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Abstract

We study the structure of the zero set of a nontrivial finite point charge electrical field
F = (X,Y ) in the plane R

2. We establish equations satisfied by the possible directions for
the zero sets {X = 0} and {Y = 0} separately, and we show that there are only finitely
many possible asymptotic directions for both of these zero sets. We suspect that the set
of asymptotic directions for {X = 0} and the set of asymptotic directions for {Y = 0} are
(essentially) distinct.

1 Introduction

We study the structure of the zero set of a finite point charge electrical field F = (X,Y ) in R
2,

where the force vector F (X,Y ) is given by

F (x, y) = (X(z, y), Y (x, y)) =

M
∑

j=1

aj
r2j

(x, y)− (xj , yj)

rj

with
rj = ‖(x, y) − (xj , yj)‖2 = ((x− xj)

2 + (y − yj)
2)1/2 .

That is,

X(x, y) =

M
∑

j=1

aj(x− xj)

((x− xj)2 + (y − yj)2)3/2
and

M
∑

j=1

aj(y − yj)

((x− xj)2 + (y − yj)2)3/2
.

In an earlier paper [2] we focused on the “Special Case” where the point charges are on a line.
By using a linear transformation this case can be reduced to the case

0 < x1 < x2 < · · · < xM , y1 = y2 = · · · = yM = 0

Building on results in [3], [4], [5], [6], [7], [8], [9] [10], and [11], in [2] we gave a fairly complete
structural information about the zero sets of X and Y for F = (X,Y ) in the Special Case. A
highlight of [2] states that in the Special Case the zero set of a nontrivial F = (X,Y ) contains
at most 9M24M points, where M is the number of point charges. on a line.

Let 0 6= α ∈ (−∞,∞). The line y = αx is called an asymptotic direction for a set A ⊂ R
2 if

there are (pm, qm) ∈ A such that

lim
|pm|→∞

qm
pm

= lim
|qm|→∞

qm
pm

= α .

The x-axis is called an asymptotic direction for a set A ⊂ R
2 if there are (pm, qm) ∈ A such that

lim
|pm|→∞

qm
pm

= 0 .
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The y-axis is called an asymptotic direction for a set A ⊂ R
2 if there are (pm, qm) ∈ A such that

lim
|qm|→∞

pm
qm

= 0 .

For the sake of brevity we will use the notation β := 1/α. Note that the case β = 0 corresponds
to the asymptotic direction given by the y-axis.

In this paper we describe the possible asymptotic directions for the zero sets of X and Y . In
the following sections we will derive the zeroing equations that allow us to come close to being
able to affirm the conjecture below.

Conjecture 1.1. The asymptotic directions of the points in the zero sets X = 0 and Y = 0,
in the Type I and Type II domains, are distinct. Hence, outside some large disk, there are no

common zeros in either domain for X and Y . That is, F := (X,Y ) has no zeros far from the

origin.

We call the domains {(x, y) : |x| < |y|} and {(x, y) : |y| < |x|} Type I domain and Type
II domain, respectively. In fact, for technical reasons, for a fixed δ ∈ (0, 1/2), we will consider
Type I domains {(x, y) : |y| < (1− δ)|x|} and Type II domains {(x, y) : |x| < (1− δ)|y|}.

Suppose a1, a2, . . . , aM are real numbers which are not all zero. Let 0 ≤ L be the largest
integer for which

M
∑

j=1

ajx
l
jy

i
j = 0, i+ l < L .

Such an integer 0 ≤ L ≤ 2M − 1 exists, otherwise

M
∑

j=1

ajr
2k
j =

M
∑

j=1

aj((x− xj)
2 + (y − yj)

2)k =
M
∑

j=1

aj(x
2 − 2xjx+ x2j + y2 − 2yjy + y2j )

k = 0

for all k = 0, 1, . . . ,M − 1 and (x, y) ∈ R
2, and by choosing a point (x, y) such that the values

rj, j = 1, 2, . . . ,M , are distinct, the non-vanishing property of the Vandermonde determinants
would imply that a1 = a2 = · · · = aM = 0. This number 0 ≤ L ≤ M − 1 plays a key role in our
investigation.

2 Asymptotic Directions for the Zero Sets of the Components

2.1 Type I Domain and X = 0

Proposition 2.1. Let δ ∈ (0, 1/2) be fixed. If Y (pm, qm) = 0, where

(pm, qm) ∈ Dδ :=

{

(x, y) ∈ R
2 :

∣

∣

∣

∣

x

y

∣

∣

∣

∣

≤ 1− δ ,
|x|+ |xj |

|y| − |yj|
< 1 , |y| > |yj|, j = 1, 2, . . . ,M

}

and

lim
|qm|→∞

pm
qm

= β ,

then

0 =

L
∑

l=0





M
∑

j=1

aj(−xj)
lyL−l

j





1

l!(L− l)!

dL−l

dβL−l

(

dl

dβl

(

β

(1 + β2)3/2

)

βL+1

)

.

