number of non-zero coefficients in f and c > 0 is an absolute
constant.

When the coefficients are required to be integers, the questions have a Diophan-
tine nature and have been studied from a variety of points of view. See [2, 3, 10,
11, 20, 35].

One key to the analysis is a study of the related problem of how large an order
zero these restricted polynomials can have at 1. We answer this latter question
precisely for the class of polynomials of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ C

with fixed |a0| 6= 0.

Variants of these questions have attracted considerable study, though rarely have
precise answers been possible to give. See in particular [1, 7, 6, 19, 39, 41]. Indeed
the classical, much studied, and presumably very difficult problem of Prouhet,
Tarry, and Escott rephrases as a question of this variety. (Precisely: what is the
maximal vanishing at 1 of a polynomial with integer coefficients with l1 norm 2n?
It is conjectured to be n. See [22] or [11].)

We introduce the following classes of polynomials. Let

Pc
n :=

{
n∑

i=0

aix
i : ai ∈ C

}

denote the set of algebraic polynomials of degree at most n with complex coeffi-
cients. Let

Pn :=

{
n∑

i=0

aix
i : ai ∈ R

}

denote the set of algebraic polynomials of degree at most n with real coefficients.
Let

Zn :=

{
n∑

i=0

aix
i : ai ∈ Z

}

denote the set of algebraic polynomials of degree at most n with integer coefficients.
Let

Fn :=

{
n∑

i=0

aix
i : ai ∈ {−1, 0, 1}

}

denote the set of polynomials of degree at most n with coefficients from {−1, 0, 1}.
Let

An :=

{
n∑

i=0

aix
i : ai ∈ {0, 1}

}
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denote the set of polynomials of degree at most n with coefficients from {0, 1}.
Finally, let

Ln :=

{
n∑

i=0

aix
i : ai ∈ {−1, 1}

}

denote the set of polynomials of degree at most n with coefficients from {−1, 1}.

So obviously
Ln, An ⊂ Fn ⊂ Zn ⊂ Pn ⊂ Pc

n .

Throughout this paper the uniform norm on a set A ⊂ R is denoted by ‖.‖A.

In his monograph [30], Littlewood discusses the class Ln and its complex ana-
logue when the coefficients are complex numbers of modulus 1. On page 25 he
writes “These raise fascinating questions.” It is easy to see that the L2 norm of any
polynomial of degree n with complex coefficients of modulus one on the unit circle
is

√
n+ 1. (Here we have normalized so that the unit circle has length 1.) Hence

the minimum supremum norm of any such polynomial on the unit circle is at least√
n+ 1.

The Rudin-Shapiro polynomials show that there are polynomials from Ln with
maximum modulus less than c

√
n+ 1 on the unit circle. Littlewood remarks

in [30] that although it has been known for more than 50 years that gn(θ) :=∑n
m=0 e

im logmeimθ satisfies |gn(θ)| < c
√
n+ 1 on the real line, the existence of

polynomials pn ∈ Ln with |pn(z)| < c
√
n+ 1 on the unit circle has only fairly re-

cently been shown. He adds “As a matter of cold fact, many people had doubted its
truth.” However, it is not known whether or not there are such polynomials from
pn ∈ Ln with minimal modulus also at least c

√
n on the unit circle, where c > 0 is

an absolute constant. Littlewood conjectures that there are such polynomials.

Littlewood also makes the above conjecture in [29] as well as several others. In
[28] he writes that the problem of finding polynomials of degree n with coefficients
of modulus 1 and with modulus on the unit disk bounded below by c

√
n “seems

singularly elusive and intriguing.”

Erdős conjectured that the maximum modulus of a polynomial from Ln is always
at least c

√
n+ 1 with an absolute constant c > 1. Erdős offers $100 for a solution

of this problem in [E9-95]. Both Littlewood’s and Erdős’ conjectures are still open.

In the paper [28] Littlewood also considers
∑n−1

m=0 ω
m(m+1)/2zm and shows that

this polynomial has almost constant modulus (in an asymptotic sense) except on a
set of size cn−1/2+δ. Here ω is a primitive nth root of unity. Further related results
are to be found in [4, 5, 9, 12, 16, 17, 21, 25, 26, 27, 32, 34].

Carrol, Eustice, and T. Figiel [15] show that

lim inf
log(m(n))

log(n+ 1)
> .431 ,

where m(n) denotes the largest value that the minimum modulus of a polynomial
from Ln can be on the unit circle. They also prove that

sup
log(m(n))

log(n+ 1)
= lim

log(m(n))

log(n+ 1)
.
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They further conjecture that m(n)n−1/2 tends to zero (contrary to Littlewood).

The average maximum modulus is computed by Salem and Zygmund [37] who
show that for all but o(2n) polynomials from Ln the maximum modulus on the unit
disk lies between c1

√
n logn and c2

√
n logn.

The expected L4 norm of a polynomial p ∈ Ln is (2n2 − n)1/4. This is due to
Newman and Byrnes [33]. They also compute the L4 norm of the Rudin-Shapiro
polynomials.

In the case of complex coefficients these problems are mostly solved. A very
interesting result of Kahane [24] proves the existence of polynomials of degree n
with complex coefficients of modulus one and with minimal and maximal modulus
both asymptotically

√
n+ 1 on the unit circle. See also [4].

The study of the location of zeros of these classes of polynomials begins with
Bloch and Pólya [6]. They prove that the average number of real zeros of a polyno-
mial from Fn is at most c

√
n. They also prove that a polynomial from Fn cannot

have more than
cn log logn

logn

real zeros. This quite weak result appears to be the first on this subject. Schur
[39] and by different methods Szegő [41] and Erdős and Turán [19] improve this to
c
√
n logn (see also [10]). (Their results are more general, but in this specialization

not sharp.)

Our Theorem 4.1 gives the right upper bound of c
√
n for the number of real

zeros of polynomials from a much larger class, namely for all polynomials of the
form

p(x) =
n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = |an| = 1 , aj ∈ C .

Schur [39] claims that Schmidt gives a version of part of this theorem. However, it
does not appear in the reference he gives, namely [38], and we have not been able
to trace it to any other source. Also, our method is able to give c

√
n as an upper

bound for the number of zeros of a polynomial p ∈ Pc
n with |a0| = 1, |ai| ≤ 1, inside

any polygon with vertices in the unit circle (of course, c depends on the polygon).
This may be discussed in a later publication.

