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Abstract. In signal processing the Rudin-Shapiro polynomials have good autocorrelation
properties and their values on the unit circle are small. Binary sequences with low auto-

correlation coefficients are of interest in radar, sonar, and communication systems. In this

paper we study the oscillation of the modulus of the Rudin-Shapiro polynomials on the unit
circle. We also show that the Rudin-Shapiro polynomials Pk and Qk of degree n − 1 with

n := 2k have o(n) zeros on the unit circle. This should be compared with a result of B.

Conrey, A. Granville, B. Poonen, and K. Soundararajan stating that for odd primes p the
Fekete polynomials fp of degree p− 1 have asymptotically κ0p zeros on the unit circle, where

0.500813 > κ0 > 0.500668. Our approach is based heavily on the Saffari and Montgomery

conjectures proved recently by B. Rodgers. We also prove that there are absolute constants
c1 > 0 and c2 > 0 such that the k-th Rudin-Shapiro polynomials Pk and Qk of degree

n− 1 = 2k − 1 have at least c2n zeros in the annulus

{

z ∈ C : 1−
c1

n
< |z| < 1 +

c1

n

}

.

1. Introduction and Notation

Let D := {z ∈ C : |z| < 1} denote the open unit disk of the complex plane. Let
∂D := {z ∈ C : |z| = 1} denote the unit circle of the complex plane. LetK := R (mod 2π).
The Mahler measure M0(f) is defined for bounded measurable functions f on ∂D by

M0(f) := exp

(
1

2π

∫ 2π

0

log |f(eit)| dt
)

.

It is well known, see [HL-52], for instance, that

M0(f) = lim
q→0+

Mq(f) ,
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where

Mq(f) :=

(
1

2π

∫ 2π

0

∣∣f(eit)
∣∣q dt

)1/q

, q > 0 .

It is also well known that for a function f continuous on ∂D we have

M∞(f) := max
t∈[0,2π]

|f(eit)| = lim
q→∞

Mq(f) .

It is a simple consequence of the Jensen formula that

M0(f) = |c|
n∏

j=1

max{1, |zj|}

for every polynomial of the form

f(z) = c

n∏

j=1

(z − zj) , c, zj ∈ C .

See [BE-95, p. 271] or [B-02, p. 3], for instance. It will be convenient for us to introduce
the notation

Mq(S) := Mq(f) , 0 ≤ q ≤ ∞ ,

for functions S defined on the period K := R (mod 2π) by S(t) := f(eit), where f is a
bounded measurable functions f on ∂D.

Let Pc
n be the set of all algebraic polynomials of degree at most n with complex coeffi-

cients. Let

Tn :=



a0 +

n∑

j=1

(aj cos(jt) + bj sin(jt)) , aj, bj ∈ R





be the set of all real trigonometric polynomials of degree at most n. Finding polynomials
with suitably restricted coefficients and maximal Mahler measure has interested many
authors. The classes

Ln :=



f : f(z) =

n∑

j=0

ajz
j , aj ∈ {−1, 1}





of Littlewood polynomials and the classes

Kn :=



f : f(z) =

n∑

j=0

ajz
j , aj ∈ C, |aj| = 1





of unimodular polynomials are two of the most important classes considered. Observe that
Ln ⊂ Kn and

M0(f) ≤ M2(f) =
√
n+ 1
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for every f ∈ Kn. Beller and Newman [BN-73] constructed unimodular polynomials fn ∈
Kn whose Mahler measure M0(fn) is at least

√
n − c/ logn, where c > 0 is an absolute

constant.
Section 4 of [B-02] is devoted to the study of Rudin-Shapiro polynomials. Littlewood

asked if there were polynomials fnk
∈ Lnk

satisfying

c1
√
nk + 1 ≤ |fnk

(z)| ≤ c2
√
nk + 1 , z ∈ ∂D ,

with some absolute constants c1 > 0 and c2 > 0, see [B-02, p. 27] for a reference to this
problem of Littlewood. To satisfy just the lower bound, by itself, seems very hard, and
no such sequence (fnk

) of Littlewood polynomials fnk
∈ Lnk

is known. A sequence of
Littlewood polynomials that satisfies just the upper bound is given by the Rudin-Shapiro
polynomials. The Rudin-Shapiro polynomials appear in Harold Shapiro’s 1951 thesis [S-51]
at MIT and are sometimes called just Shapiro polynomials. They also arise independently
in Golay’s paper [G-51]. They are remarkably simple to construct and are a rich source
of counterexamples to possible conjectures. The Rudin-Shapiro polynomials are defined
recursively as follows:

P0(z) := 1 , Q0(z) := 1 ,

Pk+1(z) := Pk(z) + z2
k

Qk(z) ,

Qk+1(z) := Pk(z)− z2
k

Qk(z) ,

for k = 0, 1, 2, . . . . Note that both Pk and Qk are polynomials of degree n − 1 with
n := 2k having each of their coefficients in {−1, 1}. In signal processing, the Rudin-
Shapiro polynomials have good autocorrelation properties and their values on the unit
circle are small. Binary sequences with low autocorrelation coefficients are of interest in
radar, sonar, and communication systems. It is well known and easy to check by using the
parallelogram law that

|Pk+1(z)|2 + |Qk+1(z)|2 = 2(|Pk(z)|2 + |Qk(z)|2) , z ∈ ∂D .