There are at most 2L+ 1 = 4M − 1 values of β 6= 0 satisfying the above equation.
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Remark 2.2. We could also interpret the zeroing identify by reversing the order that derivatives
are taken. That is, we rescale the equation by βL−l+2 and interpret the factors

(L− l + 2n+ 2)(L− l − 1 + 2n+ 2) · · · (1 + 2n+ 2)

as indicating L − l derivatives have been taken, which would leave terms β2n+2. But then
rescaling by β−1 would give the zeroing identity

0 =

L
∑

l=0





M
∑

j=1

aj(−xj)
lyL−l

j





1

l!(L− l)!

dl

dβl

(

dL−l

dβL−l

(

βL−l+2

(1 + β2)3/2

)

1

β

)

.

Note that this precludes using β = 0.

Remark 2.3. It is not clear which of these two forms is best to use, and it actually is not so
obvious why they give the same zero set, except for β = 0.

Proof. We can consider a Type I domain and consider the Taylor expansion for the zeroing
equation for X. As with previous series expansions, we need to use both the binomial and
geometric series. By the Binomial Theorem we have

1

(1 + t)3/2
= (1− t)−3/2 =

∞
∑

n=0

(

−3/2

n

)

tn , t ∈ (−1, 1) .

Hence

±X(x, y) =

M
∑

j=1

aj(x− xj)

(y − yj)3

(

1 +

(

x− xj
y − yj

)2
)−3/2

=

∞
∑

n=0

(

−3/2

n

) M
∑

j=1

aj(x− xj)
2n+1

(y − yj)2n+3

=
∞
∑

n=0

(

−3/2

n

)

1

y2n+3

M
∑

j=1

aj(x− xj)
2n+1

(1− yj/y)2n+3
,

∣

∣

∣

∣

x− xj
y − yj

∣

∣

∣

∣

< 1 , |y| > |yj| .

This equation is like the one for X from the Special Case analysis in [2]. Indeed, now both
equations Y = 0 and X = 0 have the same combined nature, a need for a binomial expansion for
the numerator terms (x − xj)

2n and a geometric powers series expansion for (1 − yj/y)
−(2n+3).

So we carry out these expansions.
The Binomial Theorem gives that

1

(1− yj/y)2n+3
=

∞
∑

i=0

(

−(2n+ 3)

i

)(

−yj
y

)i

=

∞
∑

i=0

(

i+ 2n+ 2

2n+ 2

)(

yj
y

)i

, |y| > |yj| .

So we have

X(x, y) =

∞
∑

n=0

(

−3/2

n

)

1

y2n+3

M
∑

j=1

aj

2n+1
∑

l=0

(

2n+ 1

l

)

(−xj)
lx2n+1−l

∞
∑

i=0

(

i+ 2n+ 2

2n+ 2

)(

yj
y

)i

=
∞
∑

n=0

(

−3/2

n

) 2n+1
∑

l=0

∞
∑

i=0

(

2n+ 1

l

)(

i+ 2n+ 2

2n + 2

)





M
∑

j=1

aj(−xj)
lyij





x2n+1−l

y2n+3+i

(2.1)

for all (x, y) ∈ Dδ. Now for our asymptotic analysis, we need to identify values of l and i such
that the moment

∑M
j=1 ajx

l
jy

i
j is zero and not zero. To eliminate the terms that are zero, we
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take the moments with smallest L = l + i for which at least one of these moments is not zero,
say with l = l0 and i = i0. We have

∞
∑

n=0

(

−3/2

n

) 2n+1
∑

l=0

∞
∑

i=0

(

2n + 1

l

)(

i+ 2n+ 2

2n+ 2

)





M
∑

j=1

aj(−xj)
lyij





x2n+1

y2n+1

x−l

y−l

1

yl+i+2
= 0

for all (x, y) ∈ Dδ, where the sums over l and i are over all pairs (l, i) with l + i ≥ L = l0 + i0.
The above triple sum converges absolutely in Dδ as

∞
∑

n=0

∣

∣

∣

∣

(

−3/2

n

)∣

∣

∣

∣

2n+1
∑

l=0

∞
∑

i=0

(

2n+ 1

l

)(

i+ 2n+ 2

2n+ 2

)

∣

∣

∣

∣

∣

∣

M
∑

j=1

aj(−xj)
lyij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2n+1

y2n+1

x−l

y−l

1

yl+i+2

∣

∣

∣

∣

≤
∞
∑

n=0

∣

∣

∣

∣

(

−3/2

n

)∣

∣

∣

∣

2n+1
∑

l=0

∞
∑

i=0

(

2n+ 1

l

)(

i+ 2n+ 2

2n+ 2

)





M
∑

j=1

|aj||xj |
l|yj|

i





∣

∣

∣

∣

x2n+1

y2n+1

x−l

y−l

1

yl+i+2

∣

∣

∣

∣

=

M
∑

j=1

|aj |(|x|+ |xj |)

((|x|+ |xj)2 + (|y| − |yj|)2)
3/2

, (x, y) ∈ Dδ .