Bloch and Pólya [6] also prove that there are polynomials p ∈ Fn with

cn1/4

√
logn

distinct real zeros of odd multiplicity. (Schur [39] claims they do it for polynomials
with coefficients only from {−1, 1}, but this appears to be incorrect.)

In a seminal paper Littlewood and Offord [31] prove that the number of real
roots of a p ∈ Ln, on average, lies between

c1 logn

log log logn
and c2 log

2 n
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and it is proved by Boyd [13] that every p ∈ Ln has at most c log2 n/ log logn zeros
at 1 (in the sense of multiplicity).

Kac [23] shows that the expected number of real roots of a polynomial of degree
n with random uniformly distributed coefficients is asymptotically (2/π) logn. He
writes “I have also stated that the same conclusion holds if the coefficients assume
only the values 1 and −1 with equal probabilities. Upon closer examination it
turns out that the proof I had in mind is inapplicable... . This situation tends to
emphasize the particular interest of the discrete case, which surprisingly enough
turns out to be the most difficult.” In a recent related paper Solomyak [40] studies
the random series

∑±λn.

2. Number of Zeros at 1 of Polynomials

with Restricted Coefficients

The following two theorems offer upper bounds for the number of zeros at 1 of
certain classes of polynomials with restricted coefficients. The first result sharpens
and generalizes results of Amoroso [1], Bombieri and Vaaler [7], and Hua [22] who
give versions of this result for polynomials with integer coefficients.

Theorem 2.1. There is an absolute constant c > 0 such that every polynomial p
of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ C

has at most

c (n(1− log |a0|))1/2

zeros at 1.

Applying Theorem 2.1 with q(x) := x−np(x−1) immediately gives the following.

Theorem 2.2. There is an absolute constant c > 0 such that every polynomial p
of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ C

has at most

c (n(1− log |an|))1/2

zeros at 1.

The sharpness of the above theorems is shown by

Theorem 2.3. Suppose n ∈ N. Then there exists a polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ R



LITTLEWOOD-TYPE PROBLEMS ON [0, 1] 7

such that p has a zero at 1 with multiplicity at least

min

{
1

6
((n (1− log |a0|))1/2 − 1 , n

}
.

The following two theorems can be obtained from the results above with slightly
worse constants. However, we have distinct attractive proofs of Theorems 2.4 and
2.5 below and we give them also.

Theorem 2.4. Every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |a0| = 1 , |aj | ≤ 1 , aj ∈ C

has at most
⌊
16
7

√
n
⌋
+ 4 zeros at 1.

Theorem 2.5. For every n ∈ N, there exists a polynomial

pn(x) =

n2−1∑

j=0

ajx
j

such that an2−1 = 1; a0, a1, . . . , an2−2 are real numbers of modulus less than 1; and
pn has a zero at 1 with multiplicity at least n− 1.

Theorem 2.5 immediately implies

Corollary 2.6. For every n ∈ N, there exists a polynomial

pn(x) =
n∑

j=0

ajx
j , an = 1 , |aj | ≤ 1 , aj ∈ R ,

and pn has a zero at 1 with multiplicity at least ⌊√n− 1⌋.

The next related result is well known (in a variety of forms) but its proof is
simple and we include it (see [6]).

Theorem 2.7. There is an absolute constant c > 0 such that for every n ∈ N there
is a p ∈ Fn having at least c

√
n/ log(n+ 1) zeros at 1.

Theorems 2.4 and 2.7 show that the right upper bound for the number of zeros
a polynomial p ∈ Fn can have at 1 is somewhere between c1

√
n/ log(n+ 1) and

c2
√
n with absolute constants c1 > 0 and c2 > 0. Completely closing the gap in

this problem looks quite difficult.

Our next theorem slightly generalizes Theorem 2.1 and offers an explicit constant.
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Theorem 2.8. If |a0| ≥ exp(−L2) and |aj | ≤ 1 for each j = L2+1, L2+2, . . . , n,
then the polynomial

p(x) =

n∑

j=0

ajx
j , aj ∈ C

has at most 44
7 (L+ 1)

√
n+ 5 zeros at 1.

The next result is a simple observation about the maximal number of zeros a
polynomial p ∈ An can have.

Theorem 2.9. There is an absolute constant c > 0 such that every p ∈ An has at
most c logn zeros at −1.

Remark to Theorem 2.9. Let Rn be defined by

Rn(x) :=

n∏

i=1

(1 + xai) ,

where a1 := 1 and ai+1 is the smallest odd integer that is greater than
∑i

k=1 ak. It
is tempting to speculate that Rn is the lowest degree polynomial with coefficients
from {0, 1} and a zero of order n at −1. This is true for n = 1, 2, 3, 4, 5 but fails
for n = 6 and hence for all larger n.

Our final result in this section shows that a polynomial Q ∈ Fn with k zeros at
1 has many other zeros on the unit circle (at certain roots of unity). A version of
this may be also be deduced from results in [7].

Theorem 2.10. Let p ≤ n be a prime. Suppose Q ∈ Fn and Q has exactly k zeros
at 1 and exactly m zeros at a primitive pth root of unity. Then

p(m+ 1) ≥ k
log p

log(n+ 1)
.

3. The Chebyshev Problem on [0, 1] for
Polynomials with Restricted Coefficients

If p is a polynomial of the form

p(x) =
n∑

j=0

ajx
j

with a1 = a2 = · · · = am−1 = 0 and am 6= 0, then we call I(p) := am the first
non-zero coefficient of p.

Our first theorem in this section shows how small the uniform norm of a poly-
nomial 0 6= p on [0, 1] can be under some restriction on its coefficients.
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Theorem 3.1. Let δ ∈ (0, 1]. There are absolute constants c1 > 0 and c2 > 0 such
that

exp
(
−c1(n(1− log δ))1/2

)
≤ inf

p
‖p‖[0,1] ≤ exp

(
−c2(n(1 − log δ))1/2

)
,

where the infimum is taken over all polynomials p of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ C

with |I(p)| ≥ δ ≥ exp
(
1
2 (6− n)

)
.

The following result is a special case of Theorem 3.1.

Theorem 3.2. There are absolute constants c1 > 0 and c2 > 0 such that

exp
(
−c1

√
n
)
≤ inf

p
‖p‖[0,1] ≤ exp

(
−c2

√
n
)

for every n ≥ 2, where the infimum is taken over all polynomials p of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ C

with |I(p)| = 1.