Hence

(1.1) |Pk(z)|2 + |Qk(z)|2 = 2k+1 = 2n , z ∈ ∂D .

It is also well known (see Section 4 of [B-02], for instance), that

Qk(−z) = P ∗
k (z) := zn−1Pk(1/z) , z ∈ C \ {0} ,

and hence

(1.2) |Qk(−z)| = |Pk(z)| , z ∈ ∂D .

P. Borwein’s book [B-02] presents a few more basic results on the Rudin-Shapiro poly-
nomials. Various properties of the Rudin-Shapiro polynomials are discussed in [B-73] by

3



Brillhart and in [BL-76] by Brillhart, Lemont, and Morton. Obviously M2(Pk) = 2k/2

by the Parseval formula. In 1968 Littlewood [L-68] evaluated M4(Pk) and found that
M4(Pk) ∼ (4k+1/3)1/4. The M4 norm of Rudin-Shapiro like polynomials on ∂D are stud-
ied in [BM-00]. P. Borwein and Lockhart [BL-01] investigated the asymptotic behavior of
the mean value of normalized Mq norms of Littlewood polynomials for arbitrary q > 0.
They proved that

lim
n→∞

1

2n+1

∑

f∈Ln

(Mq(f))
q

nq/2
= Γ

(
1 +

q

2

)
,

where Γ is the usual Gamma function. In [C-15c] we proved that

lim
n→∞

1

2n+1

∑

f∈Ln

Mq(f)

n1/2
=
(
Γ
(
1 +

q

2

))1/q

for every q > 0. In [CE-15c] we also proved the following result on the average Mahler
measure of Littlewood polynomials. We have

lim
n→∞

1

2n+1

∑

f∈Ln

M0(f)

n1/2
= e−γ/2 = 0.749306 . . . ,

where

γ := lim
n→∞

(
n∑

k=1

1

k
− log n

)
= 0.577215 . . .

is the Euler constant. These are analogues of the results proved earlier by Choi and Moss-
inghoff [CM-11] for polynomials in Kn. Let m(A) denote the one-dimensional Lebesgue
measure of A ⊂ K := R (mod 2π). In 1980 Saffari conjectured the following.

Conjecture 1.1. Let Pk and Qk be the Rudin-Shapiro polynomials of degree n − 1 with
n := 2k. We have

Mq(Pk) = Mq(Qk) ∼
2k+1)/2

(q/2 + 1)1/q

for all real exponents q > 0. Equivalently, we have

lim
k→∞

m

({
t ∈ K :

∣∣∣∣
Pk(e

it)√
2k+1

∣∣∣∣
2

∈ [α, β]

})

= lim
k→∞

m

({
t ∈ K :

∣∣∣∣
Qk(e

it)√
2k+1

∣∣∣∣
2

∈ [α, β]

})
= 2π(β − α)

whenever 0 ≤ α < β ≤ 1.

This conjecture was proved for all even values of q ≤ 52 by Doche [D-05] and Doche
and Habsieger [DH-04]. Recently B. Rodgers [R-16] proved Saffari’s Conjecture 1.1 for all
q > 0. See also [EZ-17]. An extension of Saffari’s conjecture is Montgomery’s conjecture
below.
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Conjecture 1.2. Let Pk and Qk be the Rudin-Shapiro polynomials of degree n − 1 with
n := 2k. We have

lim
k→∞

m

({
t ∈ K :

Pk(e
it)√

2k+1
∈ E

})

= lim
k→∞

m

({
t ∈ K :

Qk(e
it)√

2k+1
∈ E

})
= 2m(E)

for any rectangle E ⊂ D := {z ∈ C : |z| < 1} .
B. Rodgers [R-16] proved Montgomery’s Conjecture 1.2 as well.
Despite the simplicity of their definition not much is known about the Rudin-Shapiro

polynomials. It has been shown in [E-16c] fairly recently that the Mahler measure (M0

norm) and the M∞ norm of the Rudin-Shapiro polynomials Pk and Qk of degree n − 1
with n := 2k on the unit circle of the complex plane have the same size, that is, the Mahler
measure of the Rudin-Shapiro polynomials of degree n − 1 with n := 2k is bounded from
below by cn1/2, where c > 0 is an absolute constant.

It is shown in this paper that the Rudin-Shapiro polynomials Pk and Qk of degree n−1
with n := 2k have o(n) zeros on the unit circle. We also prove that there are absolute
constants c1 > 0 and c2 > 0 such that the k-th Rudin-Shapiro polynomials Pk and Qk of
degree n− 1 = 2k − 1 have at least c2n zeros in the annulus

{
z ∈ C : 1− c1

n
< |z| < 1 +

c1
n

}
,

while there is an absolute constant c > 0 such that each of the functions Re(Pk), Re(Qk),
Im(Pk), and Im(Qk) has at least cn zeros on the unit circle. The oscillation of Rk(t) :=
|Pk(e

it)|2 and Rk(t) := |Qk(e
it)|2 on the period [0, 2π) is also studied.