Now assume that (pm, qm) ∈ Dδ , X(pm, qm) = 0, |qm| ≥ 1, m = 1, 2, . . .,

lim
m→∞

pm
qm

= β ∈ [−1 + δ, 1− δ] and lim
m→∞

|qm| = ∞ .

We plug (pm, qm) in 2.1, multiply by qL+2
m , and separate the terms in which l + i = k = L, in

which L+ 1 ≤ l + i = k ≤ 2n+ 1, and in which l + i = k ≥ N := max{2n + 2, L+ 1} to obtain

0 = qL+2
m X(pm, qm)

=

∞
∑

n=0

(

−3/2

n

) 2n+1
∑

l=0

∞
∑

i=0

(

2n+ 1

l

)(

i+ 2n+ 2

2n+ 2

)





M
∑

j=1

aj(−xj)
lyij





(

pm
qm

)2n+1−l qL+2
m

ql+i+2
m

=
∞
∑

n=0

(

−3/2

n

) L
∑

l=0

(

2n+ 1

l

)(

L− l + 2n+ 2

2n+ 2

)





M
∑

j=1

aj(−xj)
lyL−l

j





(

pm
qm

)2n+1−l

+

∞
∑

n=0

(

−3/2

n

) 2n+1
∑

k=L+1

k
∑

l=0

(

2n + 1

l

)(

k − l + 2n+ 2

2n + 2

)





M
∑

j=1

aj(−xj)
lyk−l

j





(

pm
qm

)2n+1−l 1

qk−L
m

+
∞
∑

n=0

(

−3/2

n

) ∞
∑

k=N

2n+1
∑

l=0

(

2n+ 1

l

)(

k − l + 2n+ 2

2n + 2

)





M
∑

j=1

aj(−xj)
lyk−l

j





(

pm
qm

)2n+1−l 1

qk−L
m

(2.2)

We now show that the last two sums in 2.2 multiplied by |qm|1/2 is uniformly bounded when
(pm, qm) ∈ Dδ and |qm| ≥ c with a constant c depending only on δ,

γ := 1 + max
1≤j≤M

(|xj |+ |yj|) and A := max
1≤j≤M

|aj | .

We will need the estimate
∞
∑

n=0

(n+ 1)ktn ≤

∞
∑

n=0

(n + 1)(n + 2) · · · (n + k)tn =
k!

(1− t)k+1
, t ∈ [0, 1) . (2.3)
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Observe that
k − L− 1/2

2L+ 4
≥ k + 1 for k ≥ L + 1, and hence with the notation sm := |qm|

1

2L+4

we have
∣

∣

∣

∣

∣

∣

∞
∑

n=0

(

−3/2

n

) 2n+1
∑

k=L+1

k
∑

l=0

(

2n + 1

l

)(

k − l + 2n+ 2

2n + 2

)





M
∑

j=1

aj(−xj)
lyk−l

j





(

pm
qm

)2n+1−l |qm|1/2

qk−L
m

∣

∣

∣

∣

∣

∣

≤

∞
∑

n=0

(n+ 1)

2n+1
∑

k=L+1

k
∑

l=0

2n+ 1)l

l!

(k − l + 2n + 2)k−l

(k − l)!
Aγk(1− δ)2n+1−l 1

|qm|k−L−1/2

≤
∞
∑

n=0

(n+ 1)
2n+1
∑

k=L+1

k
∑

l=0

(4n+ 3)k

l!(k − l)!
Aγk(1− δ)2n+1−l 1

sk+1
m

≤

∞
∑

n=0

(n+ 1)

2n+1
∑

k=L+1

k
∑

l=0

1

k!

(

k

l

)

(4n + 3)kAγk(1− δ)2n+1−l 1

sk+1
m

≤

∞
∑

n=0

(n+ 1)

2n+1
∑

k=L+1

2k

k!
(4n + 3)kAγk(1− δ)2n+1−l 1

sk+1
m

.

(2.4)

Now we break the sum in the last line of 2.3 for L+1 ≤ k ≤ n and n+1 ≤ k ≤ 2n+1. Recalling
2.3 we have

∞
∑

n=0

(n+ 1)

n
∑

k=L+1

2k

k!
(4n+ 3)kAγk(1− δ)2n+1−l 1

sk+1
m

≤

∞
∑

n=0

n
∑

k=L+1

2k

k!
(4(n + 1))k+2Aγk(1− δ)n+1 1

sk+1
m

≤

∞
∑

n=0

∞
∑

k=L+1

A
(8γ(n + 1))k+2

k!
(1− δ)n+1 1

sk+1
m

=
∞
∑

k=L+1

∞
∑

n=0

A
(8γ(n + 1))k+1

k!
(1− δ)n+1 1

sk+1
m

=

∞
∑

k=L+1

∞
∑

n=0

A

k!