For the class Fn we have

Theorem 3.3. There are absolute constants c1 > 0 and c2 > 0 such that

exp
(
−c1

√
n
)
≤ inf

06=p∈Fn

‖p‖[0,1] ≤ exp
(
−c2

√
n
)

for every n ≥ 2.

Note that the lower bound in the above theorem is a special case of Theorem
3.2. The proof of the upper bound, however, requires new ideas.

The approximation rate in Theorems 3.2 and 3.3 should be compared with

inf
p
‖p‖1/n[0,1] =

21/n

4
,

where the infimum is taken for all monic p ∈ Pn, and also with

1

2.376 . . .
< inf

06=p∈Zn

‖p‖1/n[0,1] <
1 + ǫn
2.3605

, ǫn → 0 .

The first equality above is attained by the normalized Chebyshev polynomial shifted
linearly to [0, 1] and is proved by a simple perturbation argument. The second
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inequality is much harder (the exact result is open) and is discussed in [10]. It
is an interesting fact that the polynomials 0 6= p ∈ Zn with the smallest uniform
norm on [0, 1] are very different from the usual Chebyshev polynomial of degree
n. For example, they have at least 52% of their zeros at either 0 or 1. Relaxation
techniques do not allow for their approximate computation.

Likewise, polynomials 0 6= p ∈ Fn with small uniform norm on [0, 1] are again
quite different from polynomials 0 6= p ∈ Zn with small uniform norm on [0, 1].

The story is roughly as follows. Polynomials 0 6= p ∈ Pn with leading coefficient
1 and with smallest possible uniform norm on [0, 1] are characterized by equioscil-
lation and are given explicitly by the Chebyshev polynomials. In contrast, finding
polynomials from Zn with small uniform norm on [0, 1] is closely related to finding
irreducible polynomials with all their roots in [0, 1].

The construction of non-zero polynomials from Fn with small uniform norm on
[0, 1] is more or less governed by how many zeros such a polynomial can have at
1. Indeed, non-zero polynomials from Fn with minimal uniform norm on [0, 1] are
forced to have close to the maximal possible number of zeros at 1.

This problem of the maximum order of a zero at 1 for a polynomial in Fn, and
closely related problems for polynomials of small height have attracted considerable
attention but there is still a gap in what is known (see Theorem 2.4 and Theorem
2.7).

For the class An we have the following Chebyshev-type theorem. This result
should be compared with Theorem 3.3.

Theorem 3.4. There are absolute constants c1 > 0 and c2 > 0 such that

exp
(
−c1 log

2(n+ 1)
)
≤ inf

06=p∈An

‖p(−x)‖[0,1] ≤ exp
(
−c2 log

2(n+ 1)
)

for every n ≥ 2.

Our last theorem in this section is a sharp Chebyshev-type inequality for F :=
∪∞
n=1Fn and S, where S denotes the collection of all analytic functions f on the

open unit disk D := {z ∈ C : |z| < 1} that satisfy

|f(z)| ≤ 1

1− |z| , z ∈ D .

Theorem 3.5. There are absolute constants c1 > 0 and c2 > 0 such that

exp(−c1/a) ≤ inf
p∈S, |p(0)|=1

‖p‖[1−a,1] ≤ inf
p∈F , |p(0)|=1

‖p‖[1−a,1] ≤ exp(−c2/a)

for every a ∈ (0, 1).

4. The Number of Real Zeros of

Polynomials with Restricted Coefficients

Theorems 4.1 and 4.2 below give upper bounds for the number of real zeros of
polynomials p when their coefficients are restricted in various ways.
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The prototype for these theorems is given below. It was apparently first proved,
at least up to the correct constant, by Schmidt in the early thirties. His complicated
proof wasn’t published – the first published proof is due to Schur [39]. Later new
and simpler proofs and generalizations were published by Szegő [41] and Erdős and
Turán [19] and others. A version of the approach of Erdős and Turán is presented
in [10].

Theorem A. Suppose

p(z) :=

n∑

j=0

ajz
j , aj ∈ C

has m positive real roots. Then

m2 ≤ 2n log

(
|a0|+ |a1|+ · · ·+ |an|√

|a0an|

)
.

Theorem 4.1 improves the above bound of c
√
n logn in the cases we are interested

in where the coefficients are of similar size. Up to the constant c it is the best
possible result.

Theorem 4.1. There is an absolute constant c > 0 such that every polynomial p
of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = 1 , aj ∈ C

has at most c
√
n zeros in [−1, 1].

There is an absolute constant c > 0 such that every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |an| = 1 , aj ∈ C

has at most c
√
n zeros in R \ (−1, 1).

There is an absolute constant c > 0 such that every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = |an| = 1 , aj ∈ C

has at most c
√
n real zeros.

Theorem 4.2. There is an absolute constant c > 0 such that every polynomial p
of the form

(4.1) p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = 1 , aj ∈ C
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has at most c/a zeros in [−1 + a, 1− a] whenever a ∈ (0, 1).

This result is sharp up to the constant. It is possible to construct a polynomial
(of degree n ≤ ck2) of the form (4.1) with a zero of order k in the interval (0, 1−1/k].
This is discussed in [3].

The next theorem gives an upper bound for the number of zeros of a polynomial
p lying on a subarc of the unit circle when the coefficients of p are restricted as in
the first statement of Theorem 4.1.

Theorem 4.3. There is an absolute constant c > 0 such that every polynomial p
of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = 1 , aj ∈ C

has at most cnα zeros on a subarc Iα of length α of the unit circle if α ≥ n−1/2,
while it has at most c

√
n zeros on Iα if α ≤ n−1/2. The polynomial p(z) := zn − 1

(α ≥ n−1/2) and Theorem 2.4 (α ≤ n−1/2) show that these bounds are essentially
sharp.

We point out an interesting extension of Theorem 2.4 as a special case of Theorem
4.1.

Theorem 4.4. There is an absolute constant c > 0 such that every polynomial p
of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = 1 , aj ∈ C

has at most c
√
n zeros at a point a ∈ C with 0 < |a| ≤ 1.

There is an absolute constant c > 0 such that every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , |an| = 1 , aj ∈ C

has at most c
√
n zeros at a point a ∈ C with 1 ≤ |a| < ∞.

One should observe that Jensen’s inequality implies that every function f an-
alytic in the open unit disk D := {z ∈ C : |z| < 1} and satisfying the growth
condition

|f(0)| = 1 , |f(z)| ≤ 1

1− |z| , z ∈ D

has at most (c/a) log(1/a) zeros in the disk Da := {z ∈ C : |z| < 1 − a}, where
0 < a < 1 and c > 0 is an absolute constant.

