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Abstract. Let ‖f‖R := supt∈R
|f(t)| and

Gn :=

{

f : f(t) =
n
∑

j=1

aje
−(t−λj)

2

, aj , λj ∈ R

}

.

We prove that there is an absolute constant c1 > 0 such that

exp(c1(min{n1/2s, ns2}+ s2)) ≤ sup
f

‖f‖R ≤ exp(80(min{n1/2s, ns2}+ s2)) ,

for every s ∈ (0,∞) and n ≥ 9, where the supremum is taken for all f ∈ Gn with

m ({t ∈ R : |f(t)| ≥ 1}) ≤ s .

This is what we call (an essentially sharp) Remez-type inequality for the class Gn. We also

prove the right higher dimensional analog of the above result.

1. Introduction

In nonlinear approximation, see [7] for instance, the classes

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R

}

receive distinguished attention. The main results, Theorems 3.2 and 3,3, of [4] show that

(1.1)
1

e− 1

n− 1

min{y − a, b− y} ≤ sup
0 6=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n− 1

min{y − a, b− y} , y ∈ (a, b) .

Here, and in what follows, ‖·‖[a,b] denotes the uniform norm on [a, b]. (1.1) improves a result
obtained earlier in [1]. Bernstein-type inequalities play a central role in approximation
theory. They can be turned to inverse theorems of approximation. See, for example, the
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books by Lorentz [15] and by DeVore and Lorentz [8]. Let Pn be the collection of all
polynomials of degree at most n with real coefficients. Inequality (1.1) can be extended to
En replaced by

Ẽn :=

{
f : f(t) = a0 +

N∑

j=1

Pmj
(t)eλjt , a0, λj ∈ R , Pmj

∈ Pmj
,

N∑

j=1

(mj + 1) ≤ n

}
.

In fact, it is well-known that Ẽn is the uniform closure of En on any finite subinterval of
the real number line. For a function f defined on a measurable set A let

‖f‖A := ‖f‖L∞A := ‖f‖L∞(A) := sup{|f(x)| : x ∈ A} ,

and let

‖f‖LpA := ‖f‖Lp(A) :=

(∫

A

|f(x)|p dx
)1/p

, p > 0 ,

whenever the Lebesgue integral exists. In this paper we focus on the classes

Gn :=

{
f : f(t) =

n∑

j=1

aje
−(t−λj)

2

, aj, λj ∈ R

}
,

G̃n :=

{
f : f(t) =

N∑

j=1

Pmj
(t)e−(t−λj)

2

, λj ∈ R , Pmj
∈ Pmj

,
N∑

j=1

(mj + 1) ≤ n

}
.

Note that G̃n is the uniform closure of Gn on any finite subinterval of the real number
line. Let m := (m1, m2, . . . , mk), where each mj is a nonnegative integer. Let j :=
(j1, j2, . . . , jk), where each jν is a nonnegative integer. Let

B := {(j1, j2, . . . , jk) : 1 ≤ jν ≤ mν , ν = 1, 2, . . . , k} ,

x := (x1, x2, . . . , xk) ∈ R
k ,

dj := (dj1 , dj2 , . . . , djk) ∈ R
k , j ∈ B ,

Gm :=

{
f : f(x) =

∑

j∈B

Aj exp(−‖x− dj‖2) , Aj ∈ R, dj ∈ R
k

}
,

where

‖x− dj‖2 :=
k∑

ν=1

(xν − djν )
2 .

In [12] the following fundamental result is proved.
2



Theorem 1.1 (Bernstein-tye inequality for G̃n. There is an absolute constant c2 such

that

‖U (m)
n ‖Lq(R) ≤ (c

1+1/q
2 nm)m/2‖Un‖Lq(R)

for all Un ∈ G̃n, q ∈ (0,∞], and m = 1, 2, . . . .