(

8γ(n + 1)

sm

)k+2

(1− δ)n+1

≤

∞
∑

k=L+1

∞
∑

n=0

A

(k + 1)!
(n+ 1)k+1(1− δ)n+1

(

16γ

sm

)k+1

≤

∞
∑

k=L+1

A

(

1

δ

)k+2(16γ

sm

)k+2

≤

∞
∑

k=L+1

A

(

16γ

smδ

)k+2

≤ B1 ,

(2.5)

with a constant B1 depending only on δ, A, and γ if sm := |qm|
1

2L+4 ≥ 32γ/δ.
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Similarly

∞
∑

n=0

(n+ 1)
2n+1
∑

k=n+1

2k

k!
(4n+ 3)kAγk(1− δ)2n+1−l 1

sk+1
m

≤
∞
∑

n=0

2n+1
∑

k=n+1

2k

k!
(4(n+ 1))k+1Aγk

1

sk+1
m

≤
∞
∑

n=0

2n+1
∑

k=n+1

A
(8γ(n + 1))k+2

k!

1

sk+2
m

≤
∞
∑

n=0

2n+1
∑

k=n+1

A

(

16eγ(n + 1)

ksm

)k+1

≤
∞
∑

n=0

2n+1
∑

k=n+1

A

(

16eγ(n + 1)

(n+ 1)sm

)k+1

≤
∞
∑

n=0

2n+1
∑

k=n+1

A

(

32eγ

sm

)k+1

2−n ≤ B2

(2.6)

with a constant B2 depending only on δ, A, and γ if sm := |qm|
1

2L+4 ≥ 64eγ. Combining 2.4,
2.5, and 2.6 completes the proof that the last but one sum

∞
∑

n=0

(

−3/2

n

) 2n+1
∑

k=L+1

k
∑

l=0

(

2n + 1

l

)(

k − l + 2n+ 2

2n+ 2

)





M
∑

j=1

aj(−xj)
lyk−l

j





(

pm
qm

)2n+1−l 1

qk−L
m

in 2.2 converges to 0 when lim
mrightarrow∞

|qm| = ∞.

With N := max{2n + 2, L+ 1} and sm := |qm|
1

2L+4 we also have

∣

∣

∣

∣

∣

∣

∞
∑

n=0

(

−3/2

n

) ∞
∑

k=N

2n+1
∑

l=0

(

2n+ 1

l

)(

k − l + 2n+ 2

2n+ 2

)





M
∑

j=1

aj(−xj)
lyk−l

j





(

pm
qm

)2n+1−l |qm|1/2

qk−L
m

∣

∣

∣

∣

∣

∣

≤
∞
∑

n=0

(n+ 1)
∞
∑

k=N

2n+1
∑

l=0

(

2n+ 1

l

)(

k − l + 2n+ 2

2n + 2

)

Aγk
1

|qm|k−L−1/2

≤

∞
∑

n=0

(n+ 1)

∞
∑

k=N

2n+1
∑

l=0

(

2n+ 1

l

)

(k + 2n + 2)2n+2

(2n + 2)!
Aγk

1

sk+1
m

≤
∞
∑

n=0

(n+ 1)
∞
∑

k=N

22n+1 (k + 2n + 2)2n+2

(2n + 2)!
Aγk

1

sk+1
m

≤
∞
∑

n=0

∞
∑

k=N

(n+ 1)

(

2e(2n + 2 + k)

2n+ 2

)2n+2

Aγk
1

sk+1
m

≤
∞
∑

n=0

∞
∑

k=N

(n+ 1)(2e)2n+2

(

1 +
k

2n+ 2

)2n+2

Aγk
1

sk+1
m

≤

∞
∑

n=0

∞
∑

k=N

(n+ 1)(2e)2n+2ekAγk
1

sk+1
m

≤

∞
∑

n=0

∞
∑

k=N

(n+ 1)(2e)2n+2A

(

eγ

sm

)k 1

sm

≤
∞
∑

n=0

∞
∑

k=N

(n+ 1)A

(

4e2γ

sm

)k

(2e)−(2n+2) 1

sm
≤ B3

(2.7)
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with a constant B3 depending only on δ, A, and γ if sm := |qm|
1

2L+4 ≥ 8e2γ. It follows from 2.7
that the last sum

∞
∑

n=0

(

−3/2

n

) ∞
∑

k=2n+2

2n+1
∑

l=0

(

2n+ 1

l

)(

k − l + 2n+ 2

2n+ 2

)





M
∑

j=1

aj(−xj)
lyk−l

j





(

pm
qm

)2n+1−l 1

qk−L
m

in 2.2 converges to 0 when qm tends to ∞.
Now we are ready to take the limit in 2.2 when lim

m→∞
|qm| = ∞ and lim

m→∞
pm/qm = β . We

have seen that the last two sums in 2.2 tend to 0 as lim
m→∞

|qm| = ∞. So we have

0 = lim
|qm|→∞

∞
∑

n=0

(

−3/2

n

) L
∑

l=0

(

2n+ 1

l

)(

L− l + 2n + 2

2n+ 2

)





M
∑

j=1

aj(−xj)
lyL−l

j





(

pm
qm

)2n+1−l

=

L
∑

l=0





M
∑

j=1

aj(−xj)
lyL−l

j



 β−l
∞
∑

n=0

(

−3/2

n

)(

2n+ 1

l

)(

L− l + 2n+ 2

2n+ 2

)

β2n+1 .