5. Tools

The main tool in the proof of Theorem 2.1 is the following result which is of
interest for its own sake.
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Denote by S the collection of all analytic functions f on the open unit disk
D := {z ∈ C : |z| < 1} that satisfy

|f(z)| ≤ 1

1− |z| , z ∈ D .

Theorem 5.1. There are absolute constants c1 > 0 and c2 > 0 such that

|f(0)|c1/a ≤ exp
(c2
a

)
‖f‖[1−a,1]

for every f ∈ S and a ∈ (0, 1].

Theorem 2.1 is proved in the next section. In the rest of this section we formulate
and prove some technical lemmas used in the proof of Theorem 5.1. We need some
corollaries of the

Hadamard Three Circles Theorem. Suppose f is regular in

{z ∈ C : r1 ≤ |z| ≤ r2} .

For r ∈ [r1, r2], let
M(r) := max

|z|=r
|f(z)| .

Then
M(r)log(r2/r1) ≤ M(r1)

log(r2/r)M(r2)
log(r/r1) .

Corollary 5.2. Let a ∈ (0, 1]. Suppose f is regular inside and on the ellipse Ea

with foci at 1− a and 1− a+ 1
4a and with major axis

[
1− a− 9a

64
, 1− a+

25a

64

]
.

Let Ẽa be the ellipse with foci at 1− a and 1− a+ 1
4a and with major axis

[
1− a− a

32
, 1− a+

9a

32

]
.

Then

max
z∈Ẽa

|f(z)| ≤
(

max
z∈[1−a,1−a+ 1

4
a]
|f(z)|

)1/2(
max
z∈Ea

|f(z)|
)1/2

.

Proof. This follows from the Hadamard Three Circles Theorem with the substitu-
tion

w =
a

8

(
z + z−1

2

)
+
(
1− a+

a

8

)
.

The Hadamard Three Circles Theorem is applied with r1 := 1, r := 2, and r2 :=
4. �
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Corollary 5.3. For every f ∈ S and a ∈ (0, 1]

max
z∈Ẽa

|f(z)| ≤
(

64

39a

)1/2(
max

z∈[1−a,1]
|f(z)|

)1/2

.

Proof. This follows from Corollary 5.2 and the maximum principle. �

Lemma 5.4. Suppose

p(x) =

n∑

j=0

ajx
j , |aj | ≤ 1 , aj ∈ C

p(x) = (x− 1)kq(x) , q(x) =
n−k∑

j=0

bjx
j , bj ∈ C .

Then

‖q‖[0,1] ≤
n−k∑

j=0

|bj | ≤ (n+ 1)e
(en
k

)k−1

≤ (n+ 1)
(en
k

)k
.

As a consequence,

‖p‖[1−k/(9n),1] ≤ (n+ 1)
(e
9

)k
.

Proof. We have

|bj | =
∣∣∣∣
1

j!

dj

dxj
(p(x)(x − 1)−k)

∣∣∣
x=0

∣∣∣∣

=

∣∣∣∣∣
1

j!

j∑

m=0

(
j

m

)
(−1)k

(k +m− 1)!

(k − 1)!
p(j−m)(0)

∣∣∣∣∣

=

∣∣∣∣∣

j∑

m=0

(k +m− 1)!

(k − 1)!m!

1

(j −m)!
p(j−m)(0)

∣∣∣∣∣ =
∣∣∣∣∣

j∑

m=0

(k +m− 1)!

(k − 1)!m!
aj−m

∣∣∣∣∣

≤
(
k + j

k

)
≤
(
e(k + j)

k

)k

≤
(en
k

)k

which proves the lemma. �

To prove Theorem 2.3 our tool is the next lemma due to Halász [42].

Lemma 5.5. For every k ∈ N, there exists a polynomial h ∈ Pk such that

h(0) = 1 , h(1) = 0 , |h(z)| < exp

(
2

k

)
for |z| ≤ 1 .

To prove Theorems 2.4 and 2.8 we need Lemmas 5.6 and 5.7, respectively, below.
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Lemma 5.6. For every positive integer n, there exists an f ∈ Pµ with

µ ≤
⌊
16
7

√
n
⌋
+ 4

such that
f(0) > |f(1)|+ |f(2)|+ · · ·+ |f(n)| .

Proof. Let
k :=

⌊
4
7

√
n
⌋
+ 1

and

g(x) =
1

2
T0(x) + T1(x) + T2(x) + · · ·+ Tk(x)

where, as usual, Ti denotes the Chebyshev polynomial of degree i. We have g(1) =
k + 1

2 , and for 0 < t ≤ π,

g(cos t) =
1

2
+ cos t+ cos 2t+ · · ·+ cos kt =

sin
(
k + 1

2

)
t

2 sin t
2

=
sin
(
k + 1

2

)
t√

2(1− cos t)
,

whence

|g(x)| ≤ 1√
2(1− x)

, x ∈ [−1, 1) .

Let
f(x) :=

(
g
(
1− 2

nx
))4

.

Then f ∈ Pµ with µ = 4k ≤
⌊
16
7

√
n
⌋
+ 4 and

|f(1)|+ |f(2)|+ · · ·+ |f(n)| ≤
n∑

j=1

(
4j

n

)−2

=
n2

16

n∑

j=1

1

j2
<

π2

96
n2 < k4 < f(0) ,

and the proof is finished. �

Lemma 5.7. Let n and L be a positive integers with 1 ≤ L ≤ √
n. Then there

exists a polynomial f ∈ Pµ with

µ ≤ 4
√
n+ 9

7L
√
n+ L+ 4 ≤ 44

7 L
√
n+ 4

such that

(5.1) f(1) = f(2) = · · · = f(L2) = 0

and

(5.2) f(0) > exp(L2)
(
|f(L2 + 1)|+ |f(L2 + 2)|+ · · ·+ |f(n)|

)
.

Proof. The required polynomial f is constructed as a product of other polynomials.
First we define these factors. Let g0 ∈ Pµ with

µ ≤
⌊
16
7

√
n
⌋
+ 4
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and

(5.3) g0(0) > |g0(1)|+ |g0(2)|+ · · ·+ |g0(n)| .

The existence of such a polynomial g0 is guaranteed by Lemma 5.6. For j =
1, 2, . . . , n, we define

mj := ⌊
√
n/j⌋+ 1

and

gj(x) := Tmj

(
1−

1− cos π
2mj

j
x

)
.

