
GEORGE LORENTZ AND INEQUALITIES IN APPROXIMATION

Tamás Erdélyi

Abstract. George Lorentz influenced the author’s research on inequalities in approximation

in many ways. This is the connecting thread of this survey paper. The themes of the survey
are listed at the very beginning of the Introduction.

0. Introduction

1. Bernstein-type inequalities for exponential sums.
2. Remez-type inequalities for exponential sums.
3. Lorentz degree of polynomials.
4. Markov- and Bernstein-type inequalities for constrained polynomials.
5. Müntz-type theorems.
6. Remez-type inequalities and Newman’s product problem.
7. Multivariate approximation.
8. Newman’s inequality.
9. Littlewood polynomials.
10. Inequalities for generalized polynomials.
11. Markov- and Bernstein-type inequalities for rational functions.
12. Nikolskii-type inequalities for shift-invariant function spaces.
13. Inverse Markov- and Bernstein-type inequalities.
14. Ultraflat sequences of unimodular polynomials.
15. Zeros of polynomials with coefficient constraints.

1. Bernstein-type Inequalities for Exponential Sums

The results in this section were, in large measure, motivated by the letter of Lorentz
below.

“Dear Tamás: Feb. 27, 1988
I know you are interested in Bernstein-type inequalities and I am also. In some non-linear
cases one has

‖P ′‖X ≤ Φ(n)‖P‖Y ,

where n is the dimension of the set of the P ’s, and the norms are taken in different
Banach spaces X and Y . For instance, inequalities of Dolzhenko and Pekarskii for rational
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functions are of this type. I have proved an inequality of this type for exponential functions∑n
1 aje

λjx or the extended exponential sums

l∑

j=1

Pkj
(x)eλjx ,

l∑

1

(kj + 1) = n .

I enclose my arguments. Would you like to help me? Are my inequalities sharp in some
sense? What are other arguments that can lead to such inequalities? Hope to see you
again in April, when I will be again in Columbia.

Sincerely, George Lorentz”
In his book [41] Braess writes “The rational functions and exponential sums belong to

those concrete families of functions which are the most frequently used in nonlinear ap-
proximation theory. The starting point of consideration of exponential sums is an approx-
imation problem often encountered for the analysis of decay processes in natural sciences.
A given empirical function on a real interval is to be approximated by sums of the form

n∑

j=1

aje
λjt ,

where the parameters aj and λj are to be determined, while n is fixed.”
In [23] we proved the right Bernstein-type inequality for exponential sums.
Let

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R

}
.

So En is the collection of all n+1 term exponential sums with constant first term. Schmidt
[128] proved that there is a constant c(n) depending only on n so that

‖f ′‖[a+δ,b−δ] ≤ c(n)δ−1‖f‖[a,b]

for every f ∈ En and δ ∈
(
0, 12 (b− a)

)
. Here, and in what follows, ‖ · ‖[a,b] denotes the

uniform norm on [a, b]. Lorentz [103] improved Schmidt’s result by showing that for every
α > 1

2 , there is a constant c(α) depending only on α so that c(n) in the above inequality

can be replaced by c(α)nα logn (Xu improved this to allow α = 1
2 ), and he speculated that

there may be an absolute constant c so that Schmidt’s inequality holds with c(n) replaced
by cn. The main result, Theorem 3.2, of [23] shows that Schmidt’s inequality holds with
c(n) = 2n− 1. That is,

(1.1) sup
0 6=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n− 1

min{y − a, b− y} , y ∈ (a, b) .

In this Bernstein-type inequality even the point-wise factor is sharp up to a multiplicative
absolute constant; the inequality

1

e− 1

n− 1

min{y − a, b− y} ≤ sup
0 6=f∈En

|f ′(y)|
‖f‖[a,b]

, y ∈ (a, b) ,
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is established by Theorem 3.3 in [23]. Inequality (1.1) improves an earlier result obtained
in [16] where we have only 8n2 in the place of 2n−1. Lorentz presented our simple elegant
proof of our weaker result in [16] on pages 378 and 379 of his book [105] and remarked
that the exact inequality (1.1) would appear in [17]. I do not know if Lorentz ever read
my paper [23] but it looks to me he accepted it as it was presented in my book [17] with
P. Borwein.

Bernstein-type inequalities play a central role in approximation theory via a machinery
developed by Bernstein, which turns Bernstein-type inequalities into inverse theorems of
approximation. See, for example, the books by Lorentz [104] and by DeVore and Lorentz
[44]. From (1.1) one can deduce in a standard fashion that if there is a sequence (fn)

∞
n=1

of exponential sums with fn ∈ En that approximates f on an interval [a, b] uniformly with
errors

‖f − fn‖[a,b] = O
(
n−m(logn)−2

)
, n = 2, 3, . . . ,

where m ∈ N is a fixed integer, then f is m times continuously differentiable on (a, b). Let
Pn be the collection of all polynomials of degree at most n with real coefficients. Inequality
(1.1) can be extended to En replaced by

Ẽn :=

{
f : f(t) = a0 +

N∑

j=1

Pmj
(t)eλjt , a0, λj ∈ R , Pmj

∈ Pmj
,

N∑

j=1

(mj + 1) ≤ n

}
.