The above theorem is essentially sharp. The classical Remez inequality [17] states that
if p is a polynomial of degree at most n , s ∈ (0, 2), and

m ({x ∈ [−1, 1] : |p(x)| ≤ 1}) ≥ 2− s ,

then

‖p‖[−1,1] ≤ Tn

(
2 + s

2− s

)
,

where Tn is the Chebyshev polynomial of degree n defined by Tn(x) := cos(n arccosx),
x ∈ [−1, 1]. This inequality is sharp and

Tn

(
2 + s

2− s

)
≤ exp(min{5ns1/2, 2n2s}) , s ∈ (0, 1] .

Remez-type inequalities turn out to be very useful in various problems of approximation
theory. See, for example, Borwein and Erdélyi [2], [3], and [5], Erdélyi [9], [10], and [11],
Erdélyi and Nevai [13], Freud [14], and Lorentz, Golitschek, and Makovoz [16]. In [6] we
proved the following result.

Theorem 1.2 (Remez-Type Inequality for En at 0). Let s ∈
(
0, 12
]
. There are

absolute constants c3 > 0 and c4 > 0 such that

exp(c3 min{ns, (ns)2}) ≤ sup
f

|f(0)| ≤ exp(c4 min{ns, (ns)2}) ,

where the supremum is taken for all f ∈ En with

m ({x ∈ [−1, 1] : |f(x)| ≤ 1}) ≥ 2− s .

In fact, in [6] Theorem 1.2 above stated in a somewhat weaker form but a more accurate
estimates for the values of Chebyshev polynomial appearing in the proof of the above
result gives the above more complete result. In this paper we establish an essentially sharp

Remez-type inequality for Gn and G̃n. We also prove the right higher dimensional analog
of our main result.

2. New Results

Theorem 2.1 (Remez-Type Inequality for G̃n). Let s ∈ (0,∞) and n ≥ 9. There is

an absolute constant c1 > 0 such that

exp(c1(min{n1/2s, ns2}+ s2)) ≤ sup
f

‖f‖R ≤ exp(80(min{n1/2s, ns2}+ s2)) ,

where the supremum is taken for all f ∈ G̃n with

m ({t ∈ R : |f(t)| ≥ 1}) ≤ s .
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Theorem 2.2 (Remez-Type Inequality for Gm). Let s ∈ (0,∞) and n ≥ 9. There is

an absolute constant c1 > 0 such that

exp(c1R(m1, m2, . . . , mk, s)) ≤ sup
f

‖f‖Rk ≤ exp(80R(m1, m2, . . . , mk, s)) ,

where

R(m1, m2, . . . , mk, s) :=

k∑

j=1

(min{m1/2
j s1/k, mjs

2/k}+ s2/k) ,

and the supremum is taken for all f ∈ Gm with

m
({

x ∈ R
k : |f(x)| ≥ 1

})
≤ s .

We note that in both theorems the assumption n ≥ 9 is needed only to keep the explicit
absolute constant 80 on the right hand side which is already far from being optimal in our
results. It is needed to ensure that

⌈s⌉2 − s2 ≤ (s+ 1)2 − s2 ≤ 3s ≤ min{n1/2s, ns2} , n ≥ 9 , s ≥ 1 .

3. Lemmas

Throughout this paper Λ := (λi)
∞
i=0 denotes a sequence of real numbers satisfying

0 < λ1 < λ2 < · · · .

The system
(1 , cosh(λ1t)− 1 , cosh(λ2t)− 1 , . . . , cosh(λnt)− 1)

is called a (finite) cosh system. The linear space

Hn(Λ) := span{1 , cosh(λ1t)− 1 , cosh(λ2t)− 1 , . . . , cosh(λnt)− 1}

over R is called a (finite) cosh space. That is, the cosh space Hn(Λ) is the collection of all
possible linear combinations

p(t) = a0 +

n∑

j=0

aj(cosh(λjt)− 1) , aj ∈ R .