Then

gj(0) = Tmj
(1) = 1 and gj(j) = Tmj

(
cos π

2mj

)
= 0 .

Also, for 0 ≤ x ≤ n, we have

1 ≥ 1−
1− cos π

2mj

j
x ≥ 1−

2n sin2 π
4mj

j
> 1−

2n
(

π
4mj

)2

j
> 1− 2 = −1 ,

hence
|gj(x)| ≤ 1 x ∈ [0, n] .

Now let

h(x) := TkL

(
1 +

2(L2 − x)

n

)
, k :=

⌊√
n
⌋
+ 1 .

Then h ∈ PkL and
|h(x)| ≤ 1 , L2 ≤ x ≤ n .

Further 1 ≤ L ≤ √
n, k = ⌊√n⌋+ 1, and the concavity of the function cosh−1(1 +

2x2) on [0, 1] imply

h(0) = TkL

(
1 +

2L2

n

)
= cosh

(
kL cosh−1

(
1 +

2L2

n

))

> cosh

(
L
√
n

L√
n
cosh−1(1 + 2)

)

>
1

2
exp((7/4)L2) > exp(L2) .

Now we define the required polynomial f by

f := h

L2∏

j=0

gj .

This f satisfies
f(1) = f(2) = · · · = f(L2) = 0 ,

|f(x)| ≤ g0(x) , L2 ≤ x ≤ n ,
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and

f(0) = g0(0)h(0) > exp(L2)g0(0) .

These, together with (5.3) show that (5.1) and (5.2) are satisfied. The degree of
the polynomial f is at most

(
16
7

√
n+ 4

)
+

L2∑

j=1

mj +
(⌊√

n
⌋
+ 1
)
L

≤
(
16
7

√
n+ 4

)
+
(√

n+ 1
)
L+

L2∑

j=1

(√
n/j + 1

)

<
(
16
7

√
n+ 4

)
+
(√

n+ 1
)
L+ L2 + (2L− 1)

√
n

≤ 4L
√
n+ 9

7

√
n+ L+ 4 .

This finishes the proof. �

6. Proofs of the Main Results

Proof of Theorem 5.1. Let h(z) = 1
2 (1 − a)(z + z2). Observe that h(0) = 0, and

there are absolute constants c3 > 0 and c4 > 0 such that

|h(eit)| ≤ 1− c3t
2 , −π ≤ t ≤ π ,

and for t ∈ [−c4a, c4a], h(e
it) lies inside the ellipse Ẽa. Now let m := ⌊2πc4/a⌋+1.

Let ξ := exp(2πi/(2m)) be the first 2mth root of unity, and let

g(z) =

2m−1∏

j=0

f(h(ξjz)) .

Using the Maximum Principle and the properties of h, we obtain

|f(0)|2m = |g(0)| ≤ max
|z|=1

|g(z)| ≤
(
max
z∈Ẽa

|f(z)|
)2 m−1∏

k=1

(
1

c3(k/m)2

)2

=
(
max
z∈Ẽa

|f(z)|
)2

ec5(m−1)

(
mm−1

(m− 1)!

)4

<
(
max
z∈Ẽa

|f(z)|
)2

ec6(m−1) ,

and the theorem follows by Lemma 5.3. �

Proof of Theorem 2.1. Let p be a polynomial of the form

p(x) =

n∑

j=0

ajx
j , a0 6= 0 , |aj | ≤ 1 , aj ∈ C .
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Then p ∈ S. Suppose p has k zeros at 1. Without loss of generality we may assume
that 2

√
n+ 1 ≤ k ≤ n. Applying Theorem 5.1 with a := k/(3n), then using Lemma

5.4, we obtain

|a0|3c1n/k ≤ exp

(
9c2n

k

)
‖p‖[1−k/(9n),1] ≤ exp

(
9c2n

k

)
(n+ 1)

(e
9

)k
.

Taking log of both sides, and after some algebra, we obtain

k log
9

e
≤ 3c1n

k

(
3c2
c1

− log |a0|
)
+ log(n+ 1) .

Using log(n+ 1) ≤
√
n+ 1 ≤ k/2, we can deduce that

k2 log
9

e
≤ 3c1n

(
3c2
c1

− log |a0|
)
+

k2

2
.

Hence

k2
(
log

9

e
− 1

2

)
≤ 3c1n

(
3c2
c1

− log |a0|
)

,

and the result follows. �

Proof of Theorem 2.3. Let 0 6= |a0| ≤ 1,

k :=

⌊(
4n

log (1 + |a0|−1)

)1/2
⌋
+ 1 and m :=

⌊n
k

⌋
.

Let h be a polynomial given by Lemma 5.5, that is, h ∈ Pk, h(0) = 1, h(1) = 0,
and if |z| ≤ 1, then |h(z)| < exp

(
2
k

)
. Let

f(x) := hm(x) =: b0 + b1x+ b2x
2 + · · ·+ bkmxkm .

The degree of the polynomial f is km ≤ n; the multiplicity of the zero of f at 1 is at
leastm because of the choice of h; f(0) = b0 = 1; and for |z| ≤ 1, |f(z)| ≤ exp

(
2m
k

)
.

The last inequality, together with the Parseval formula, implies that

|b0|2 + |b1|2 + · · ·+ |bkm|2 =
1

2π

∫ 2π

0

|f(eit)|2 dt

≤ exp

(
4m

k

)
≤ exp

(
4n

k2

)

≤ exp
(
log
(
1 + |a0|−1

))

≤ 1 + |a0|−2 .

Since b0 = 1, it follows that each of b1, b2, . . . , bkm has modulus less than |a0|−1.

Let p := a0f. The constant term of p is a0; all the other coefficients of p have
modulus less than 1; the multiplicity of the zero of p at 1 is at least m; and

m =

 n⌊
(4n)1/2 (log (1 + |a0|−1))−1/2

⌋
+ 1

 ≥ 1

4

√
n log (1 + |a0|−1)− 1

≥ 1

4
√
2

√
n (1− log |a0|)− 1
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whenever exp(−3n) ≤ |a0| ≤ 1. Note that exp(−3n) ≤ |a0| ≤ 1 implies

⌊
(4n)1/2

(
log
(
1 + |a0|−1

))−1/2
⌋
+ 1 ≤ 2 (4n)1/2

(
log
(
1 + |a0|−1

))−1/2

which was used in the first inequality above.