In fact, it is well-known that Ẽn is the uniform closure of En on any finite subinterval of
the real number line, see Theorem 2.3 on page 173 of [41], for instance For a function f
defined on a set A let

‖f‖A := ‖f‖L∞A := ‖f‖L∞(A) := sup{|f(x)| : x ∈ A} ,

and let

‖f‖LpA := ‖f‖Lp(A) :=

(∫

A

|f(x)|p dx
)1/p

, p > 0 ,

whenever the Lebesgue integral exists. In [65] we focus on the classes

Gn :=

{
f : f(t) =

n∑

j=1

aje
−(t−λj)

2

, aj, λj ∈ R

}
,

G̃n :=

{
f : f(t) =

N∑

j=1

Pmj
(t)e−(t−λj)

2

, λj ∈ R , Pmj
∈ Pmj

,
N∑

j=1

(mj + 1) ≤ n

}
,

and
G̃∗

n :=
{
f : f(t) =

N∑

j=1

Pmj
(t)e−(t−λj )

2

, λj ∈ [−n1/2, n1/2] , Pmj
∈ Pmj

,

N∑

j=1

(mj + 1) ≤ n

}
.
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Note that G̃n is the uniform closure of Gn on any finite subinterval of the real number
line. Let W (t) := exp(−t2). Combining Corollaries 1.5 and 1.8 in [45] and recalling that
for the weight W the Mhaskar-Rachmanov-Saff number an defined by (1.4) in [45] satisfies
an ≤ c1n

1/2 with a constant c1 independent of n, we obtain that

inf
P∈Pn

‖(P − g)W‖Lq(R) ≤ c2n
−m/2‖g(m)W‖Lq(R)

with a constant c2 independent of n, for every g for which the norm on the right-hand side
is finite for some m ∈ N and q ∈ [1,∞]. As a consequence

inf
f∈G̃∗

n

‖f − gW‖Lq(R) ≤ c3n
−m/2

m∑

k=0

‖(1 + |t|)m−k(gW )(k)(t)‖Lq(R)

with a constant c3 independent of n for every g for which the norms on the right-hand side
are finite for each k = 0, 1, . . . , m with some q ∈ [1,∞]. Replacing gW by g, we conclude
that

(1.2) inf
f∈G̃∗

n

‖f − g‖Lq(R) ≤ c3n
−m/2

m∑

k=0

‖(1 + |t|)m−kg(k)(t)‖Lq(R)

with a constant c3 independent of n for every g for which the norms on the right-hand side
are finite for each k = 0, 1, . . . , m with some q ∈ [1,∞]. In [65] we proved the following
results.

Theorem 1.1. There is an absolute constant c4 such that

|U ′
n(0)| ≤ c4n

1/2 ‖Un‖R

for all Un of the form Un = PnQn with Pn ∈ G̃n and an even Qn ∈ Pn. As a consequence

‖P ′
n‖R ≤ c4n

1/2 ‖Pn‖R

for all Pn ∈ G̃n.

We remark that a closer look at the proof shows that c4 = 5 in the above theorem is an
appropriate choice.

Theorem 1.2. There is an absolute constant c5 such that

‖U ′
n‖Lq(R) ≤ c

1+1/q
5 n1/2 ‖Un‖Lq(R)

for all Un ∈ G̃n and q ∈ (0,∞).
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Theorem 1.3. There is an absolute constant c6 such that

‖U (m)
n ‖Lq(R) ≤ (c

1+1/q
6 nm)m/2‖Un‖Lq(R)

for all Un ∈ G̃n, q ∈ (0,∞], and m = 1, 2, . . . .

We remark that a closer look at the proofs shows that c5 = 180π in Theorem 1.2 and
c6 = 180π in Theorem 1.3 are appropriate choices.

Our next theorem may be viewed as a slightly weak version of the right inverse theorem
of approximation that can be coupled with the direct theorem of approximation formulated
in (1.2).

Theorem 1.4. Suppose q ∈ [1,∞], m is a positive integer, ε > 0, and f is a function
defined on R. Suppose also that

inf
fn∈G̃n

‖fn − f‖Lq(R) ≤ c7n
−m/2(logn)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n. Then f is m times differentiable almost everywhere
on R. Also, if

inf
fn∈G̃∗

n

‖fn − f‖Lq(R) = c7n
−m/2(logn)−1−ε , n = 2, 3, . . . ,

with a constant c7 independent of n, then, in addition to the fact that f is m times differ-
entiable almost everywhere on R, we also have

‖(1 + |t|)m−jf (j)(t)‖Lq(R) < ∞ , j = 0, 1, . . . , m .

Theorem 1.5. There is an absolute constant c8 such that

‖U ′
n‖Lq [y−δ/2,y+δ/2] ≤ c

1+1/q
8

(n
δ

)
‖Un‖Lq[y−δ,y+δ]

for all Un ∈ G̃n, q ∈ (0,∞], y ∈ R, and δ ∈ (0, n1/2].

A multidimensional analogue Gm of the class Gn is introduced and studied briefly in
Section 7. An element of Gm is called a Gaussian network of N neurons. In this context
H. Mhaskar [110] writes “Professor Ward at Texas A&M University has pointed out that
our results implicitly contain an inequality, known as Bernstein inequality, in terms of the
number of neurons, under some conditions on the minimal separation. Professor Erdélyi
at Texas A&M University has kindly sent us a manuscript in preparation, where he proves
this inequality purely in terms of the number of neurons, with no further conditions. This
inequality leads to the converse theorems in terms of the number of neurons, matching
our direct theorem in this theory. Our direct theorem in [109] is sharp in the sense of n-
widths. However, the converse theorem applies to individual functions rather than a class
of functions. In particular, it appears that even if the cost of approximation is measured in
terms of the number of neurons, if the degrees of approximation of a particular function by
Gaussian networks decay polynomially, then a linear operator will yield the same order of
magnitude in the error in approximating this function. We find this astonishing, since many
people have told us based on numerical experiments that one can achieve a better degree
of approximation by non-linear procedures by stacking the centers near the bad points of
the target functions”. (The concept of width is introduced and examined thoroughly in
Chapter 13 of [105].)
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2. Remez-type Inequalities for Exponential Sums

The classical Remez inequality [122] states that if p is a polynomial of degree at most
n , s ∈ (0, 2), and

m ({x ∈ [−1, 1] : |p(x)| ≤ 1}) ≥ 2− s ,

then

‖p‖[−1,1] ≤ Tn

(
2 + s

2− s

)
,

where Tn defined by

Tn(x) := cos(n arccosx) , x ∈ [−1, 1] ,

is the Chebyshev polynomial of degree n. This inequality is sharp and

Tn

(
2 + s

2− s

)
≤ exp(min{5ns1/2, 2n2s}) , s ∈ (0, 1] .