The set

H(Λ) :=

∞⋃

n=0

Hn(Λ) = span{1 , cosh(λ1t)− 1 , cosh(λ2t)− 1 , . . . }

is called the (infinite) cosh space associated with Λ.
To formulate the next lemmas we introduce the following notation. Let

0 < λ1 < λ2 < · · · < λn , 0 < γ1 < γ2 < · · · < γn ,

and
γj ≤ λj , j = 1, 2, . . . , n .

The following lemma is stated and proved in [6] as Lemma 5.4.
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Lemma 3.1. Let A ⊂ (0,∞) be a compact set containing at least n+ 1 points. We have

max
0 6=p∈Hn(Λ)

|p(0)|
‖p‖A

≤ max
0 6=p∈Hn(Γ)

|p(0)|
‖p‖A

.

In fact, a closer look at the proof of Lemma 5.4 in [6] gives the following result.

Lemma 3.2. Let A ⊂ (0,∞) be a compact set containing at least 2n+1 points. Let w be

a continuous function defined on A with at most n zeros in A. Then

max
0 6=p∈Hn(Λ)

|p(0)|
‖pw‖A

≤ max
0 6=p∈Hn(Γ)

|p(0)|
‖pw‖A

.

To see the proof of Lemma 3.2 one has to review only Section 3 (Chebyshev and
Descartes Systems) and Section 4 (Chebyshev polynomials) of [6] to start with. Then
the proof of Lemma 3.2 is pretty much along the lines of Section 5 (Comparison Lemmas)
of [6]. The only change is that one has to work with the weighted Chebyshev polynomials

Tn,λ,w := Tn{λ1, λ2, . . . , λn;A,w}

and

Tn,γ,w := Tn{γ1, γ2, . . . , γn;A,w}

on A forHn(Λ) andHn(Γ), respectively, which have alternation characterization properties
similar to Theorem 4.2 in [6].

To formulate our next lemma we introduce the notation

Hn(ε) := span{1, cosh(εt), cosh(2εt), . . . , cosh(nεt)} ,

where ε > 0 is fixed. Observe that every f ∈ Hn(ε) is of the form

f(t) = Q(cosh(εt)) , Q ∈ Pn .

As a special case of Lemma 3.2 we obtain the following result.

Lemma 3.3. Let A ⊂ (0,∞) be a compact set containing at least 2n + 1 points. Let

0 < nε ≤ λ1. Let w ∈ Hn(ε). Then

max
0 6=p∈Hn(Λ)

|(pw)(0)|
‖pw‖A

≤ max
0 6=p∈H2n(ε)

|p(0)|
‖p‖A

.

We also need the result below from [6].
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Lemma 3.4. Let ε ∈
(
0, 12

)
and s ∈

(
0, 12
]
. Assume that A ⊂ [0, 1] is a compact set with

Lebesgue measure m(A) ≥ 1− s . Then

|f(0)| ≤ exp
(
min{10ns, 8(ns)2})

)
‖f‖A

for all f ∈ Hn(ε) .

In fact, the above result is not stated explicitly in [6]. However, it follows from its proof
that if ε ∈

(
0, 1

2

)
, s ∈

(
0, 1

2

]
, and ‖f‖A ≤ 1, then

|f(0)| ≤ Tn

((
2 +

2(cosh(εs)− 1)

cosh(ε)− 1

)/(
2− 2(cosh(εs)− 1)

cosh(ε)− 1

))

≤ exp

(
min

{
5n

(
2(cosh(εs)− 1)

cosh(ε)− 1

)1/2

, 2n2 2(cosh(εs)− 1)

cosh(ε)− 1

})

≤ exp

(
min

{
5n

(
4(εs)2

cosh(ε)− 1

)1/2

, 2n2 4(εs)2

cosh(ε)− 1

})

≤ exp

(
min

{
5n

(
4(εs)2

ε2

)1/2

, 2n2 4(εs)
2

ε2

})

≤ exp
(
min{10ns, 8(ns)2}

)
. �

Combining Lemmas 3.3 and 3.4 we are led to the following result.