If |a0| ≤ exp(−3n) ≤
(
1
2

)n
, then the polynomial p defined by p(x) = a0(x − 1)n

is of the required form and has n zeros at 1. This finishes the proof. �

Proof of Theorem 2.4. If p has a zero at 1 of multiplicity µ, then for every polyno-
mial f ∈ Pc

µ, we have

(6.1) a0f(0) + a1f(1) + · · ·+ anf(n) = 0 .

Lemma 5.6 constructs a polynomial f of degree at most

µ ≤
⌊
16
7

√
n
⌋
+ 4

for which
f(0) > |f(1)|+ |f(2)|+ · · ·+ |f(n)| .

Equality (6.1) cannot hold with this f , so the multiplicity of the zero of p at 1 is
at most the degree of f . �

Proof of Theorem 2.5. Define

Ln(x) :=
(n!)2

2πi

∫

Γ

xt dt∏n
k=0 (t− k2)

, n = 0, 1, . . .

where the simple closed contour Γ surrounds the zeros of the denominator in the
integrand. Then Ln is a polynomial of degree n2 with a zero of order n at 1. (This
can easily be seen by repeated differentiation and then evaluation of the above
contour integral by expanding the contour to infinity.)

Also, by the residue theorem,

Ln(x) = 1 +

n∑

k=1

ck,nx
k2

,

where

ck,n =
(−1)n(n!)2∏n

j=0,j 6=k(k
2 − j2)

=
(−1)k2(n!)2

(n− k)!(n+ k)!
.

It follows that
ck,n ≤ 2 , k = 1, 2, . . . , n

and |ck,n| is decreasing in k. Note also that sign(ck,n) = (−1)k for k = 0, 1, . . . , n,
where c0,n := 1. Hence,

qn(x) :=
Ln(x)

1− x
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is a polynomial of degree n2− 1 with real coefficients and with a zero of order n− 1
at 1. Also qn has constant coefficient 1 and each of its remaining coefficients is a

real number of modulus less than 1. Now let pn(x) := xn2−1qn(1/x). �

Proof of Theorem 2.7. This is a standard box principle argument. The number of
different outputs of the map

M(P ) :=
(
P (1), P ′(1), . . . , P (k−1)(1)

)
, P ∈ An

is at most
k−1∏

j=0

(
(n+ 1)nj

)
≤ (n+ 1)k(k+1)/2 .

There are 2n+1 different elements of An. So if

(n+ 1)k(k+1)/2 < 2n+1

then there are two different P1 ∈ An and P2 ∈ An such that

P
(j)
1 (1) = P

(j)
2 (1) , j = 0, 1, . . . , k − 1

that is 0 6= P1 − P2 ∈ Fn has at least k zeros at 1. Note that

k <

√
(2 log 2)(n+ 1)

log(n+ 1)
− 1 implies (n+ 1)k(k+1)/2 < 2n+1

which finishes the proof. �

Proof of Theorem 2.8. If p has a zero at 1 of multiplicity µ, then for every polyno-
mial f ∈ Pc

µ, we have

(6.2) a0f(0) + a1f(1) + · · ·+ anf(n) = 0 .

Lemma 5.7 constructs a polynomial f of degree at most

µ ≤ 4
√
n+ 9

7L
√
n+ L+ 4 ≤ 44

7 L
√
n+ 4

for which (5.1) and (5.2) hold. Recalling the assumptions of the theorem on the
coefficients aj of p, equality (6.2) cannot hold with this f , so the multiplicity of the
zero of p at 1 is at most the degree of f . �

Proof of Theorem 2.9. Suppose P ∈ An has m zeros at −1. Then (1+ x)m divides
P and the quotient is a polynomial with integer coefficients. On evaluating P at 1
we see that n+ 1 ≥ P (1) ≥ 2m and the result follows. �

Proof of Theorem 2.10. Let

ξj := exp

(
2πij

p

)
, j = 1, 2, . . . , p− 1 .
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Let Q ∈ Fn be of the form

Q(x) = (x − 1)kR(x) ,

where R is a polynomial of degree at most n − k with integer coefficients. Then,
for every integer m ≤ k, we have

Q(m)(x) = (x − 1)k−mS(x) ,

where S is a polynomial of degree at most n− k with integer coefficients. Hence

K :=

p−1∏

j=1

Q(m)(ξj) =

p−1∏

j=1

(ξj − 1)k−m

p−1∏

j=1

S(ξj) =: pk−mN ,

where both K and N are integers by the fundamental theorem of symmetric poly-
nomials. Further

|K| ≤
p−1∏

j=1

(n+ 1)nm ≤ (n+ 1)(p−1)(m+1) .

Hence K 6= 0 implies

pk−m ≤ (n+ 1)(p−1)(m+1) ,

that is,

k −m ≤ (p− 1)(m+ 1) log(n+ 1)

log p
,

and the result follows. �

Proof of Theorem 3.1. First we prove the lower bound. If P is one of those poly-
nomials over which the infimum is taken, then

P (x) = xmQ(x)

with an integer 0 ≤ m ≤ n and with a polynomial Q of the form

Q(x) =
n−m∑

j=0

bjx
j , |bj | ≤ 1 , bj ∈ C , |Q(0)| = |b0| ≥ δ .

Applying Theorem 5.1 with

0 < a :=

(
1− log |b0|

n

)1/2

≤
(
2− (6− n)

2n

)1/2

<
1√
2
,

we obtain

‖Q‖[1−a,1] ≥ |b0|c1/a exp
(−c2

a

)
≥ exp

(
−c3(n(1− log δ))1/2

)
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with an absolute constant c3 > 0. Now observe that x ∈ [1− a, 1] implies

xm ≥ xn ≥ (1− a)n ≥ exp

(
− na

1− a

)
≥ exp

(
−c4(n(1 − log δ))1/2

)

with an absolute constant c4 > 0, and the lower bound is proved.

Next we prove the upper bound. Suppose n ∈ N and b0 := δ satisfy

exp

(
1

2
(6 − n)

)
≤ |b0| ≤ 1 .

Let ν := ⌊n/5⌋. This implies

exp(−3ν) ≤ exp

(
1

2
(6− n)

)
≤ |b0| ≤ 1 .

Then by Theorem 2.3 (recall the cases distinguished in its proof), there exists a
polynomial Sν of the form

Sν(x) =

ν∑

j=0

bjx
j , |bj| ≤ 1 bj ∈ C

such that Sν has a zero at 1 with multiplicity at least

k ≥ 1

6
(ν (1− log |b0|))1/2 − 1 .