Observe that the right-hand side is a not identically zero Laurent series in 0 6= β ∈ (−1, 1). We
would like to show this zeroing formula is equivalent to a formula involving derivatives in such
a manner that it can be seen that there are only a finite number of solutions. We can do this
by observing that

∞
∑

n=0

(

−3/2

n

)(

2n+ 1

l

)(

L− l + 2n+ 2

2n+ 2

)

β2n+1

=
1

l!(L− l)!

∞
∑

n=0

(

−3/2

n

)

(2n+ 1) · · · (2n + 1− l + 1) · (L− l + 2n+ 2) · · · (1 + 2n + 2)β2n+1 .

Interpret the factors
(2n + 1)(2n + 1− 1) · · · (2n+ 1− l + 1)

as indicating that the lth derivatives of
β

(1 + β2)3/2
have been taken, which would leave terms

with β2n−l+1. But then rescaling by βL+1, would give this series to be

1

β

dL−l

dβL−l

(

dl

dβl

(

β

(1 + β2)3/2

)

βL+1

)

.

So our zeroing identity is

L
∑

l=0





M
∑

j=1

aj(−xj)
lyL−l

j





1

l!(L− l)!

dL−l

dβL−l

(

dl

dβl

(

β

(1 + β2)3/2

)

βL+1

)

= 0 .

This shows that the zeroing equation is of the form P (β)/(1 + β2)(2L+3)/2 for a suitable not
identically zero polynomial P of degree at most 2L+ 1 ≤ 4M − 1. So the zeroing identity only
gives zeros in the roots of P . As P is a polynomial of degree at most 2L+1 ≤ 4M − 1, there are
at most 2L+ 1 ≤ 4M − 1 possible asymptotic directions for X = 0 in the Type I domain.
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2.2 Type I Domain and Y = 0

There is more symmetry in our arguments with charges for the General Case. When we switch
from X = 0 to Y = 0 in the Type I domain, it just decreases the power in the binomial terms
by 1 and decreases the powers in the geometric terms by 1. With the necessary adjustment of
the powers in the Type I domain for Y = 0, in the Type I domain for X = 0 we have the zeroing
identity

0 =
L
∑

l=0





M
∑

j=1

aj(−xj)
lyL−l

j



 β−l
∞
∑

n=0

(

−3/2

n

)(

2n

l

)(

L− l + 2n+ 1

2n + 1

)

β2n ,

and the following result holds.

Proposition 2.4. Let δ ∈ (0, 1/2) be fixed. If X(pm, qm) = 0, where

(pm, qm) ∈ Dδ :=

{

(x, y) ∈ R
2 :

∣

∣

∣

∣

x

y

∣

∣

∣

∣

≤ 1− δ ,
|x|+ |xj |

|y| − |yj|
< 1 , |y| > |yj|, j = 1, 2, . . . ,M

}

and

lim
|qm|→∞

pm
qm

= β ,

then

0 =

L
∑

l=0





M
∑

j=1

aj(−xj)
lyL−l

j





1

l!(L− l)!

dL−l

dβL−l

(

dl

dβl

(

1

(1 + β2)3/2

)

βL+1

)

.

There are at most 2L+ 1 = 4M − 1 values of β 6= 0 satisfying the above equation.

2.3 Common Asymptotic Directions of the Components X and Y in Type I

Domain

We speculate that there are no β which is a common asymptotic direction for both {X = 0}
and {Y = 0} in the Type I domain. Such a β ∈ [−1 + δ, δ] must satisfy both of the equations

0 =

L
∑

l=0

Γ(l)
dL−l

dβL−l

(

dl

dβl

(

β

(1 + β2)3/2

)

βL+1

)

and

0 =

L
∑

l=0

Γ(l)
dL−l

dβL−l

(

dl

dβl

(

1

(1 + β2)3/2

)

βL+1

)

.

with some real numbers Γ(l) which are not all zero. In [2] we were able to show this in the
“Special Case” where the point charges are on the positive x-axis. In fact, in [2] we showed that
in the “Special Case” the possible asymptotic directions for {X = 0} and the possible asymptotic
directions for{Y = 0} are strictly interlacing in the Type I domain.

