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Abstract. Let Rk(t) := |Pk(e
it)|2 and Sk(t) := |Qk(e

it)|2, where Pk and Qk are the usual

Rudin-Shapiro polynomials of degree n − 1 with n = 2k . In a recent paper we combined
close to sharp upper bounds for the modulus of the autocorrelation coefficients of the Rudin-

Shapiro polynomials with a deep theorem of Littlewood to prove that there is an absolute
constant A > 0 such that the equations Rk(t) = (1 + η)n and Sk(t) = (1 + η)n have at least

An0.5394282 distinct zeros in [0, 2π) whenever η is real, |η| < 2−8, and n is sufficiently large.

In this paper we show that the equations Rk(t) = (1+ η)n and Sk(t) = (1+ η)n have at least
(1/2 − |η| − ε)n/2 distinct zeros in [0, 2π) for every η ∈ (−1/2, 1/2), ε > 0, and sufficiently

large n ≥ nη,ε.

1. Introduction

Let D := {z ∈ C : |z| < 1} denote the open unit disk of the complex plane. Let
∂D := {z ∈ C : |z| = 1} denote the unit circle of the complex plane. The Mahler measure
M0(f) is defined for bounded measurable functions f on ∂D by

M0(f) := exp

(

1

2π

∫ 2π

0

log |f(eit)| dt
)

.

It is well known, see [HL-52], for instance, that

M0(f) = lim
q→0+

Mq(f) ,
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where

Mq(f) :=

(

1

2π

∫ 2π

0

∣

∣f(eit)
∣

∣

q
dt

)1/q

, q > 0 .

It is also well known that for a function f continuous on ∂D we have

M∞(f) := max
t∈[0,2π]

|f(eit)| = lim
q→∞

Mq(f) .

It is a simple consequence of the Jensen formula that

M0(f) = |c|
n
∏

j=1

max{1, |zj|}

for every polynomial of the form

f(z) = c

n
∏

j=1

(z − zj) , c, zj ∈ C .

See [BE-95, p. 271] or [B-02, p. 3], for instance.
Let Pc

n be the set of all algebraic polynomials of degree at most n with complex coef-
ficients. Let Tn be the set of all real (that is, real-valued on the real line) trigonometric
polynomials of degree at most n. Finding polynomials with suitably restricted coefficients
and maximal Mahler measure has interested many authors. The classes

Ln :=







f : f(z) =

n
∑

j=0

ajz
j , aj ∈ {−1, 1}







of Littlewood polynomials and the classes

Kn :=







f : f(z) =

n
∑

j=0

ajz
j , aj ∈ C, |aj| = 1







of unimodular polynomials are two of the most important classes considered. Observe that
Ln ⊂ Kn and

M0(f) ≤ M2(f) =
√
n+ 1 , f ∈ Kn .

Beller and Newman [BN-73] constructed unimodular polynomials fn ∈ Kn such that
M0(fn) ≥

√
n− c/ logn with an absolute constant c > 0.

Section 4 of [B-02] is devoted to the study of Rudin-Shapiro polynomials. Littlewood
asked if there were polynomials fnk

∈ Lnk
satisfying

c1
√
nk + 1 ≤ |fnk

(z)| ≤ c2
√
nk + 1 , z ∈ ∂D ,
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with some absolute constants c1 > 0 and c2 > 0, see [B-02, p. 27] for a reference to this
problem of Littlewood. To satisfy just the lower bound, by itself, seems very hard, and
no such sequence (fnk

) of Littlewood polynomials fnk
∈ Lnk

is known. A sequence of
Littlewood polynomials that satisfies just the upper bound is given by the Rudin-Shapiro
polynomials. The Rudin-Shapiro polynomials appear in Harold Shapiro’s 1951 thesis [S-51]
at MIT and are sometimes called just Shapiro polynomials. They also arise independently
in Golay’s paper [G-51]. They are remarkably simple to construct and are a rich source
of counterexamples to possible conjectures. The Rudin-Shapiro polynomials are defined
recursively as follows:

P0(z) := 1 , Q0(z) := 1 ,

Pk+1(z) := Pk(z) + z2
k

Qk(z) ,

Qk+1(z) := Pk(z)− z2
k

Qk(z) ,

for k = 0, 1, 2, . . . . Note that both Pk and Qk are polynomials of degree n − 1 with
n := 2k having each of their coefficients in {−1, 1}. In signal processing, the Rudin-
Shapiro polynomials have good autocorrelation properties and their values on the unit
circle are small. Binary sequences with low autocorrelation coefficients are of interest in
radar, sonar, and communication systems.