For a prime number p the p-th Fekete polynomial is defined as

fp(z) :=

p−1∑

j=1

(
j

p

)
zj ,

where
(
j

p

)
=





1, if x2 ≡ j (mod p) has a nonzero solution,

0, if p divides j ,

−1, otherwise

is the usual Legendre symbol. Since fp has constant coefficient 0, it is not a Littlewood
polynomial, but gp defined by gp(z) := fp(z)/z is a Littlewood polynomial of degree p− 2.
Fekete polynomials are examined in detail in [B-02], [CG-00], [E-11], [E-12], [E-18], [EL-
07], and [M-80]. In [CE-15a] and [CE-15b] the authors examined the maximal size of the
Mahler measure and the Lp norms of sums of n monomials on the unit circle as well as on
subarcs of the unit circles. In the constructions appearing in [CE-15a] properties of the
Fekete polynomials fp turned out to be quite useful. In [CG-00] B. Conrey, A. Granville,
B. Poonen, and K. Soundararajan proved that for an odd prime p the Fekete polynomial
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fp(z) =
∑p−1

j=0

(
j
p

)
zj (the coefficients are Legendre symbols) has ∼ κ0p zeros on the unit

circle, where 0.500813 > κ0 > 0.500668. So Fekete polynomials are far from having only
o(p) zeros on the unit circle.

Mercer [M-06a] proved that if a Littlewood polynomial P ∈ Ln of the form P (z) =∑n
j=0 ajz

j is skew-reciprocal, that is, aj = (−1)jan−j for each j = 0, 1, . . . , n, then it has
no zeros on the unit circle. However, by using different elementary methods it was observed
in both [E-01] and [M-06a] that if a Littlewood polynomial P of the form P (z) =

∑n
j=0 ajz

j

is self-reciprocal, that is, aj = an−j for each j = 0, 1, . . . , n, n ≥ 1, then it has at least one
zero on the unit circle. It is proved in [BE-97] that every every polynomial P of the from

P (z) =

n∑

j=0

ajz
j , |a0| = 1, |aj| ≤ 1 , aj ∈ C ,

has at most c
√
n zeros inside any polygon with vertices on the unit circle ∂D, where c

depends only on the polygon. One of the main results of [BE-08b] gives explicit estimates
for the number and location of zeros of polynomials with bounded coefficients. Namely if

δn := 33π
logn√

n
≤ 1 ,

then every polynomial P of the from

P (z) =

n∑

j=0

ajz
j , |a0| = |an| = 1, |aj| ≤ 1 , aj ∈ C ,

has at least 8
√
n log n zeros in any disk with center on the unit circle and radius δn. More

on Littlewood polynomials may be found in [B-02], [E-02], [M-17], and [O-18], for example.
There are many other papers on the zeros of constrained polynomials. Some of them

are [BP-32], [BE-01], [BE-07], [BE-08a], [BE-99], [BE-13], [B-97], [D-08], [E-08a], [E-08b],
[E-16a], [E-16b], [L-61], [L-64], [L-66a], [L-66b], [L-68], [M-06b], [Sch-32], [Sch-33], [Sz-34],
and [TV-07].

2. New Results

Let Pk and Qk be the Rudin-Shapiro polynomials of degree n − 1 with n := 2k. Let
either Rk(t) := |Pk(e

it)|2 or Rk(t) := |Qk(e
it)|2. Let γ := sin2(π/8). We use the notation

‖g‖A := sup
x∈A

|g(x)|

for a complex-valued function g defined on a set A ⊂ R. Let K := R (mod 2π).

Theorem 2.1. Pk and Qk have o(n) zeros on the unit circle.

The proof of Theorem 2.1 will follow by combining the recently proved Saffari’s conjec-
ture stated as Conjecture 1.1 and the theorem below.
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Theorem 2.2. If S ∈ Tn is of the form S(t) = |f(eit)|2, where f ∈ Pc
n, and f has at least

u zeros (counted with multiplicities) in K, then

m({t ∈ K : |S(t)| ≤ α‖S‖K}) ≥
√
α

e
√
2

u

n

for every α ∈ (0, 1), where m(A) denotes the one-dimensional Lebesgue measure of a
measurable set A ⊂ K.

Theorem 2.3. There is an absolute constant c1 > 0 such that each of the functions
Re(Pk), Re(Qk), Im(Pk), and Im(Qk) has at least c1n zeros on the unit circle for every
n = 2k − 1 ≥ 1.

Theorem 2.4. There is an absolute constant c2 > 0 such that the equation Rk(t) = ηn
has at most c2η

1/2n solutions (counted with multiplicities) in K for every η ∈ (0, 1] and
sufficiently large k ≥ kη, while the equation Rk(t) = ηn has at most c2(2−η)1/2n solutions
(counted with multiplicities) in K for every η ∈ [1, 2) and sufficiently large k ≥ kη.

Theorem 2.5. The equation Rk(t) = ηn has at least (1− ε)ηn/2 distinct solutions in K
for every η ∈ (0, 2γ), ε > 0, and sufficiently large k ≥ kη,ε, while the equation Rk(t) = ηn
has at least (1− ε)(2− η)n/2 distinct solutions in K for every η ∈ (2− 2γ, 2), ε > 0, and
sufficiently large k ≥ kη,ε.