Let
Sν(x) := (1− x)kQν−k(x) , Qν−k ∈ Pc

ν−k .

Let Pn ∈ Pc
n be defined by

Pn(x) := x4νSν(x) .

Note that I(Pn) = b0 = δ, so Pn is one of those polynomials over which the infimum
in the theorem is taken. Now Lemma 5.4 implies that

‖Pn‖[0,1] ≤ ‖x4ν(1− x)k‖[0,1]‖Qν−k‖[0,1]

≤
(

4ν

4ν + k

)4ν (
k

4ν + k

)k

(ν + 1)
(eν
k

)k

≤ (ν + 1)
(e
4

)k
= exp(−k log(4/e) + log(ν + 1))

≤ exp
(
−c5(n(1 − log |b0|))1/2

)
= exp

(
−c5(n(1 − log δ))1/2

)

with an absolute constant c5 > 0, and the upper bound of the theorem follows. �

As we have already remarked, Theorem 3.2 is an immediate consequence of
Theorem 3.1.

Proof of Theorem 3.3. The lower bound of the theorem follows from Theorem 3.2.
To prove the upper bound of the theorem we argue as follows.
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Without loss of generality we may assume that n ∈ N is sufficiently large. Let
k := ⌊ 1

2

√
n⌋. Let

1− k/(2n) =: y0 < y1 < · · · < yk := 1

be k + 1 equidistant points. We use a counting argument to find a polynomial
f ∈ Fn−1 with the property

(6.3) |f(yj)| ≤ 21−
√
n , j = 0, 1, . . . , k .

if n is sufficiently large. Indeed, we can divide the (k + 1)–dimensional cube

Q := {(x0, x1, . . . , xk) : xj ∈ [0, n+ 1) , j = 0, 1, . . . , k}

into (m(n+ 1))k+1 subcubes by defining

Qi0,i1,... ,ik :=

{
(x0, x1, . . . , xk) : xj ∈

[
ij
m
,
ij + 1

m

)
, j = 0, 1, . . . , k

}
,

where (i0, i1, . . . , ik) are (k + 1)–tuples of integers with 0 ≤ ij ≤ m(n+ 1)− 1 for
each j = 0, 1, . . . , k. Note that if P ∈ An−1, then

M(P ) := (P (y0), P (y1), . . . , P (yk)) ∈ Q .

Also, there are exactly 2n elements of An−1. Therefore, if

(m(n+ 1))k+1 < 2n

holds, then there exist two different P1 ∈ An and P2 ∈ An, and a subcubeQi0,i1,... ,ik

such that
M(P1) = (P1(y0), P1(y1), . . . , P1(yk)) ∈ Qi0,i1,... ,ik

and
M(P2) = (P2(y0), P2(y1), . . . , P2(yk)) ∈ Qi0,i1,... ,ik .

Hence, for 0 6= f := P1 − P2 ∈ Fn, we have

|f(yj)| ≤ m−1 , j = 0, 1, . . . , k .

Now choose m := ⌊2−
√
n⌋. This, together with k := ⌊ 1

2

√
n⌋, yields that the in-

equality (m(n+ 1))k < 2n holds provided n is sufficiently large, and (6.1) follows.

Observe that ‖p(k+1)‖[0,1] ≤ nk+2 for every p ∈ Fn−1, in particular, for f ∈ Fn−1

satisfying (6.3).

Let y ∈ [y0, 1] be an arbitrary point different from each yj . By a well-known
formula for divided differences,

f(y)
∏k

j=0 (y − yj)
+

k∑

i=0

f(yi)

(yi − y)
∏k

j=0,j 6=i (yi − yj)
=

1

(k + 1)!
f (k+1)(ξ)

for some ξ ∈ [y0, 1].
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Combining (6.3) and our two observations above, we obtain

|f(y)|

≤ 1

(k + 1)!
|f (k+1)(ξ)|

∣∣∣
k∏

j=0

(y − yj)
∣∣∣+

k∑

i=0

|f(yi)|
∣∣∣∣∣

∏k
j=0 (y − yj)

(yi − y)
∏k

j=0,j 6=i (yi − yj)

∣∣∣∣∣

≤ 1

(k + 1)!
nk+2 (k + 1)!

(2n)k+1
+ 21−

√
n

k∑

i=0

k!

i!(k − i)!

≤ 2−(k+1)n+ 21−
√
n 2k ≤ 2−(1/2)

√
nn+ 21−

√
n 2(1/2)

√
n

≤ exp
(
−c3

√
n
)

with an absolute constant c3 > 0. Since y ∈ [y0, 1] is arbitrary, we have proved that

‖f‖[y0,1] ≤ exp
(
−c3

√
n
)
,

where y0 = 1−k/(2n) ≤ 1− 1
4n

−1/2 for sufficiently large n. Now for g(x) := xnf(x),
we have g ∈ F2n and

‖g‖[0,1] ≤ exp
(
−c2

√
n
)

with an absolute constant c2 > 0.

The proof of the theorem is now finished. �

Proof of Theorem 3.4. First we prove the lower bound. Suppose 0 6= p(−x) ∈ An

has exactly k zeros at 1. Then, using Theorem 2.9 and Markov’s Inequality, we
obtain

‖P‖[0,1] ≥ (2n)−2k|P (k)(1)| ≥ (2n)−c logn

≥ exp (−c(logn) log(2n))

(note that |P (k)(1)| is a positive integer, hence at least 1), and the lower bound of
the theorem follows. The upper bound follows from the following example. Let

Qm(x) := x3m
m∏

k=0

(
1 + x3k

)
.

Then Qm ∈ A3m+1 , and for x ∈ [0, 1],

0 ≤ −Qm(−x) = x3m
m∏

k=0

(
1− x3k

)
≤
(
x3m(1 − x)m+1

) m∏

k=0




3k−1∑

j=0

xj




≤
(

m+ 1

3m +m+ 1

)m+1(
1− m+ 1

3m +m+ 1

)3m m∏

k=0

3k

≤
(

m+ 1

3m +m+ 1

)m+1

3m(m+1)/2 ≤ exp
(
−c(m+ 1)2

)

with an absolute constant c > 0, and the upper bound of the theorem follows. �
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Proof of Theorem 3.5. The lower bound follows from Theorem 5.1 immediately.
The upper bound is a simple corollary of Theorem 3.3 with the choice n := ⌊(c/a)2⌋
with a suitable absolute constant c > 0. Indeed, without loss of generality we may
assume that a ∈ (0, 1/2] and n := ⌊(c/a)2⌋ is an integer. The upper bound in
Theorem 3.3 implies that there is a 0 6= p ∈ Fn such that

(6.4) ‖p‖[0,1] ≤ exp
(
−c2

√
n
)
≤ exp (−c2c/a) .