Lemma 3.5. Let s ∈
(
0, 12

]
. Assume that A ⊂ [0, 1] is a compact set with Lebesgue

measure m(A) ≥ 1 − s . Let 0 < λ1 < λ2 < · · · < λn. Let 0 < nε ≤ λ1. Let w ∈ Hn(ε).
Then, we have

max
0 6=p∈Hn(Λ)

|(pw)(0)|
‖pw‖A

≤ max
0 6=p∈H2n(ε)

|p(0)|
‖p‖A

≤ exp
(
min{20ns, 32(ns)2}

)
.

Note that for every polynomial w ∈ Pn there is a sequence (wk) with wk ∈ Hn(1/k)
such that

lim
k→∞

‖wk − w‖[0,1] = 0 .

This follows easily from
t = lim

ε→0+
(2ε)−1(eεt − e−εt) .

Hence the result below is an immediate consequence of Lemma 3.5.

Lemma 3.6. Let 0 6= w ∈ Pn. Let s ∈ (0, 1
2
]. Assume that A ⊂ [0, 1] is a compact set

with Lebesgue measure m(A) ≥ 1− s . Then

max
0 6=p∈Hn(Λ)

|(pw)(0)|
‖pw‖A

≤ exp
(
min{20ns, 32(ns)2}

)
.

It is worthwhile to transform the above lemma linearly from the interval [0, 1] to the
interval [0, δ].
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Lemma 3.7. Let 0 6= w ∈ Pn, δ > 0, and s ∈ (0, δ/2]. Assume that A ⊂ [0, δ] is a

compact set with Lebesgue measure m(A) ≥ δ − s . Then

max
0 6=f∈Hn(Λ)

|(fw)(0)|
‖fw‖A

≤ exp
(
min{20ns/δ, 32(ns/δ)2}

)
.

Applying Lemma 3.7 with δ := n1/2 and w(t) := (1 − t2/n)n ∈ P2n, and using the
inequality

0 ≤ w(t) = (1− t2/n)n ≤ exp(−t2) , t ∈ [−n1/2, n1/2] ,

we obtain the following result.

Lemma 3.8. Assume that s ∈ (0, 12n
1/2] and A ⊂ [0, n1/2] is a compact set with Lebesgue

measure m(A) ≥ n1/2 − s . Then

max
0 6=h∈Hn(Λ)

|f(0)|
‖f(t) exp(−t2)‖A

≤ exp(min{30n1/2s, 64ns2}) .

Applying Lemma 3.7 with n replaced by N := 8⌈s2⌉, w(t) := (1 − t2/(4s2))⌈4s
2⌉, and

δ := 2s, and using the inequality

0 ≤ w(t) = (1− t2/(4s2))⌈4s
2⌉ ≤ exp(−t2) , t ∈ [−2s, 2s] ,

we obtain the following result.

Lemma 3.9. Assume that s > 1
2n

1/2 and A ⊂ [0, 2s] is a compact set with Lebesgue

measure m(A) ≥ s . Then

max
0 6=f∈Hn(Λ)

|f(0)|
‖f(t) exp(−t2)‖A

≤ max
0 6=f∈HN (Λ)

|f(0)|
‖f(t) exp(−t2)‖A

≤ exp(80(s+ 1)2) .

To prove the lower bound of the theorem we need the following well-known result (see
pages 246 and 247 of [2], for example).

Lemma 3.10. We have

‖p(t) exp(−t2/2)‖R ≤ ‖p(t) exp(−t2/2)‖[−4n1/2,4n1/2]

for every p ∈ Pn.
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4. Proof of Theorems 2.1 and 2.2

Using the lemmas in the previous section we can easily prove Theorem 2.1.