Examples show that the possible asymptotic directions of X = 0 and Y = 0 in the Type I
domain are not necessarily strictly interlacing, but we conjecture that they are distinct directions,
and hence, outside some large disk X and Y have no common zeros in the Type I domain, that
is, F = (X,Y ) has no zeros far from the origin in the Type I domain.
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2.4 Type II Domain and X = 0

The result in this section can be obtained from the result in 2.1 by replacing the roles of x and
y and xj and yj.

Proposition 2.5. Let δ ∈ (0, 1/2) be fixed. If X(pm, qm) = 0, where

(pm, qm) ∈ Hδ :=

{

(x, y) ∈ R
2 :
∣

∣

∣

y

x

∣

∣

∣
≤ 1− δ ,

|y|+ |yj|

|x| − |xj |
< 1 , |x| > |xj | , j = 1, 2, . . . ,M

}

and

lim
|pm|→∞

qm
pm

= α ,

then

0 =

L
∑

l=0





M
∑

j=1

aj(−xj)
L−lylj





1

l!(L− l)!

dl

dβl

(

dL−l

dαL−l

(

α

(1 + α2)3/2

)

αL+1

)

.

There are at most 2L+ 1 = 4M − 1 values of α 6= 0 satisfying the above equation.

2.5 Type II Domain and Y = 0

The result in this section can be obtained from the result in 2.4 by replacing the roles of x and
y and xj and yj.

Proposition 2.6. Let δ ∈ (0, 1/2) be fixed. If X(pm, qm) = 0, where

(pm, qm) ∈ Hδ :=

{

(x, y) ∈ R
2 :
∣

∣

∣

y

x

∣

∣

∣
≤ 1− δ ,

|y|+ |yj|

|x| − |xj |
< 1 , |x| > |xj | , j = 1, 2, . . . ,M

}

and

lim
|pm|→∞

qm
pm

= α ,

then

0 =

L
∑

l=0





M
∑

j=1

aj(−xj)
L−lylj





1

l!(L− l)!

dl

dβl

(

dL−l

dαL−l

(

1

(1 + α2)3/2

)

αL+1

)

.

There are at most 2L+ 1 = 4M − 1 values of α 6= 0 satisfying the above equation.

2.6 Common Asymptotic Directions of the Components X and Y in Type II

domain

We speculate that there are no α which is a common asymptotic direction for both {X = 0}
and {Y = 0} in the Type II domain. Such an α ∈ [−1 + δ, δ] must satisfy both of the equations

0 =

L
∑

l=0

∆(l)
dl

dαl

(

dL−l

dαL−l

(

α

(1 + α2)3/2

)

αL+1

)

and

0 =
L
∑

l=0

∆(l)
dl

dαl

(

dL−l

dαL−l

(

1

(1 + α2)3/2

)

αL+1

)

with some real numbers ∆(l) which are not all zero.
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In [2] we were able to show this in the “Special Case” where the point charges are on the
positive x-axis. In fact, in [2] we showed that in the “Special Case” the possible asymptotic
directions for {X = 0} and the possible asymptotic directions for{Y = 0} are strictly interlacing
in the Type II domain.

Examples show that the possible asymptotic directions of X = 0 and Y = 0 in the Type II
domain are not necessarily strictly interlacing, but we conjecture that they are distinct directions,
and hence, outside some large disk X and Y have no common zeros in the Type II domain, that
is, F = (X,Y ) has no zeros far from the origin in the Type II domain.

2.7 A Question about Common Zeros of Certain Polynomials

Let us summarize the basic challenge of distinguishing the asymptotic directions of the zero sets
of X and Y in the General Case. Let DjF = djF/dxj denote the usual j-th derivative of F with
respect to F . Take s ≥ 2. Consider a nontrivial linear combination

Σ(R) =
L
∑

l=0

clD
l[xL+1DL−l(R)] .

where cl are real numbers which are not all zero.

Conjecture 2.7. Let

R1(x) := A0(x) :=
x

(1 + x2)3/2
and R2(x) := B0(x) :=

1

(1 + x2)3/2
.

The positive zeros of Σ(R1) and Σ(R2) are distinct.

Observe that Σ(R1) is an odd function and Σ(R2) is an even function. So the above conjecture
would imply that the negative zeros of Σ(R1) and Σ(R2) are distinct. Both Σ(R1) and Σ(R2)
have zeros of some order at 0.

Here are some computations and wishful thinking that suggest that this conjecture is true.
Suppose that either R := R1 or R := R2. We can rewrite Σ(R) as follows. First, for 0 ≤ i ≤ s,

Dl[xL+1DL−l(R)] =

l
∑

k=0

(

l

k

)

Dk(xL+1)Dl−k(DL−l(R)) =

l
∑

k=0

(

l

k

)

Dk(xL+1)DL−k(R) .

So we have

Σ(R) =

s
∑

l=0

cl

l
∑

k=0

(

l

k

)

Dk(xL+1)DL−k(R) =

s
∑

k=0

s
∑

l=k

(

l

k

)

clD
k(xL+1)DL−k(R)

=
L
∑

k=0

σkD
k(xL+1)DL−k(R) ,

where

σk :=

s
∑

l=k

(

l

k

)

cl .