Theorem 2.6. There is an absolute constants c3 > 0 such that the equation Rk(t) =
(1 + η)n has at least c3n

0.36 distinct solutions in K whenever η is real and |η| < 2−8.

Theorem 2.7. There are absolute constants c4 > 0 and c5 > 0 such that Pk and Qk have
at least c5n zeros in the annulus

{
z ∈ C : 1− c4

n
< |z| < 1 +

c4
n

}
.

We note that for every c6 ∈ (0, 1) there is an absolute constant c7 > 0 depending only
on c6 such that every Un ∈ Pc

n of the form

Un(z) =

n∑

j=0

ajz
j , |a0| = |an| = 1 , aj ∈ C , |aj| ≤ 1 ,

has at least c6n zeros in the annulus

(2.1)

{
z ∈ C : 1− c7 log n

n
< |z| < 1 +

c7 logn

n

}
.

See Theorem 2.1 in [E-01].
On the other hand, there is an absolute constant c7 > 0 such that for every n ∈ N there

is a polynomial Un ∈ Kn having no zeros in the annulus (2.1). See Theorem 2.3 in [E-01].
So in the proof of Theorem 2.7 some special properties, in addition to being Littlewood
polynomials, of the Rudin-Shapiro polynomials must be exploited.

A key to the proof of Theorem 2.7 is the result below.
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Theorem 2.8. Let t0 ∈ K. There is an absolute constant c8 > 0 depending only on c9 > 0
such that Pk has at least one zero in the disk

{
z ∈ C : |z − eit0 | < c8

n

}
,

whenever
T ′
k(t0) ≥ c9n

2 , Tk(t) = Pk(e
it)Pk(e

−it) .

Problem 2.9. Is there an absolute constant c > 0 such that the equation Rk(t) = ηn has
at least cηn distinct solutions in K for every η ∈ (0, 1) and sufficiently large k ≥ nη? In
other words, can Theorem 2.5 be extended to all η ∈ (0, 1)?

We note that it follows from Qk(z) = P ∗
k (−z), z ∈ C, that the products PkQk have at

least n− 1 zeros in the closed unit disk and at least n− 1 zeros outside the open unit disk.
So in the light of Theorem 2.1 the products PkQk have asymptotically n zeros in the open
unit disk. However, as far as we know, the following questions are open.

Problem 2.10. Is there an absolute constant c > 0 such that Pk has at least cn zeros in
the open unit disk?

Problem 2.11. Is there an absolute constant c > 0 such that Qk has at least cn zeros in
the open unit disk?

Problem 2.12. Is it true that both Pk and Qk have asymptotically half of their zeros in
the open unit disk?

Problem 2.13. Is it true that if n is odd then Pk has a zero on the unit circle ∂D only
at −1 and Qk has a zero on the unit circle ∂D only at 1, while if n is even then neither
Pk nor Qk has a zero on the unit circle?

As for k ≥ 1 both Pk and Qk have odd degree, both Pk and Qk have at least one real
zero. The fact that for k ≥ 1 both Pk and Qk have exactly one real zero was proved in
[B-73].

3. Lemmas

Let Pk and Qk be the Rudin-Shapiro polynomials of degree n− 1 with n := 2k. Let

D(a, r) := {z ∈ C : |z − a| < r}

denote the open disk of the complex plane centered at a ∈ C of radius r > 0. Let
K := R (mod 2π). To prove Theorem 2.1 we need the lemma below that is proved in
[BE-95, E.11 of Section 5.1 on pages 236–237].

Lemma 3.1. If S ∈ Tn, t0 ∈ K, and r > 0, then S has at most
enr‖S‖K
|S(t0)|

zeros in the

interval [t0 − r, t0 + r].

Our next lemma is stated as Lemma 3.5 in [E-16c], where its proof may also be found.
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Lemma 3.2. If γ := sin2(π/8) and

zj := eitj , tj :=
2πj

n
, j ∈ Z ,

then
max{|Pk(zj)|2, |Pk(zj+r)|2} ≥ γ2k+1 = 2γn , r ∈ {−1, 1} ,

for every j = 2u, u ∈ Z.

By Lemma 3.2, for every n = 2k there are

0 ≤ τ1 < τ2 < · · · < τm < τm+1 := τ1 + 2π

such that

τj − τj−1 =
2πl

n
, l ∈ {1, 2} ,

and with

(3.4) aj := eiτj , j = 1, 2, . . . , m+ 1,

we have
|Pk(aj)|2 ≥ 2γn , j = 1, 2, . . . , m+ 1 .

(Moreover, each aj is an n-th root of unity.)
Our next lemma is stated and proved as Lemma 3.4 in [E-19].

Lemma 3.3. There is an absolute constant c10 > 0 such that

µ :=

∣∣∣∣
{
j ∈ {2, 3, . . . , m+ 1} : min

t∈[τj−1,τj ]
Rk(t) ≤ εn

}∣∣∣∣ ≤ c10nε
1/2

for every sufficiently large n = 2k ≥ nε, k = 1, 2, . . . , and ε > 0.