It is well known and easy to check by using the parallelogram law that

|Pk+1(z)|2 + |Qk+1(z)|2 = 2(|Pk(z)|2 + |Qk(z)|2) , z ∈ ∂D .

Hence

(1.1) |Pk(z)|2 + |Qk(z)|2 = 2k+1 = 2n , z ∈ ∂D .

It is also well known (see Section 4 of [B-02], for instance), that

Qk(−z) = P ∗

k (z) := zn−1Pk(1/z) , z ∈ C \ 0 ,
and hence

(1.2) |Qk(−z)| = |Pk(z)| , z ∈ ∂D .

Let K := R (mod 2π). Let m(A) denote the one-dimensional Lebesgue measure of A ⊂ K.
In 1980 Saffari conjectured the following.

Conjecture 1.1. Let Pk and Qk be the Rudin-Shapiro polynomials of degree n − 1 with

n := 2k. We have

Mq(Pk) = Mq(Qk) ∼
2(k+1)/2

(q/2 + 1)1/q

for all real exponents q > 0. Equivalently, we have

lim
k→∞

m

({

t ∈ K :

∣

∣

∣

∣

Pk(e
it)√

2k+1

∣

∣

∣

∣

2

∈ [α, β]

})

= lim
k→∞

m

({

t ∈ K :

∣

∣

∣

∣

Qk(e
it)√

2k+1

∣

∣

∣

∣

2

∈ [α, β]

})

= 2π(β − α)
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whenever 0 ≤ α < β ≤ 1.

This conjecture was proved for all even values of q ≤ 52 by Doche [D-05] and Doche
and Habsieger [DH-04]. Recently B. Rodgers [R-16] proved Saffari’s Conjecture 1.1 for all
q > 0. See also [EZ-17]. An extension of Saffari’s conjecture is Montgomery’s conjecture
below.

Conjecture 1.2. Let Pk and Qk be the Rudin-Shapiro polynomials of degree n − 1 with

n := 2k. We have

lim
k→∞

m

({

t ∈ K :
Pk(e

it)√
2k+1

∈ E

})

= lim
k→∞

m

({

t ∈ K :
Qk(e

it)√
2k+1

∈ E

})

= 2m(E)

for any rectangle E ⊂ D := {z ∈ C : |z| < 1} .
B. Rodgers [R-16] proved Montgomery’s Conjecture 1.2 as well.
Despite the simplicity of their definition not much is known about the Rudin-Shapiro

polynomials. Various properties of the Rudin-Shapiro polynomials are discussed in [B-73]
by Brillhart and in [BL-76] by Brillhart, Lemont, and Morton. As for k ≥ 1 both Pk

and Qk have odd degree, both Pk and Qk have at least one real zero. The fact that for
k ≥ 1 both Pk and Qk have exactly one real zero was proved in [B-73]. It has been shown
in [E-16c] fairly recently that the Mahler measure (M0 norm) and the M∞ norm of the
Rudin-Shapiro polynomials Pk and Qk of degree n − 1 with n := 2k on the unit circle of
the complex plane have the same size, that is, the Mahler measure of the Rudin-Shapiro
polynomials of degree n − 1 with n := 2k is bounded from below by cn1/2, where c > 0 is
an absolute constants. In [E-18] various results on the zeros of Rudin-Shapiro polynomials
are proved and some open problems are raised. In [E-19] a conjecture of Saffari on the
asymptotic value of the Mahler measure of the Rudin-Shapiro polynomials is proved.