Remez-type inequalities turn out to be very useful in various problems of approximation
theory. See, for example, Remez [122], Borwein and Erdélyi [17], [18], [25], and [27], Erdélyi
[46], [51], and [52], Erdélyi and Nevai [75], Freud [83, p.122], and Lorentz, Golitschek, and
Makovoz [105]. Lorentz liked my essentially sharp Remez-type inequality for trigonometric
polynomials [51] and he stated in his book [105, p. 77] correctly.

Theorem 2.1. If p is a trigonometric polynomial of degree at most n, s ∈ (0, π/2], and

m ({t ∈ [−π, π) : |p(t)| ≤ 1}) ≥ 2π − s ,

then
‖p‖[−π,π] ≤ exp(cns)

with an absolute constant c > 0 (c = 2 is a suitable choice).

He writes “The proof of this trigonometric Remez-type inequality needs new ideas, and
is far from being a copy of the methods working in the algebraic case”. My memory is
that at one point Lorentz sent me an approach that seemed to reduce the proof of my
Remez-type inequality for trigonometric polynomials to the Remez inequality for algebraic
polynomials. The mistake in it was so subtle that at first I approved it. Later, when I
observed a gap in it, Lorentz decided he would just state the result without proof. I think
even today only my paper [51] contains the trigonometric Remez inequality with correct
proof.

Another remarkable result in [51] is the following essentially pointwise Remez-type in-
equality for algebraic polynomials.

Theorem 2.2. If p is an algebraic polynomial of degree at most n, s ∈ (0, 1], y ∈ (−1, 1),
and

m ({x ∈ [−1, 1] : |p(x)| ≤ 1}) ≥ 2− s ,
6



then

|p(y)| ≤ exp

(
cnmin

{
s√

1− y2
,
√
s

})

with an absolute constant c > 0.

In fact, both Theorems 2.1 and 2.2 easily extends to the classes GTPN and GAPN ,
respectively, of generalized (trigonometric) polynomials. These classes are introduced in
Section 10 where inequalities for generalized polynomials from the classes GTPN and
GAPN are discussed.

In [27] we proved the following result.

Theorem 2.3 (Remez-Type Inequality for En at 0). Let s ∈
(
0, 12
]
. There are

absolute constants c2 > 0 and c3 > 0 such that

1

2
exp(c2ns) ≤ sup

f
|f(0)| ≤ exp(c3ns) ,

where the supremum is taken for all f ∈ En satisfying

m ({x ∈ [−1, 1] : |f(x)| ≤ 1}) ≥ 2− s .

In fact, in [27] Theorem 2.2 is carelessly stated. The factor 1/2 on the left hand side is
missing. More accurate estimates for the values of the Chebyshev polynomial appearing
in the proof of the above result give the following more complete result.

Theorem 2.3* (Remez-Type Inequality for En at 0). Let s ∈
(
0, 1

2

]
. There are

absolute constants c2 > 0 and c3 > 0 such that

exp(c2 min{ns, (ns)2}) ≤ sup
f

|f(0)| ≤ exp(c3 min{ns, (ns)2}) ,

where the supremum is taken for all f ∈ En satisfying

m ({x ∈ [−1, 1] : |f(x)| ≤ 1}) ≥ 2− s .

In [67] we established an essentially sharp Remez-type inequality for Gn and G̃n. We
also prove the right higher dimensional analog of our main result.

Theorem 2.4 (Remez-Type Inequality for G̃n). Let s ∈ (0,∞) and n ≥ 9. There is
an absolute constant c1 > 0 such that

exp(c1(min{n1/2s, ns2}+ s2)) ≤ sup
f

‖f‖R ≤ exp(80(min{n1/2s, ns2}+ s2)) ,

where the supremum is taken for all f ∈ G̃n satisfying

m ({t ∈ R : |f(t)| ≥ 1}) ≤ s .
7



Important results of Turán [137] are based on the following observations: Let

g(ν) :=

n∑

j=1

bjz
ν
j , bj , zj ∈ C .

Suppose

min
1≤j≤n

|zj | ≥ 1 , j = 1, 2, . . . , n .

Then

max
ν=m+1,... ,m+n

|g(ν)| ≥
(

n

2e(m+ n)

)n

|b1 + b2 + · · ·+ bn|

for every positive integer m.

A consequence of the preceding is the famous Turán Lemma: if

(2.1) f(t) :=

n∑

j=1

bje
λjt , bj , λj ∈ C ,

and

min
1≤j≤n

Re(λj) ≥ 0 ,

then

|f(0)| ≤
(
2e(a+ d)

d

)n

‖f‖[a,a+d]

for every a > 0 and d > 0.
Another consequence of this is the fact that if

p(z) :=

n∑

j=1

bjz
λj , bj ∈ C , λj ∈ R , z = eiθ ,

then

max
|z|=1

|p(z)| ≤
(
4eπ

δ

)n

max
|z|=1

α≤arg(z)≤α+δ

|p(z)|

for every 0 ≤ α < α+ δ ≤ 2π.
Turán’s inequalities above and their variants play a central role in the book of Turán