Our next lemma is based on the work of M. Taghavi in [T-96] and [T-97], and gives an
upper bound for the so-called autocorrelation coefficients of the Rudin-Shapiro polynomi-
als.

Lemma 3.4. If

|Pk(z)|2 = Pk(z)Pk(1/z) =

n−1∑

j=−n+1

ajz
j , z ∈ ∂D ,

then
max

1≤j≤n−1
|aj| ≤ c11n

0.8190

with an absolute constant c11 > 0, while obviously a0 = n, aj = a−j, j = 1, 2, . . . , n− 1.
9



In fact, Taghavi [T-97] claimed

max
1≤j≤n−1

|aj | ≤ (3.2134)n0.7303 .

However, as Allouche and Saffari observed, in his proof Taghavi used an incorrect statement
saying that the spectral radius of the product of some matrices is independent of the order
of the factors. So what he ended up with cannot be viewed as a correctly proved result.
Building on what is correct in [T-97] Stephen Choi made some computations leading to
the above correct form of Taghavi’s upper bound on the autocorrelation coefficients of
the Rudin-Shapiro polynomials. The correction based on Choi’s computations will be the
subject of a forthcoming note [AC-17] perhaps even in a more optimized form.

Our next lemma is due to Littlewood, see [Theorem 1 in L-66a].

Lemma 3.5. If S ∈ Tn of the form

(3.1) S(t) =

n∑

m=0

bm cos(mt+ αm) , bm, αm ∈ R ,

satisfies

M1(S) ≥ cµ , µ := M2(S) ,

where c > 0 is a constant, b0 = 0,

s⌊n/h⌋ =

⌊n/h⌋∑

m=1

b2m
µ2

≤ 2−9c6

for some constant h > 0, and v ∈ R satisfies

|v| ≤ V = 2−5c3 ,

then

N (S, v) > c12h
−1c5n ,

where N (S, v) denotes the number of real zeros of S − vµ in (−π, π), and c12 > 0 is an
absolute constant.

To prove Lemma 3.7 we need the lemma below stated as Lemma 4.3 in [E-98].

Lemma 3.6. Let 0 < s ≤ λ ≤ 1. We have

‖f‖[−1,1+s] ≤ exp
(
8nλ−1/2s

)
‖f‖[−1,1]

for every f ∈ Pc
n having no zeros in the disk D(1− λ, λ).

Now we are ready to prove the following.
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Lemma 3.7. Let t0 ∈ K and 1/n ≤ r ≤ 1. We have

|S(t0 + iτ)| ≤ e‖S‖K
for every S ∈ Tn having no zeros in the disk D(t0, r), and for every τ ∈ [−ρ, ρ] with

ρ :=
1

5

( r
n

)1/2
.

Proof. It is sufficient to prove the lemma for t0 = 0, since for t0 6= 0 we can study the

polynomial S̃ ∈ Tn defined by S̃(ζ) := S(ζ − t0) having no zeros in the disk D(0, r).
Associated with S ∈ Tn we define U ∈ T2n by U(ζ) := S(ζ)S(−ζ). Observe that U is an
even trigonometric polynomial of degree at most 2n, hence we can define f ∈ Pc

2n (in fact,
with real coefficients) by

f(cos ζ) := U(ζ), ζ ∈ C .

Assume that S, and hence U , has no zeros in the disk D(0, r). We show that f has no
zeros in the disk D(1, 2λ), where 2λ := r2/4. Indeed, as S, and hence U , has no zeros in
the disk D(0, r), f has no zeros in the region H := {z = cos ζ : ζ ∈ D(0, r)} bounded by
the curve Γ := ∂H := {z = cos ζ ∈ C : |ζ| = r}. As cos 0 = 1, Γ goes around 1 at least
once by the Argument Principle. Observe that if z = cos ζ ∈ Γ, then |ζ| = r ≤ 1 implies
that

|1− cos ζ| =
∣∣∣∣∣

∞∑

k=1

ζ2k

(2k)!

∣∣∣∣∣ ≥ |ζ|2
(
1

2
−

∞∑

k=1

|ζ|2k
(2k + 2)!

)
≥ |ζ|2

4
=

r2

4
,

and hence H contains the disk D(1, 2λ) = D(1, r2/4). In conclusion, f has no zeros in the
disk D(1, 2λ) as we claimed.

Using Lemma 3.6 with λ :=
r2

8
and s := u− 1, we have

|f(u)| ≤ exp(8(2n)λ−1/2(u− 1))‖f‖[−1,1]

≤ exp(48nr−1(u− 1))‖f‖[−1,1] , 0 < s := u− 1 ≤ λ =
r2

8
≤ 1 .

(3.1)

Now let

ρ :=
1

5

( r
n

)1/2
, τ ∈ [−ρ, ρ] , u := cosh τ .

Then 1/n ≤ r ≤ 1 and λ :=
r2

8
imply that

u− 1 = cosh τ − 1 ≤ τ2 ≤ ρ2 =
r

25n
<

r2

8
= λ .