Then p is of the form

(6.5) p(x) = xkq(x) , q ∈ Fn , q(0) = 1 , 0 ≤ k ≤ n .

Here

(6.6) xk ≥ xn ≥ (1− a)(c/a)
2 ≥ exp (−(c2c/(2a)) , x ∈ [1− a, 1]

with a suitable absolute constant c > 0. Now by (6.4), (6.5), and (6.6), we have
q ∈ F , q(0) = 1, and

‖q‖[1−a,1] ≤ exp (−(c2c/(2a)) .

�

Proof of Theorem 4.2. By using a substitution q(x) = p(−x), it is sufficient to
estimate the number of zeros only in (0, 1− a]. Let p be a polynomial of the form
in the theorem. If a > 1/2, then p has no zero in [0, 1 − a]. So we assume that
a ≤ 1/2.First we estimate the number of zeros only in [1 − (5/4)a, 1 − a]. Denote
the number of the zeros of p in [1 − (5/4)a, 1 − a] by m. Let y be a point in
[1− (5/4)a, 1− a] at which

|p(y)| ≥ exp
(
−c3

a

)
,

where c3 > 0 is an absolute constant. The existence of such a point y is guaranteed
by Theorem 5.1 (one needs to combine it with a linear transformation). By using a
well-known formula for divided differences at the m zeros of p in [1− (5/4)a, 1− a]
and at y, there exists a ξ ∈ [1− (5/4)a, 1− a] such that

|p(m)(ξ)| ≥ m!
(a
4

)−m

|p(y)| ≥ m!
(a
4

)−m

exp
(
−c3

a

)
.

Estimating |p(m)(ξ)| by the Cauchy integral formula on the circle centered at ξ with
radius a/2 (note that ξ + a/2 ≤ 1− a/2), we obtain

|p(m)(ξ)| ≤ m!
2(a/2)π

2π

2

a

(a
2

)−m−1

.

Combining the previous two inequalities, we get

2m ≤ 2

a
exp

(c3
a

)
≤ exp

(c4
a

)
,
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which gives m ≤ c5/a. Now counting the zeros of p in

[1− (5/4)a, 1−a] , [1− (5/4)2a, 1− (5/4)a] , . . . , [1− (5/4)ka, 1− (5/4)k−1a] ,

where k is the smallest positive integer for which (5/4)ka ≥ 1/2, and applying the
already proved estimate with a, (5/4)a, . . . , (5/4)k−1a, we get the bound of the
theorem for the number of zeros in [1/2, 1− a]. Since p has no zeros in [0, 1/2), the
proof is finished. �

Proof of Theorem 4.1. By using a substitution q(x) = xnp(x−1), it is sufficient to
prove only the first statement; the other two follow from it. Also, by Theorem 4.2
and by the substitution q(x) = p(−x), it is sufficient to prove that p has at most
c
√
n zeros in [1 − n−1/2, 1]. Let p be a polynomial of the form in the theorem.

Denote the number of the zeros of p in [1 − n−1/2, 1] by m. Let y ∈ [1 − n−1/2, 1]
be a point at which

|p(y)| ≥ exp
(
−c6n

1/2
)
,

where c6 > 0 is an absolute constant. The existence of such a point y is guaranteed
by Theorem 5.1. By using a well-known formula for divided differences at the m
zeros of p in [1− n−1/2, 1] and at y, there exists a ξ ∈ [1− n−1/2, 1] such that

|p(m)(ξ)| ≥ m!
(
n−1/2

)−m

|p(y)| ≥ m!nm/2 exp
(
−c6n

1/2
)
.

Estimating |p(m)(ξ)| by the Cauchy integral formula on the circle centered at ξ with
radius 2n−1/2, we obtain

|p(m)(ξ)| ≤ m!
2n−1/2π

2π
n
(
1 + 2n−1/2

)n (
2n−1/2

)−m−1

≤ m!nm/2 exp
(
c7n

1/2
)
2−m−1 .

Combining the previous two inequalities, we get

2m ≤ exp
(
c8n

1/2
)
,

which gives m ≤ c9n
1/2. This finishes the proof. �

Proof of Theorem 4.3. The proof is a straightforward modification of that of The-
orem 4.1. We omit the details. �

Proof of Theorem 4.4. The proof follows easily from Theorem 4.1 by studying
q(x) := p(ax). �

7. Remarks

There is an obvious interval dependence in the problem of finding non-zero poly-
nomials from Fn with minimal uniform norm. It is quite easy to argue that on any
interval [0, δ] with δ < 1/2 the only polynomials from Fn with minimal uniform
norm are ±xn. On [0, 1/2] all of ±xn and ±(xn − xn−1) are extremals. On any
interval [0, δ] with δ > 1/2 the polynomials ±(xn − xn−1) have smaller supremum
norm than the supremum norm of xn, so the nature of the extremals change at
1/2. Also, on any interval [1, γ] with γ > 1, inff ‖f‖[1,γ] > 0, where the infimum is
taken over all 0 6= f ∈ ∪∞

n=1Fn.
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10. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag,
New York, 1995.

11. P. Borwein and C. Ingalls, The Prouhet, Tarry, Escott problem, Ens. Math. 40 (1994),
3–27.

12. J. Bourgain, Sul le minimum d’une somme de cosinus, Acta Arith. 45 (1986), 381–389.

13. D. Boyd, On a problem of Byrnes concerning polynomials with restricted coefficients,
Math. Comput. 66 (1997), 1697–1703.

14. J.S. Byrnes and D.J. Newman, Null Steering Employing Polynomials with Restricted
Coefficients, IEEE Trans. Antennas and Propagation 36 (1988), 301–303.

15. F.W. Carrol, D. Eustice and T. Figiel, The minimum modulus of polynomials with
coefficients of modulus one, Jour. London Math. Soc. 16 (1977), 76–82.

16. J. Clunie, On the minimum modulus of a polynomial on the unit circle, Quart. J. Math.
10 (1959), 95–98.

17. P.J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math.
82 (1960), 191–212.
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