[137], where many applications are also presented. The main point in these inequalities
is that the exponent on the right-hand side is only the number of terms n, and so it is
independent of the numbers λj . An inequality of the type

max
|z|=1

|p(z)| ≤ c(δ)λn max
|z|=1

α≤arg(z)≤α+δ

|p(z)| ,

where 0 ≤ λ1 < λ2 < · · · < λn are integers and c(δ) depends only on δ, could be obtained
by a simple direct argument, but it is much less useful than Turán’s inequality. F. Nazarov
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has a seminal paper [113] devoted to Turán-type inequalities for exponential sums, and
their applications to various uniqueness theorems in harmonic analysis of the uncertainty
principle type. The author derives an estimate for the maximum modulus of exponential
sums f of the form (2.1) on an interval I ⊂ R in terms of its maximum modulus on a
measurable set E ⊂ I of positive Lebesgue measure:

sup
t∈I

|f(t)| ≤ emax |Reλk|m(I)

(
Am(I)

m(E)

)n−1

sup
t∈E

|f(t)| ,

where A is an absolute constant.

3. Lorentz Degree of Polynomials

In 1916 S.N. Bernstein [8] observed that any polynomial p having no zeros in the interval

(−1, 1) can be written in the form p(x) =
∑d

j=0 aj(1− x)j(1 + x)d−j with all aj ≥ 0.
Hausdorff claimed this result independently, and the Pólya-Szegő book attributes it to
him [87, pp. 98–99]. The smallest natural number d for which such a representation
holds is called the Lorentz degree of p and it is denoted by d(p). The Lorentz degree was
named after George Lorentz, who established essentially sharp Markov- and Bernstein-
type inequalities on [−1, 1] for polynomials of Lorentz degree d, and one of his students,
J.T. Scheick [127] has contributed to the topic substantially. The Lorentz degree d(p)
can be much larger than the ordinary degree of the polynomial p. Nevertheless, in [48]
and [73], essentially sharp upper and lower bounds are given for classes of polynomials of
ordinary degree n having no zeros in ellipses with axes [−1, 1] and [−εi, εi], ε ∈ (0, 1]. As
a by-product, the proofs of Lorentz’s Markov- and Bernstein-type inequalities [102] are
shortened so that they are fit to print in his book [44, p. 115] with DeVore.

To formulate our main theorem from [48] we need some notations. Let ϕ be a positive
continuous function defined on (−1, 1), and let

D(ϕ) := {z = x+ iy : |y| < ϕ(x), |x| < 1}

denote the domain of the complex plane determined by it. We introduce

Ln(ϕ) := {p ∈ Pn : p(z) 6= 0 , z ∈ D(ϕ)}

and
dn(ϕ) := sup

p∈Ln(ϕ)

d(p) .

Sharpening a result in [73, Theorem 3], we proved the following in [48].

Theorem 3.1. If

1 ≥ ε := inf
x∈(−1,1)

ϕ(x)√
1− x2

> 0 ,

then
c1n

ε2
≤ dn(ϕ) ≤

c2n

ε2
,
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where 0 < c1 < c2 are absolute constants.

Let

p(x) := (1− x)2 − 2(1− x)(1 + x) + 4(1 + x)2 and q(x) := (1 + x) +
1

2
(1− x) .

Then d(p) = 4, d(q) = 1, and d(pq) = 3. As far as I know the following two questions
raised in [48] are still open. Is it true that d(pq) ≥ min{d(p), d(q)} for any polynomials p
and q ? Is it true that d(pq) ≥ |d(p)− d(q)| for any polynomials p and q ?

4. Markov- and Bernstein-type inequalities

for polynomials with constraints

The Markov-Bernstein inequality asserts that

|p′(x)| ≤ min

{
n√

1− x2
, n2

}
‖p‖[−1,1] , x ∈ (−1, 1) ,

holds for every polynomial of degree at most n with complex coefficients. Here, and in what
follows, ‖p‖A := supy∈A |p(y)|. Throughout his life Erdős showed a particular interest in
inequalities for constrained polynomials. In a short paper in 1940 Erdős [78] has found a
class of restricted polynomials for which the Markov factor n2 improves to cn. He proved
that there is an absolute constant c such that

|p′(x)| ≤ min

{
c
√
n

(1− x2)
2 ,

en

2

}
‖p‖[−1,1] , x ∈ (−1, 1) ,

for every polynomial p of degree at most n that has all its zeros in R \ (−1, 1). This
result motivated a number of people to study Markov- and Bernstein-type inequalities for
polynomials with restricted zeros and under some other constraints. Generalizations of
the above Markov-Bernstein type inequality of Erdős has been extended later in many
directions. Let Pc

n,k denote the set of all polynomials of degree at most n with complex

coefficients and with at most k (0 ≤ k ≤ n) zeros in the open unit disk. Let Pn,k denote
the set of all polynomials of degree at most n with real coefficients and with at most k
(0 ≤ k ≤ n) zeros in the open unit disk. Associated with 0 ≤ k ≤ n and x ∈ (−1, 1), let

B∗
n,k,x := max

{√
n(k + 1)

1− x2
, n log

(
e

1− x2

)}
, Bn,k,x :=

√
n(k + 1)

1− x2
,

and
M∗

n,k := max{n(k + 1), n logn} , Mn,k := n(k + 1) .

It is shown in [53] and [54] that

c1 min{B∗
n,k,x,M

∗
n,k} ≤ sup

p∈Pc
n,k

|p′(x)|
‖p‖[−1,1]

≤ c2 min{B∗
n,k,x,M

∗
n,k}
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for every x ∈ (−1, 1), where c1 > 0 and c2 > 0 are absolute constants. This result should
be compared with the inequalities

c3 min{Bn,k,x,Mn,k} ≤ sup
p∈Pn,k

|p′(x)|
‖p‖[−1,1]

≤ c4 min{Bn,k,x,Mn,k}

for every x ∈ (−1, 1), where c3 > 0 and c4 > 0 are absolute constants. The upper bound of
this second result may be found in [14], and it may be surprising that there is a significant
difference between the real and complex cases as far as Markov-Bernstein type inequalities
are concerned. The lower bound of the second result is proved in [53]. It is the final piece
of a long series of papers on this topic by a number of authors starting with Erdős in 1940.
In addition, in [15] we established the right Markov-Bernstein type inequalities on for the
classes Pn,k in Lp[−1, 1], p > 0.