Using (3.1) we have

|S(iτ)|2 = |U(iτ)| = |f(cos(iτ))| = |f(cosh τ)| ≤ exp(48nr−1(cosh τ − 1))‖f‖[−1,1]

≤ exp(48nr−1ρ2)‖f‖[−1,1] ≤ exp
(
48nr−1 r

25n

)
‖f‖[−1,1]

≤ e2‖S‖2K
11



for every τ ∈ [−ρ, ρ] with ρ :=
1

5

( r
n

)1/2
, 1/n ≤ r ≤ 1. �

Lemma 3.7 implies the following.

Lemma 3.8. Let t0 ∈ K and 2/n < r ≤ 2. We have

|S(ζ)| ≤ e‖S‖K
for every S ∈ Tn having no zeros in the disk D(t0, r), and for every ζ in the square

{ζ = t+ iτ : t ∈ [t0 − ρ, t0 + ρ], τ ∈ [−ρ, ρ]}

with ρ :=
1

5

( r

2n

)1/2
.

Proof. Observe that if S ∈ Tn has no zeros in the disk D(t0, r), then it has no zeros in
the disks D(t, r/2) whenever t ∈ [t0 − r/2, t0 + r/2]. Observe that 2/n ≤ r ≤ 2 implies
1/n ≤ r/2 ≤ 1. Using Lemma 3.7 we obtain that

|S(ζ)| ≤ e‖S‖K
for every S ∈ Tn having no zeros in the disk D(t0, r), and for every

ζ ∈ {ζ = t+ iτ : x ∈ [t0 − r/2, t0 + r/2], τ ∈ [−ρ, ρ]}

with ρ :=
1

5

( r

2n

)1/2
. As 2/n ≤ r ≤ 2 implies 0 < ρ < r/2, the lemma follows. �

Our next lemma is a key to prove Theorem 2.7. It is an extension of Theorem 1 in
[E-02] establishing the right Bernstein inequality for trigonometric polynomials S ∈ Tn
not vanishing in the strip

{z ∈ C : |Im(z)| < r} , 0 < r ≤ 1 .

Lemma 3.9. Let t0 ∈ K and 0 < r ≤ 2. We have

|S′(t0)| ≤ 5e

(
2n

r

)1/2

‖S‖K

for every S ∈ Tn having no zeros in the disk D(t0, r).

Proof. If 2/n ≤ r ≤ 2 then using Cauchy’s integral formula and Lemma 3.8, we obtain

|S′(t0)| ≤
∣∣∣∣∣
1

2π

∫

|ζ−t0|=ρ

S(ζ)

(ζ − t0)2
dζ

∣∣∣∣∣ ≤ eρ−1‖S‖K

≤ 5e

(
2n

r

)1/2

‖S‖K

for every S ∈ Tn having no zeros in the diskD(t0, r). If r < 2/n then the classical Bernstein
inequality valid for all S ∈ Tn gives the lemma. �

12



4. Proofs of the Theorems

Proof of Theorem 2.2. Let S ∈ Tn be of the form S(t) = |f(eit)|2, where f ∈ Pc
n. We

define U ∈ Tn and V ∈ Tn by

U(t) := Re(f(eit)) and V (t) := Im(f(eit)) , t ∈ K .

Then

(4.1) S(t) = |f(eit)|2 = U(t)2 + V (t)2 , t ∈ K .

Suppose S ∈ Tn defined by S(t) = |f(eit)|2 has at least u zeros in K, and let α ∈ (0, 1).
Then the set

{t ∈ K : |S(t)| ≤ α‖S‖K}
can be written as the union of pairwise disjoint intervals Ij , j = 1, 2, . . . , m. Each of the
intervals Ij contains a point yj ∈ Ij such that

|S(yj)| = α‖S‖K .

Hence, (4.1) implies that for each j = 1, 2, . . . , m, we have either

(4.2) |U(yj)| ≥
√
α/2 ‖f‖K ≥

√
α/2 ‖U‖K

or

(4.3) |V (yj)| ≥
√
α/2 ‖f‖K ≥

√
α/2 ‖V ‖K .

Also, each zero of S lying in K is contained in one of the intervals Ij . Let µj denote the
number of zeros of S lying in Ij . Since S ∈ Tn has at least u zeros in K, so do U ∈ Tn and
V ∈ Tn, and we have

∑m
j=1 µj ≥ u. Note that Lemma 3.1 applied to U ∈ Tn yields that

µj ≤ en|Ij|
(√

α/2 ‖U‖K
)−1

‖U‖K =
e
√
2n√
α

|Ij|

for each j = 1, 2, . . . , m for which (4.2) holds. Also, Lemma 3.1 applied to V ∈ Tn yields
that

µj ≤ en|Ij |
(√

α/2 ‖V ‖K
)−1

‖V ‖K =
e
√
2n√
α

|Ij |

for each j = 1, 2, . . . , m for which (4.3) holds. Hence

µj ≤
e
√
2n√
α

|Ij | , j = 1, 2, . . . , m .

Therefore

u ≤
m∑

j=1

µj ≤
e
√
2n√
α

m∑

j=1

|Ij | =
e
√
2n√
α

m({t ∈ K : |S(t)| ≤ α|S‖K}) ,

13



and the theorem follows. �

Proof of Theorem 2.1. We show that the Pk has o(n) zeros on the unit circle, where
n − 1 = 2k − 1 is the degree of Pk. The proof of the fact that Qk has o(n) zeros on the
unit circle is analogous. Suppose to the contrary that there are ε > 0 and an increasing
sequence (kj)

∞
j=1 of positive integers such that the Rudin-Shapiro polynomials Pkj

have at

least εnj zeros on the unit circle, where nj := 2kj for each j = 1, 2, . . . . Then Pkj
has at

least one zero on the unit circle and hence (1.1) and (1.2) imply that

(4.4) ‖Pkj
(eit)‖2K = 2kj+1 .