So

Σ(R)(x) =
L
∑

k=0

dkx
L+1−kDL−k(R)(x) ,
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where d0 := σ0 and dk := σk · (L+ 1) · · · (L+ 1− k + 1) for 1 ≤ k ≤ L. Hence,

Σ(R)(x) =

L
∑

l=0

γlx
l+1Dl(R)(x) ,

where for simplicity we have replaced dL−l by γl. It seems reasonable to use this simpler form
for Σ(R) to prove the conjecture. Because we are taking cl to be arbitrary real numbers, we
must assume here that γl are arbitrary real numbers too. Again, consider

R1(x) := A0(x) :=
x

(1 + x2)3/2
and R2(x) := B0(x) :=

1

(1 + x2)3/2
.

Let Al and Bl be the l-th derivatives of A0 and B0, respectively, that is,

Al(x) :=
dlA0

dxl
and Bl(x) :=

dlB0

dxl
.

It is not hard to see and in [2] we showed it that there are a polynomial Pl of degree l + 1 and
a polynomial Ql of degree l such that

Al(x) =
Pl(x)

(1 + x2)(2l+3)/2
=

(1 + x2)P ′
l−1(x)− (2l + 1)xPl−1(x)

(1 + x2)(2l+3)/2

and

Bl(x) =
Ql(x)

(1 + x2)(2l+3)/2
=

(1 + x2)Q′
l−1(x)− (2l + 1)xQl−1(x)

(1 + x2)(2l+3)/2
.

In [2] we also showed that both Al and Bl have only real zeros, and the zeros of Al and the zeros
of Bl are strictly interlacing, hence they are distinct. But in the present setting, we are taking
linear combinations of forms that use these. So it turns out that the interlacing property is no
longer true.

Here is another version of 2.7.

Conjecture 2.8. Suppose γl are real numbers which are not all zero. The positive real zeros of

the polynomials

L
∑

l=0

γl(1 + x2)L−lxlPl(x) and

L
∑

l=0

γl(1 + x2)L−lxlQl(x)

are distinct.

Remark 2.9. Sometimes with forms like these one can hope for the zeros of the two expressions
to interlace. Indeed, sometimes also all the zeros are real numbers. But in this case examples
show that neither of these things are true, while it seems likely that the zeros are distinct (even
the complex valued ones).

Remark 2.10. There is an additional formula that may be useful:

Pl(x) = lQl−1(x)(1 + x2) + xQl(x) .
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2.8 Conclusion: Common Zeros for F = (X, Y ) in a Disc

How do we now show that there can only be a finite number of zeros in a given bounded disk?
In this case, it means showing there cannot be a curve of zeros anywhere. Indeed, if we consider
S = X2 + Y 2, then the zero set S = 0 is an analytic variety in the plane and hence, in this case,
is a locally finite collection of points and curves. We know there are no points in this zero set
outside a large disk. So all we have to do is show that there are no curves where X and Y are
zero.

The calculation might resemble what was done in the Special Case of point charges on a line
in Section 3.1, but up to now this has not worked out successfully. Again, this would then lead
to a fairly simple complete proof of the conjecture that in the plane the electrical field from a
finite number of point charges only has a finite number of field F values that are (0, 0).

On the other hand, the article by Abanov, Hayford, Khavinson, and Teodorescu [1] gives a
short proof in Proposition 4.1 that there are no curves in the common zero set. Their argument
is that the following is a general fact. Take a harmonic function φ in R

3, like the potential of

a finite point charge electrical field. Assume that
∂φ

∂z
is zero in the xy-plane. Then there is no

non-trivial curve in the xy plane which is also simultaneously in both of the sets
∂φ

∂x
= 0 and

∂φ

∂y
= 0. However, consider the class of functions

U(x, y, z) = cosh(az) cos(bx+ cy) .

Then Uz(x, y, 0) = 0 for all (x, y) because sinh(0) = 0. Also, both Ux and Uy are zero for all
(x, y, z) such that bx+ cy = 0. We do not even need to restrict to where z = 0 for this to hold.
So Ux and Uy are zero on the plane P where bx + cy = 0 and of course then the line where
bx+ cy = 0 and z = 0. But importantly Uz = a sinh(az) on the plane P where bx+ cy = 0. So
the gradient of U does not vanish on this plane unless a = 0. See [11]. Moreover, U is harmonic
if a2 = b2+c2. So take examples where at least b or c is not zero so that U is not constant. Also,
an interesting point is that the Hessian H(x, y, z) = UxxUyy −U2

xy is identically zero everywhere
in any case. So take for example U(x, y, z) = cosh(5z) cos(3x − 4y). Then we have a harmonic
function for which Uz is zero in the xy-plane and Ux = Uy = 0 on the line where 3x− 4y = 0 in
the xy-plane.