More on Littlewood polynomials may be found in [B-02], [E-02], [M-17], and [O-18], for
example. There are many other papers on the zeros of constrained polynomials. Some of
them are [BP-32], [BE-97], [BE-01], [BE-07], [BE-08a], [BE-08b], [BE-99], [BE-13], [B-97],
[D-08], [E-08a], [E-08b], [E-16a], [E-16b], [L-61], [L-64], [L-66a], [L-66b], [L-68], [M-06],
[Sch-32], [Sch-33], [Sz-34], and [TV-07].

2. New Results

Let Rk(t) := |Pk(e
it)|2 and Sk(t) := |Qk(e

it)|2, where Pk and Qk are the usual Rudin-
Shapiro polynomials of degree n − 1 with n = 2k. Let K := R (mod 2π). In [AC-18] we
combined close to sharp upper bounds for the modulus of the autocorrelation coefficients
of the Rudin-Shapiro polynomials with a deep theorem of Littlewood (see Theorem 1
in [L-66a]) to prove that there is an absolute constant A > 0 such that the equations
Rk(t) = (1 + η)n and Sk(t) = (1 + η)n have at least An0.5394282 distinct zeros in K
whenever η is real, |η| ≤ 2−8, and n is sufficiently large. In this paper we improve this
result substantially.
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Theorem 2.1. The equations Rk(t) = n and Sk(t) = n have at least n/4 + 1 distinct

zeros in K. Moreover, with the notation tj := 2πj/n, there are at least n/2 + 2 values of

j ∈ {0, 1 . . . , n − 1} for which the interval [tj, tj+1] has at least one zero of the equation

Rk(t) = n, and there are at least n/2 + 2 values of j ∈ {0, 1 . . . , n − 1} for which the

interval [tj , tj+1] has at least one zero of the equation Sk(t) = n,

Theorem 2.2. The equations Rk(t) = (1 + η)n and Sk(t) = (1 + η)n have at least

(1/2 − |η| − ε)n/2 distinct zeros in K for every η ∈ (−1/2, 1/2), ε > 0, and sufficiently

large k ≥ kη,ε,

3. Lemma

In the proof of Theorem 2.1 we need the lemma below stated and proved as Lemma 3.1
in [E-16].

Lemma 3.1. Let n ≥ 2 be an integer, n := 2k, and let

zj := eitj , tj :=
2πj

n
, j ∈ Z .

We have

Pk(zj) = 2Pk−2(zj) , j = 2u , u ∈ Z ,

Pk(zj) = (−1)(j−1)/22iQk−2(zj) , j = 2u+ 1 , u ∈ Z ,

where i is the imaginary unit.

4. Proofs

Proof of Theorem 2.1. We prove the statement for Rk. The proof remains the same for
Sk by replacing Rk by Sk. Let k ≥ 2 be an integer. For the sake of brevity let

Aj := Rk−2(tj)− n/4 , j = 0, 1, . . . , n .

Using the notation of Lemma 3.1 we study the (n + 1)-tuple 〈A0, A1, . . . , An〉. Observe
that Rk−2 is a real trigonometric polynomial of degree n/4 − 1 = 2k/4 − 1, and hence
Rk−2(t)−n/4 has at most n/2−2 zeros in K. Therefore the Intermediate Value Theorem
yields that the number of sign changes in the (n + 1)-tuple 〈A0, A1, . . . , An〉 is at most
n/2− 2. Thus there are integers

0 ≤ j1 < j2 < · · · < jm ≤ n− 1

with m ≥ n− (n/2− 2) = n/2 + 2 such that

(4.1) AjνAjν+1 ≥ 0 , ν = 0, 1, . . . , m .
5



Using Lemma 3.1 we have either

16AjνAjν+1 =(4(Rk−2(tjν )− n/4))(4(Rk−2(tjν+1)− n/4))

=(4|Pk−2(e
itjν )|2 − n)(4|Pk−2(e

itjν+1)|2 − n)