Then Theorem 2.2 implies that

m
({

t ∈ K : |Pkj
(eit)|2 ≤ α‖Pkj

‖2K
})

≥
√
α

e
√
2

εnj

nj
=

ε
√
α

e
√
2

for every α ∈ (0, 1) and j = 1, 2, . . . . Hence,

(4.5) lim inf
j→∞

m
({

t ∈ K : |Pkj
(eit)|2 ≤ α‖Pkj

(eit)‖2K
})

≥ ε
√
α

e
√
2

for every α ∈ (0, 1). On the other hand, Conjecture 1.1 proved in [R-16] combined with
(4.4) imply that

(4.6) lim
j→∞

m
({

t ∈ K : |Pkj
(eit)|2 ≤ α‖Pkj

(eit)‖2K
})

= 2πα

for every α ∈ (0, 1). Combining (4.5) and (4.6) we obtain

ε
√
α

e
√
2
≤ 2πα ,

that is, ε/e ≤ 2π
√
2α for every α ∈ (0, 1), a contradiction. �

Proof of Theorem 2.3. We prove that there is an absolute constant c1 > 0 such that Re(Pk)
has at least c1n zeros on the unit circle; the fact that each of the functions Re(Qk), Im(Pk),
and Im(Qk) has at least c1n zeros on the unit circle can be proved similarly. Let, as before,
K := R (mod 2π). Let

An :=



f : f(t) =

n∑

j=1

cos(jt+ αj) , αj ∈ R



 .

Let S ∈ An−1 with n := 2k be defined by

S(t) := Re(Pk(e
it))− 1 .

14



We have

µ = M2(S) :=

(
1

2π

∫

K

|S(t)|2 dt
)1/2

=

(
n− 1

2

)1/2

.

Let N (S, v) be the number of real roots of S − vµ in [−π, π). Observe that (1.1) implies
that |S(t)| ≤ (2n)1/2 + 1 ≤ 2(n− 1)1/2 for all t ∈ K and n = 2k − 1 ≥ 3, and hence

M1(S) =
1

2π

∫ 2π

0

|S(t)| dt ≥ 1

2π

1

2(n− 1)1/2

∫ 2π

0

|S(t)|2 dt

=
1

2(n− 1)1/2
n− 1

2
=

(n− 1)1/2

4
=

µ

2
√
2
=: cµ

for all n = 2k − 1 ≥ 3. Thus, applying Lemma 3.5 with h := 210c−6 we can deduce that
there is an absolute constant c12 > 0 such that

S(t) + 1 = Re(Pk(e
it))

has at least c122
−10c11 = c122

−102−33/2(n−1) = c122
−53/2(n−1) zeros in [−π, π) whenever

2−5c3µ = 2−19/2
√
(n− 1)/2 ≥ 1 .

This finishes the proof when n = 2k − 1 is sufficiently large.
Observe that the product of all the zeros of Pk is ±1, so if k ≥ 1 then Pk always has at

least one zero in the closed unit disk. Hence, if k ≥ 1, then it follows from the Argument
Principle that Re(Pk(e

it)) has at least two zeros in [−π, π). �

Proof of Theorem 2.4. The proof is a combination of Lemmas 3.1, 3.2, and 3.3. Recalling
(1.2) we can observe that without loss of generality we may assume that η ∈ (0, 1], that
is, it is sufficient to prove only the first statement of the theorem. As the trigonometric
polynomial Rk(t) − ηn of degree n − 1 has at most 2(n − 1) zeros in K, without loss of
generality we may assume also that η < γ/2, where γ := sin2(π/8) as before. In the
light of Lemma 3.3 it is sufficient to prove that there is an absolute constant c > 0 such
that the equation Rk(t) = ηn has at most c solutions in the interval [τj−1, τj] for every
j ∈ {2, 3, . . . , m+ 1} for which

min
t∈[τj−1,τj]

Rk(t) ≤ ηn .

However, this follows from Lemmas 3.1 combined with Lemma 3.2. �

Proof of Theorem 2.5. Recalling (1.1), without loss of generality we may assume that
η ∈ (0, 2γ). Let

Ij :=

[
(2j − 2)π

n
,
2jπ

n

)
, j = 1, 2, . . . , n .