Let Pc
n(r) be the set of all polynomials of degree at most n with complex coefficients

and with no zeros in the union of open disks with diameters [−1,−1 + 2r] and [1− 2r, 1]
(0 < r ≤ 1). Let Pn(r) be the set of all polynomials of degree at most n with The lower
bound of the second result is proved in [53]. and with no zeros in the union of open disks
with diameters [−1,−1 + 2r] and [1− 2r, 1] (0 < r ≤ 1).

Essentially sharp Markov-type inequalities for Pc
n(r) and Pn(r) on [−1, 1] are established

in [53] and [47]. In [53] we show

c1 min

{
n log

(
e+ n

√
r
)

√
r

, n2

}
≤ sup

0 6=p∈Pc
n(r)

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c2 min

{
n log

(
e+ n

√
r
)

√
r

, n2

}

for every 0 < r ≤ 1 with absolute constants c1 > 0 and c2 > 0. This result should be
compared with the inequalities

c3 min

{
n√
r
, n2

}
≤ sup

0 6=p∈Pn(r)

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c4 min

{
n√
r
, n2

}
, 0 < r ≤ 1 ,

where c3 > 0 and c4 > 0 are absolute constants. See [47].
Lorentz included a more general version of the above result for higher derivatives al-

lowing k (0 ≤ k ≤ n) zeros in the union of open disks with diameters [−1,−1 + 2r] and
[1 − 2r, 1], respectively (0 < r ≤ 1) In his book [105, pp. 64–73]] he followed the proof
in [47], where the idea of “Lorentz representation” turns out to be crucial. Note that
induction does not work here due to the lack of a Gauss-Lucas Theorem.

Let Kα be the open diamond of the complex plane with diagonals [−1, 1] and [−ia, ia]
such that the angle between [ia, 1] and [1,−ia] is απ. In [85] Halász proved that there are
constants c1 > 0 and c2 > 0 depending only on α such that

c1n
2−α ≤ sup

p

|p′(1)|
‖p‖[−1,1]

≤ sup
p

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c2n

2−α ,

where the supremum is taken for all polynomials p of degree at most n (with either real
or complex coefficients) having no zeros in Kα.
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Erdős had many questions and results about polynomials with restricted coefficients.
Let Fn denote the set of polynomials of degree at most n with coefficients from {−1, 0, 1}.
Let Gn be the collection of polynomials p of the form

p(x) =

n∑

j=m

ajx
j , |am| = 1 , |aj | ≤ 1 ,

where m is an unspecified nonnegative integer not greater than n. In [28] and [30] we
established the right Markov-type inequalities for the classes Fn and Gn on [0, 1]. Namely
there are absolute constants c1 > 0 and c2 > 0 such that

c1n log(n+ 1) ≤ max
0 6=p∈Fn

‖p′‖[0,1]
‖p‖[0,1]

≤ c2n log(n+ 1)

and

c1n
3/2 ≤ max

0 6=p∈Gn

‖p′‖[0,1]
‖p‖[0,1]

≤ c2n
3/2 .

Observe that the right Markov factor for Gn is much larger than the right Markov factor
for Fn. We also show that there are absolute constants c1 > 0 and c2 > 0 such that

c1n log(n+ 1) ≤ max
0 6=p∈Ln

‖p′‖[0,1]
‖p‖[0,1]

≤ c2n log(n+ 1) ,

where Ln denotes the set of polynomials of degree at most n with coefficients from {−1, 1}.
For polynomials

p ∈ F :=
∞⋃

n=0

Fn with |p(0)| = 1

and for y ∈ [0, 1) the Bernstein-type inequality

c1 log
(

2
1−y

)

1− y
≤ max

p∈F
|p(0)|=1

‖p′‖[0,y]
‖p‖[0,1]

≤
c2 log

(
2

1−y

)

1− y

is also proved in [30] with absolute constants c1 > 0 and c2 > 0.
Let Pm

n be the collection of all polynomials of degree at most n with real coefficients
that have at most m distinct complex zeros. In [6] we prove that

max
x∈[0,1]

|P ′(x)| ≤ 32 · 8mn max
x∈[0,1]

|P (x)|

for every P ∈ Pm
n . This is far from what we expect. We conjecture that the Markov factor

32 · 8mn above may be replaced by cmn with an absolute constant c > 0. We are not able
to prove this conjecture at the moment. However, we think that our result above gives the
best known Markov-type inequality for Pm

n on a finite interval when m ≤ c logn.
12



For continuous functions p defined on the complex unit circle, and for q ∈ (0,∞), we
define

‖p‖q :=

(∫ 2π

0

|p(eit)|q dt
)1/q

.

We also define
‖p‖∞ := lim

q→∞
‖p‖q = max

t∈[0,2π]
|p(eit)| .

Based on the ideas of F. Nazarov, Queffelec and Saffari [125] showed that

sup
p∈Ln

‖p′‖q
‖p‖q

= γn,qn , lim
n→∞

γn,q = 1 ,

for every q ∈ (0,∞] , q 6= 2 (when q = 2, limn→∞ γn,q = 3−1/2 by the Parseval Formula).
It shows that Bernstein’s classical inequality (extended by Arestov [2] for all q ∈ (0,∞])
stating that

‖p′‖q ≤ n‖p′‖q
for all polynomials of degree at most n with complex coefficients, cannot be essentially
improved for the class Ln, except for the trivial q = 2 case.