Proof of Theorem 2.1. It is sufficient to prove the theorem only in the case when f ∈ Gn,

the case when f ∈ G̃n follows from it by approximation. First we prove the upper bound.
Let s ∈ (0,∞). Assume that f ∈ Gn and

m({t ∈ R : |f(t)| ≥ 1}) ≤ s .

Since f ∈ Gn and y ∈ R imply that fy ∈ Gn, where fy(t) := f(y + t), it is sufficient to
prove that

|f(0)| ≤ exp(80(min{n1/2s, ns2}+ s2)) .

We have

g(t) :=
1

2
(f(t) + f(−t)) = h(t) exp(−t2) ∈ G2n , h ∈ Hn(Λ) ,

where, as before,

Hn(Λ) = span{(1 , cosh(λ1t)− 1 , cosh(λ2t)− 1 , . . . , cosh(λnt)− 1)}

with some 0 < λ1 < λ2 < · · · < λn . We have |f(0)| = |g(0)| and

m({t ∈ [0,∞) : |g(t)| ≥ 1}) ≤ s .

Let
A := {t ∈ [0,∞) : |g(t)| ≤ 1} .

Lemmas 3.8 and 3.9 yield that

|f(0)| =|g(0)| ≤ |g(0)|
‖g‖A

= max
0 6=h∈Hn(Λ)

|h(0)|
‖h(t) exp(−t2)‖A

≤ exp(80(min{n1/2s, ns2}+ s2)) ,

which finishes the proof of the upper bound of the theorem. Now we prove the lower bound
of the theorem. Let Tn(x) = cos(n arccosx) , x ∈ [−1, 1] , be the Chebyshev polynomial
of degree n. To prove the lower bound of the theorem let N := 20(n + s2) and let α and
β be chosen so that αs2 + β = 1 and αN + β = −1, that is s2 < N/20 and

α :=
−2

N − s2
and β := 1 +

2s2

N − s2
.

Let

(4.1) Vn(t) := Tn(αt
2 + β) exp(−t2/2) ,
8



and

(4.2) Un(t) := Vn(t) exp(−t2/2) = Tn(αt
2 + β) exp(−t2) .

Clearly Un ∈ G̃2n ,

(4.3) |Vn(t)| ≤ 1 , t ∈
[
−
√
N,

√
N
]
\ [−s, s] ,

and

|Vn(t)| ≤ |Tn(β)| = Tn

(
1 +

2s2

N − s2

)
≤ Tn

(
1 + 3s2/N

)

≤ exp

(
5n

s√
N

)
≤ exp(N/4) , t ∈ [−s, s] .

(4.4)

Using Lemma 3.10, (4.3), and (4.4), we obtain

|Un(t)| = |Vn(t) exp(−t2/2)| ≤
(

max
|x|≤

√
N
|Vn(x)|

)
exp(−t2/2)

≤ exp(N/4) exp(−N/2) ≤ exp(−N/4) , t ∈ R \
[
−
√
N,

√
N
]
.

(4.5)

Combining (4.1), (4.2), (4.3), and (4.5), we have

(4.6) |Un(t)| ≤ exp(−s2/2) , t ∈ R \ [−s, s] .

Also

|Un(0)| = |Vn(0)| = |Tn(β)| = Tn

(
1 +

2s2

N − s2

)
≥ Tn

(
1 + 2s2/N

)

≥ exp
(
c5 min

{
n
(
2s2/N

)1/2
, n2(2s2/N)

})

≥
{

exp(c6 min{n1/2s, ns2}) , s ∈ (0, n1/2] ,

exp(c6n) , s > n1/2 ,

(4.7)

with suitable absolute constants c5 > 0 and c6 > 0. This together with (4.6) and Un ∈ G̃2n

gives the lower bound of the theorem. �

Proof of Theorem 2.2. The theorem follows from Theorem 2.1 by a rather straightforward
induction on the dimension k. �
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