By Saffari’s Conjecture 1.1 proved by Rodgers [R-16] we have

m({t ∈ K : Rk(t) ≤ ηn}) > π(1− ε)η
15



for every η ∈ (0, 1), ε > 0, and sufficiently large k ≥ kη,ε. Hence, with the notation

Aη := {t ∈ K : Rk(t) ≤ ηn} ,

there are at least (1− ε)ηn/2 distinct values of j ∈ {1, 2, . . . , n} such that Aη ∩ Ij 6= ∅ for
every η ∈ (0, 1) and sufficiently large k ≥ kη,ε. On the other hand, by Lemma 3.2, for each
j ∈ {1, 2, . . . , n} there is a tj ∈ Ij such that Rk(tj) ≥ 2γn. Hence by the Intermediate
Value Theorem there are at least (1− ε)ηn/2 distinct values of j ∈ {1, 2, . . . , n} for which
there is a τj ∈ Ij such that Rk(τj) = ηn for every η ∈ (0, 2γ), ε > 0, and sufficiently large
k ≥ kη,ε. �

Proof of Theorem 2.6. Let Sn ∈ Tn−1 be defined by

Sn(t) := Rk(t)− n = |Pk(e
it)|2 − n =

n−1∑

j=−n+1

ajz
j − n .

We show that S := Sn satisfies the assumptions of Lemma 3.5 with c = 1/2 and h := n0.64

if n = 2k is sufficiently large. Clearly, Sn is of the form (3.1) with b0 = 0, bm = 2am,
and γm = 0 for m = 1, 2, . . . , n − 1. As it is already mentioned in Section 1, Littlewood
[L-68] evaluated M4(Pk) and found that M4(Pk) ∼ (4k+1/3)1/4 = (4n2/3)1/4. Hence
µ := M2(Sn) ∼ (1/3)1/2n. Also, it follows from (1.1) that M∞(Sn) ≤ n, hence

(1/3)n2 ∼ (M2(Sn))
2 ≤ M1(Sn)M∞(f) ≤ nM1(Sn)

implies that M1(Sn) ≥ cµ with c := 1/2 if n = 2k is sufficiently large (in fact, any
number 0 < c < 3−1/2 can be chosen). Now Lemma 3.4, b0 = 0, bm = 2am ∈ {−2, 2},
m = 1, 2, . . . , n− 1, and h := n0.64 imply that

s⌊(n−1)/h⌋ =

⌊(n−1)/h⌋∑

m=1

b2m
µ2

≤ n− 1

h

(2c11n
0.8190)2

µ2
≤ n

n0.64

4c211n
1.6380

(1/4)n2
≤ 16c211n

−0.0020

≤ 2−9c6

if n = 2k is sufficiently large. So Sn satisfies the assumptions of Lemma 3.5 with c = 1/2
and h := n0.64 if n = 2k is sufficiently large, indeed. Thus Lemma 3.5 implies that

N (Sn, v) > c12h
−1c5n = c12c

5n0.36

whenever v is real with |v| ≤ 2−5c3 = 2−8 and n = 2k is sufficiently large. �

Proof of Theorem 2.8. Suppose Pk does not have a zero in the disk

{
z ∈ C : |z − eit0 | < c8

n

}
.
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Observe that

|eiζ − eit0 | = |eit0(1− ei(ζ−t0)| = |ζ − t0|

∣∣∣∣∣∣

∞∑

j=1

(i(ζ − t0))
j−1

j!

∣∣∣∣∣∣
≤ 2|ζ − t0| , |ζ − t0| ≤ 1 ,

implies that Rk ∈ Tn defined by Rk(ζ) = Pk(e
iζ)Pk(e

−iζ) does not have a zero in
{
ζ ∈ C : |ζ − t0| <

c8/2

n

}
.

It follows from Lemma 3.6 and ‖Rk‖K ≤ 2n that

|R′
k(t0)| ≤ 5e

√
2n

(c8/2)/n
‖Rk‖K ≤ 20e√

c8
n2 < c9n

2

whenever

0 < c8 <
c29

400e2
.

Hence, if we chose c8 > 0 as above, Pk must have a zero in the disk
{
ζ ∈ C : |ζ − eit0 | < c8

n

}

whenever R′
k(t0) ≥ c9n

2. �

Proof of Theorem 2.7.

Ij :=

[
(2j − 2)π

n
,
2jπ

n

)
, j = 1, 2, . . . , n .

Let γ := sin2(π/8) as before. By Saffari’s Conjecture 1.1 proved by Rodgers [R-16] we
have

m({t ∈ K : Rk(t) ≤ γn}) > 2π(γ/4)

for every sufficiently large n. Hence, with the notation

A := {t ∈ K : Rk(t) ≤ γn} ,
there are at least nγ/4 distinct values of j ∈ {1, 2, . . . , n} such that A ∩ Ij 6= ∅ for every
sufficiently large n. On the other hand, by Lemma 3.2, for each j ∈ {1, 2, . . . , n} there is
a tj ∈ Ij such that Rk(tj) ≥ 2γn. Hence by the Mean Value Theorem there are at least
nγ/4 distinct values of j ∈ {1, 2, . . . , n} for which there is a τj ∈ Ij such that

R′
k(τj) ≥ γn(2π/n)−1 ≥ γ

2π
n2

for every sufficiently large n. Hence, by Theorem 2.8, there are at least nγ/4 distinct
values of j ∈ {1, 2, . . . , n} such that the open disk Dj centered at eiτj of radius c8n

−1 has
at least one zero of Pk, where the absolute constant c8 > 0 is chosen to c9 := γ/(2π) as in
the proof of Theorem 2.8, that is,

0 < c8 <
γ2

1600π2e2
.

�
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