Nonetheless, if we can prove a result like Proposition 4.1 in [1] for the potential of a finite
point charge electrical field in R

3, then we could combine this with

Conjecture 2.11. The zero set of a two-dimensional finite electrical field is bounded.

The result would be

Conjecture 2.12. The zero set of a two-dimensional finite electrical field consists of only finitely

many points.

This is the ultimate goal in the analysis of the structure of the zero set of a finite point charge
electrical field in the plane.

12



2.9 Comparison with the Result Obtained by the Product Method

An algebraic curve in the Euclidean plane is the set of the points whose coordinates are the
solutions of a bivariate polynomial equation P (x, y) = 0. This equation is often called the
implicit equation of the curve, in contrast to the curves that are the graph of a function defining
explicitly y as a function of x, or vice versa. With a curve given by such an implicit equation, the
first problem would be to determine the shape of the curve and to “draw it”. These problems
are not as easy to solve as in the case of the graph of a function, for which y may easily be
computed for various values of x. The fact that the defining equation is a polynomial implies
that the curve has some structural properties that may help in solving these problems. Every
algebraic curve may be uniquely decomposed into a finite number of smooth monotone arcs
(called branches) sometimes connected by some points sometimes called remarkable points, and
possibly a finite number of isolated points called acnodes. A smooth monotone arc is the graph
of a smooth function which is defined and monotone on an open interval of the x-axis or the
y-axis. In each direction, an arc is either unbounded (usually called an infinite arc) or has an
endpoint which is either a singular point (this will be defined below) or a point with a tangent
parallel to one of the coordinate axes. The singular points of a curve of degree d defined by a
polynomial P (x, y) of degree d are the solutions of the system of equations

∂P

∂x
(x, y) =

∂P

∂y
(x, y) = P (x, y) = 0 .

Harnack’s Curve Theorem (see [6], for instance) gives the possible numbers of connected com-
ponents that an algebraic curve can have, in terms of the degree of the curve. For any algebraic
curve of degree m in the real projective plane, the number of components c is bounded by

1− (−1)m

2
≤ c ≤

(m− 1)(m− 2)

2
+ 1 .

Proposition 2.13. Suppose a1, a2, . . . , aM are real numbers which are not all zero. Neither the

zero set {X = 0} nor the zero set {Y = 0} can have more than 9(M − 1)24M−1 + 1 asymptotic

directions.

These are much weaker upper bounds we have proved in the previous sections for the number
of possible asymptotic directions for the zero sets {X = 0} and {Y = 0}, but we think the
“product method” of proof below is interesting. In fact, in [2] this “product method” has been
exploited in a more sophisticated way.

Proof. Let, as before,

X(x, y) =
M
∑

j=1

aj(x− xj)

((x− xj)2 + y2)3/2
, and Y (x, y) =

M
∑

j=1

aj(y − yj)

((x− xj)2 + y2)3/2
.

Let Σ be the collection of the 2M functions σ : {1, 2, . . . ,M} → {−1, 1}. Let

Xσ(x, y) :=
M
∑

j=1

σ(j)aj(x− xj)

((x− xj)2 + (y − yj)2)3/2
, and Yσ(x, y) :=

M
∑

j=1

σ(j)aj(y − yj)

((x− xj)2 + (y − yj)2)3/2
.

Let

Dj(x, y) :=

M
∏

k=1,k 6=j

((x− xk)
2 + (y − yk)

2))3/2 , j = 1, 2, . . . ,M ,
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and

D(x, y) :=

M
∏

k=1

((x− xk)
2 + (y − yj)

2))3/2 .

We have

Xσ(x, y) =

M
∑

j=1

σ(j)aj(x− xk)Dj(x, y)

D(x, y)

and

Yσ(x, y) =

M
∑

j=1

σ(j)aj(y − yk)Dj(x, y)

D(x, y)
.

Observe that the functions

P (x, y) :=
∏

σ∈Σ

(

M
∑

j=1

σ(j)aj(x− xj)Dj(x, y)

)

and

Q(x, y) :=
∏

σ∈Σ

(

M
∑

j=1

σ(j)aj(y − yj)Dj(x, y)

)

are even polynomials in each of the variables

χj := Dj(x, y) , j = 1, 2, . . . ,M ,

as they remain the same when χj is replaced by −χj. Hence X(x, y) and Y (x, y) are polynomials
in each of the variables

χ2
j = Dj(x, y)

2, j = 1, 2, . . . ,M .

We conclude that

∏

σ∈Σ

Xσ(x, y) =
P (x, y)

D(x, y)2M
and

∏

σ∈Σ

Yσ(x, y) =
Q(x, y)

D(x, y)2M
,

where P and Q are polynomials of degree at most 3(M − 1)2M−1. Observe that

{X = 0} ⊂ {P = 0} and {Y = 0} ⊂ {Q = 0} .

Hence Harnack’s Curve Theorem implies that neither {X = 0} nor {Y = 0} can have more than
9(M − 1)24M−1 + 1 asymptotic directions.
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