Let SRc
n denote the set of all self-reciprocal polynomials pn ∈ Pc

n satisfying

pn(z) = znpn(z
−1) .

Let SRn denote the set of all real self-reciprocal polynomials of degree at most n, that is,
SRn := SRc

n ∩ Pn. For a polynomial pn ∈ Pc
n of the form

(4.1) pn(z) =
n∑

j=0

ajz
j , aj ∈ C ,

pn ∈ SRc
n if and only if

aj = an−j , j = 0, 1, . . . , n .

Let ASRc
n denote the set of all antiself-reciprocal polynomials pn ∈ Pc

n satisfying

pn(z) = −znpn(z
−1) .

Let ASRn denote the set of all real antiself-reciprocal polynomials, that is, ASRn :=
ASRc

n ∩ Pn . For a polynomial p ∈ Pc
n of the form (4.1), pn ∈ ASRc

n if and only if

aj = −an−j , j = 0, 1, . . . , n .

Every pn ∈ SRc
n and pn ∈ ASRc

n satisfies the growth condition

(4.2) |pn(x)| ≤ (1 + |x|n)‖pn‖[−1,1] , x ∈ R \ [−1, 1] .

The Markov-type (uniform) part of the following inequality is due to Kroó and Szabados
[101]. For the Bernstein-type (pointwise) part, see [17].

13



Theorem 4.1. There is an absolute constant c1 > 0 such that

|p′n(x)| ≤ c1nmin

{
logn , log

(
e

1− x2

)}
‖pn‖[−1,1]

for every x ∈ (−1, 1) and for every polynomial pn ∈ Pc
n satisfying the growth condition

(4.2), in particular for every pn ∈ SRc
n and for every pn ∈ ASRc

n (n ≥ 2).

It is shown in [17] that the above result is sharp for the classes SRn and ASRn, that is,
there are absolute constants c1 > 0 and c2 > 0 such that

c1nmin

{
logn , log

(
e

1− x2

)}
≤ sup

pn

|p′n(x)|
‖pn‖[−1,1]

≤ c2nmin

{
logn , log

(
e

1− x2

)}
,

where the supremum is taken either for all 0 6= pn ∈ SRn or for all 0 6= pn ∈ ASRn (n ≥ 2).
Associated with a polynomial pn ∈ Pc

n of the form (4.1) we define the polynomial

p∗n(z) =

n∑

j=0

an−jz
j .

Let D and ∂D denote the open unit disk and the unit circle, respectively, of the complex
plane. It is well-known and proved in [106, p. 689] that

max
z∈∂D

(
|p′n(z)|+ |p∗n′(z)|

)
= n max

z∈∂D
|pn(z)| .

In particular, if pn ∈ Pc
n is conjugate reciprocal (satisfying pn = p∗n), then

max
z∈∂D

|p′n(z)| ≤
n

2
max
z∈∂D

|pn(z)| .

In [120] the inequality

max
z∈∂D

|p′n(z)| ≤ (n− 1/4) max
z∈∂D

|pn(z)| .

is stated for all pn ∈ SRc
n. In this inequality the Bernstein factor (n − 1/4), in general,

cannot be replaced by anything better than (n − 1), as the following example shows. Let
P ∈ Pc

4n+4 be defined by

P (eit) = (cos((2n+ 1)t) + i(sin((2n+ 1)t) sin t))ei(2n+2)t , t ∈ R .

Since Q(t) := cos((2n + 1)t) ∈ T2n+1 and R(t) := sin((2n + 1)t) sin t ∈ T2n+2 are even
(real) trigonometric polynomials, P ∈ Pc

4n+4 is a self-reciprocal polynomial. Obviously
‖P‖∂D ≤ 1 since

cos2((2n+ 1)t) + sin2((2n+ 1)t) sin2 t ≤ 1 .

Also

iP ′(eiπ/2)eiπ/2 = (2n+ 1)(−1)n+1ei(2n+2)π/2 + (2n+ 2)(−1)n+1e(2n+2)π/2,

hence
‖P ′‖∂D ≥ 4n+ 3 ≥ (4n+ 3)‖P‖∂D .

14



5. Müntz-type Theorems

Müntz’s classical theorem [112] characterizes sequences Λ := (λj)
∞
j=0 with

0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space M(Λ) := span{xλ0 , xλ1 , . . .} is dense in C[0, 1]. Here, M(Λ)
is the collection of all finite linear combinations of the functions xλ0 , xλ1 , . . . with real
coefficients, and C(A) is the space of all real-valued continuous functions on A ⊂ [0,∞)
equipped with the uniform norm. If A := [a, b] is a finite closed interval, then the notation
C[a, b] := C([a, b]) is used.

Müntz’s Theorem. Suppose Λ := (λj)
∞
j=0 is a sequence satisfying 0 = λ0 < λ1 < λ2 <

· · · . Then M(Λ) is dense in C[0, 1] if and only if

(5.1)

∞∑

j=1

1

λj
= ∞ .

Extending a result of Clarkson and Erdős [42], in [25] we proved the right Müntz-type
theorem on compact subsets of [0,∞) with positive Lebesgue measure.

Theorem 5.1. If Λ := (λj)
∞
j=0 is an increasing sequence of nonnegative real numbers

with λ0 = 0 and A ⊂ [0,∞) is a compact set with positive Lebesgue measure, then M(Λ)
is dense in C(A) if and only if (5.1) holds. Moreover, if (5.1) does not hold then every
function from the C[0, 1] closure of H(Λ) := span{1, xλ1 , xλ2 , . . .} can be represented as
an analytic function on {z ∈ C \ (−∞, 0] : |z| < rA} restricted to (0, rA), where

rA := sup{x ∈ A : m(A ∩ [x,∞)} > 0 .