=(|Pk(e
itjν )|2 − n)(|Qk(e

itjν+1)|2 − n)

=(|Pk(e
itjν )|2 − n)(n− |Pk(e

itjν+1)|2) ,

(4.2)

or

16AjνAjν+1 =(4(Rk−2(tjν )− n/4))(4(Rk−2(tjν+1)− n/4))

=(4|Pk−2(e
itjν )|2 − n)(4|Pk−2(e

itjν+1)|2 − n)

=(|Qk(e
itjν )|2 − n)(|Pk(e

itjν+1)|2 − n)

=(|n− |Pk(e
itjν )|2)(|Pk(e

itjν+1)|2 − n) .

(4.3)

Combining (4.1), (4.2), and (4.3), we can deduce that

(|Pk(e
itjν )|2 − n)(|Pk(e

itjν+1)|2 − n) = −16AjνAjν+1 ≤ 0 , ν = 0, 1, . . . , m .

Hence the Intermediate Value Theorem implies that Rk(t)−n = |Pk(e
it)|2−n has at least

one zero in each of the intervals

[tjν , tjν+1] , ν = 0, 1, . . . , m .

Recalling that m ≥ n/2 + 2 we conclude that Rk(t) − n = |Pk(e
it)|2 − n has at least

m/2 = n/4 + 1 distinct zeros in K. �

Proof of Theorem 2.2. We prove the statement for Rk. The proof remains the same for
Sk by replacing Rk by Sk. The statement for Rk follows from the proof of Theorem 2.1
combined with B. Rodgers’s resolution of Saffari’s Conjecture 1.1. Assume that Rk(t) =
|Pk(e

it)|2, the proof in the case Rk(t) = |Qk(e
it)|2 is the same. Also, we may assume that

η > 0, the case η = 0 is contained in Theorem 2.1. We use the notation in the proof of
Theorem 2.1. Recall that each of the intervals

[tjν , tjν+1] , ν = 0, 1, . . . , m ,

has at least one zero of Rk − n. On the other hand, by Saffari’s Conjecture proved by
Rodgers [R-16] we have

m({t ∈ K : |Rk(t)− n| ≤ |η|n}) < 2π(1 + ε)|η|

for every η ∈ (−1/2, 1/2), ε > 0, and sufficiently large k ≥ kη,ε. Hence, with the notation

Bη := {t ∈ K : |Rk(t)− n| ≤ |η|n} ,
6



there are at least m− (1 + ε)|η|n distinct values of ν ∈ {1, 2, . . . , m} such that

[tjν , tjν+1] \Bη 6= ∅

for every η ∈ (−1/2, 1/2), and sufficiently large k ≥ kη,ε. Hence by the Intermediate Value
Theorem there are at least m − (1 + ε)|η|n distinct values of ν ∈ {1, 2, . . . , m} for which
|Rk(t)−n| = |η|n has a zero in (tjν , tjν+1) for every η ∈ (−1/2, 1/2), ε > 0, and sufficiently
large k ≥ kη,ε. Now observe that (1.1) and (1.2) imply that

|Pk(z)|2 + |Pk(−z)|2 = 2n , z ∈ ∂D ,

that is,
Rk(t)− n = n−Rk(t+ π) , t ∈ K .

Hence for every η ∈ (−1/2, 1/2) the number of distinct zeros of |Rk(t) − n| = |η|n in K
is exactly twice the number of distinct zeros of Rk(t) = (1 + η)n in K. We conclude that
there are at least

1

2
(m− (1 + ε)ηn) ≥ (1/2− |η| − ε)n/2

distinct values of ν ∈ {1, 2, . . . , m} for which Rk(t) − n = ηn has a zero in (tjν , tjν+1) for
every η ∈ (−1/2, 1/2), ε > 0, and sufficiently large k ≥ kη,ε. �
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E-16c. T. Erdélyi, The Mahler measure of the Rudin-Shapiro polynomials, Constr. Approx. 43 (2016),

no. 3, 357–369.
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