See also [18]. This result had been expected by Erdős and others for a long time. Lorentz
liked this then quite recent result too and stated it in his book [105]. In fact the key to the
proof of Theorem 5.1 is the bounded Remez-type inequality for non-dense Müntz spaces,
the key result in [25] and [18].

Theorem 5.2. For every increasing sequence Λ := (λj)
∞
j=0 of nonnegative real numbers

with λ0 = 0 for which (5.1) does not hold there is a constant c depending only on Λ and s
(and not on A or the number of terms in p) so that

‖p‖[0,infA] ≤ c ‖p‖A

for every p ∈ span{xλ0 , xλ1 , . . .} and for every A ⊂ [0, 1] of Lebesgue measure at least
s ∈ (0, 1).

Extending earlier results of Müntz, Szász, Clarkson, Erdős, L. Schwartz, P. Borwein,
Erdélyi, and Operstein, in [72] we proved the result below.
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Theorem 5.3 (“Full Müntz Theorem” in Lp[0, 1] for p ∈ (0,∞)). Let p ∈ (0,∞).
Suppose (λj)

∞
j=1 is a sequence of distinct real numbers greater than −(1/p) . Then H(Λ) is

dense in Lp[0, 1] if and only if

(5.2)

∞∑

j=1

λj + (1/p)

(λj + (1/p))2 + 1
= ∞ .

Moreover, if (5.2) does not hold then every function from the Lp[0, 1] closure of H(Λ) can
be represented as an analytic function on {z ∈ C \ (−∞, 0] : |z| < 1} restricted to (0, 1).

In handling the non-dense case, that is, the case when (5.2) does not hold, in [72] we
needed to refer to [4].

In [72] the authors were not able to include the case p = ∞ in their discussion. The
right result when p = ∞ is proved in [61].

Theorem 5.4 (“Full Clarkson-Erdős-Schwartz Theorem” in C[0, 1]). Let (λj)
∞
j=1

be a sequence of distinct positive numbers. Then span{1, xλ1 , xλ2 , . . . } is dense in C[0, 1]
if and only if

(5.3)

∞∑

j=1

λj

λ2
j + 1

= ∞ .

Moreover, if (5.3) does not hold then every function from the C[0, 1] closure of H(Λ) can
be represented as an analytic function on {z ∈ C \ (−∞, 0] : |z| < 1} restricted to (0, 1).

This result improves an earlier result by P. Borwein and Erdélyi (see [20] and [17])
stating that if (5.1) does not hold then then every function from the C[0, 1] closure of
H(Λ) is in C∞(0, 1).

In [64] we present the proof of the above “full Müntz Theorem” in Lp[0, 1] for p ∈ (0,∞)
by using more elementary text book methods.

The following problems are still open.

Problem 5.5. Characterize the compact sets A ⊂ [0,∞) for which “Müntz’s Theorem
holds”, that is for which span{xλ0 , xλ1 , . . .} is dense in C(A) if and only if (5.2) holds.

Problem 5.6. Does Müntz’s Theorem hold on every compact set A ⊂ [0,∞) of positive
logarithmic capacity?

Problem 5.7. Does Müntz’s Theorem hold on the ternary Cantor set?

Problem 5.8. Is there a compact set A ⊂ [0,∞) of Lebesgue measure 0 on which Müntz’s
Theorem holds?

6. Remez-type inequalities and Newman’s Product Problem

Let Λ := (λj)
∞
j=0 be a sequence of distinct real numbers. Let

R(Λ) :=

{
p

q
: p, q ∈ span{xλ0 , xλ1 , . . .}

}
.

A surprising result of Somorjai [131] and Bak and Newman [3] is the following.
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Theorem 6.1. R(Λ) ∩ C[0, 1] is always dense in C[0, 1].

So division has extra usefulness. Can multiplication have this extra utility? In [115, p.
51] Newman writes “Thus we have the very sane, if very prosaic, question: P(10.6) Are the

functions (
∑

aix
i2)(
∑

ajx
j2) dense in C[0,1]?” In a more general setting let Λ := (λj)

∞
j=0

be a sequence of distinct nonnegative real numbers with λ0 = 0. Let

Mk(Λ) :=





k∏

j=1

pj : pj ∈ span{xλ0 , xλ1 , . . .}



 .

Suppose k ≥ 2 and
∑∞

j=1 1/λj < ∞ . Can Mk(Λ) be dense in C[0, 1]? In [25] we solved
this Newman product problem. In fact, we observed before that it would be a reasonably
simple consequence of our bounded Remez-type inequality, Theorem 5.2, for nondense
Müntz spaces.

Theorem 6.2. If
∑∞

j=1 1/λj < ∞ k ≥ 2, and A ⊂ [0,∞) is a compact set of positive

Lebesgue measure, then Mk(Λ) is not dense in C(A).

Remark 6.3. Mk(Λ) is contained (not equal to)

span{xλj1
+λj2

+···+λjk : λj1 , λj2 , . . . , λjk ∈ Λ}.

Example 6.4. Let Λ := (λj)
∞
j=0 be defined by

λi :=

{
0, j = 0

2j−1, j = 1, 2, . . . .

Then ∑

λj1
,λj2

,... ,λjk
∈Λ

1

λj1 + λj2 + · · ·+ λjk

< ∞

so it follows from Müntz’s Theorem that Mk(Λ) is not dense in C[0, 1].

Example 6.5. Let Λ := (λj)
∞
j=0 be defined by λj := j2. Then

M4(Λ) ⊂ span{xk2+l2+m2+n2

: k, l,m, n ∈ N} = span{xn : n ∈ N} .

So in this case the non-denseness of M4(Λ) is not obvious at all.

7. Multivariate Approximation

In April, 1996, Lorentz sent me a letter related to a volume discussing “multivariate
approximation”. He speculated: “Some of the chapters may be trivial in the sense that
they contain only a collection of known (important) results, others in the sense that their
results mimic or are obtainable in a simple way on the univariate material. Even such
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“trivial” chapters are very much needed. Then there will be chapters (example: multivari-
ate polynomial interpolation) that have very little to do with univariate results. What are
these chapters?”

Knowing Lorentz’s appreciation of the Remez inequality and its analog for trigono-
metric polynomials first proved in [51], I believe that Lorentz would like the right higher
dimensional analog of Theorem 2.4. This is the only result we formulate in this section, it
is proved in [67].

Let
m := (m1, m2, . . . , mk) and j := (j1, j2, . . . , jk) ,

where each mj and jν is a nonnegative integer. Let

B := {(j1, j2, . . . , jk) : 1 ≤ jν ≤ mν , ν = 1, 2, . . . , k} ,

x := (x1, x2, . . . , xk) ∈ R
k ,

dj := (dj1 , dj2 , . . . , djk) ∈ R
k , j ∈ B ,

Gm :=

{
f : f(x) =

∑

j∈B

Aj exp(−‖x− dj‖) , Aj ∈ R, dj ∈ R
k

}
,

where

‖x− dj‖2 :=
k∑

ν=1

(xν − djν )
2 .

Theorem 7.1 (Remez-Type Inequality for Gm). Let s ∈ (0,∞) and n ≥ 9. There is
an absolute constant c1 > 0 such that

exp(c1R(m1, m2, . . . , mk, s)) ≤ sup
f

‖f‖Rk ≤ exp(80R(m1, m2, . . . , mk, s)) ,

where

R(m1, m2, . . . , mk, s) :=
k∑

j=1

(min{m1/2
j s1/k, mjs

2/k}+ s2/k) ,

and the supremum is taken for all f ∈ Gm with

m
({

x ∈ R
k : |f(x)| ≥ 1

})
≤ s .

8. Newman’s Inequality

Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers. The collection of all linear
combinations of eλ0t, eλ1t, . . . , eλnt over R will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .
18



Elements of E(Λn) are called exponential sums of n+ 1 terms. For a real-valued function
f defined on a set A let

‖f‖L∞A := ‖f‖A := sup{|f(x)| : x ∈ A} ,
and let

‖f‖LpA :=

(∫

A

|f(x)|p dx
)1/p

, p > 0 ,

whenever the Lebesgue integral exists. Newman’s inequality (see [114] and [17] is an
essentially sharp Markov-type inequality for E(Λn) on [0, 1] in the case when each λj is
non-negative.

Theorem 8.1 (Newman’s Inequality). Let Λn := {λ0 < λ1 < · · · < λn} be a set of
nonnegative real numbers. Then

2

3

n∑

j=0

λj ≤ sup
0 6=P∈E(Λn)

‖P ′‖(−∞,0]

‖P‖(−∞,0]
≤ 9

n∑

j=0

λj .

Lorentz knew Newman’s inequality and he presented the beautiful proof of Newman
in the section “Markov-Type Inequalities for Müntz Polynomials” of his book [105, pp.
362–365]. When he learned from me that an extension of

P. Borwein’s Markov-type inequality [12]

(8.1) ‖p′‖[−1,1] ≤ 9n(k + 1)‖p‖[−1,1]

to polynomials from Pn,k (the set of all polynomials of degree at most n with real coef-
ficients and with at most k (0 ≤ k ≤ n) zeros in the open unit disk) can be obtained
easily by using only Lorentz representation and Newman’s inequality, he decided to follow
my paper [49] to present a proof of (8.1) in his book [105, pp. 64–66], even though my
argument gave a multiplicative absolute constant slightly worse than 9. Moreover, Lorentz
[105] presents a short and simple proof of the inequality

(8.2) ‖p(m)‖[−1,1] ≤ c(m)(n(k + 1))m‖p‖[−1,1] , p ∈ Pn,k ,

for higher derivatives, where c(m) is a constant depending only on m, as it is done (es-
sentially) in [49]. Note that a simple induction does not work here due to the lack of a
Gauss-Lucas type theorem.

Lorentz presents Newman’s Inequality only with constant 11 rather than 9 in his book
[105]. The book [17] seems to be the first one working out the details of the necessary
modification and simplification of the proof of Newman’s inequality with constant 9 by
eliminating an application of Kolmogorov’s inequality from Newman’s original approach.
Later we observed that the best known multiplicative constant in Newman’s inequality is
8.29 given in [82].

In [35] orthonormal Müntz-Legendre polynomials were studied. As a by-product we
proved an essentially sharp version of Newman’s inequality in L2. An Lp, 1 ≤ p ≤ ∞,
version of the upper bound in Newman’s Inequality is established in [7], [22], and [55].
Here we formulate some of the main results in [55] that give the constant 8.29, which is
better than 9 in [7] and [22].
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Theorem 8.2. Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonnegative real numbers. Let
1 ≤ p ≤ ∞. Then

‖Q′‖Lp(−∞,0] ≤ 8.29




n∑

j=0

λj


 ‖Q‖Lp(−∞,0]

for every Q ∈ E(Λn).

Theorem 8.2*. Let 1 ≤ p ≤ ∞. Let Λ := (λj)
∞
j=0 be a sequence of distinct real numbers

greater than −1/p. Then

‖xS′(x)‖Lp[0,1] ≤
(
1/p+ 8.29

(
n∑

j=0

(λj + 1/p)

))
‖S‖Lp[0,1]

for every S ∈ Mn(Λ) := span{xλ0 , xλ1 , . . . , xλn}.
The following Lp[a, b], 1 ≤ p ≤ ∞, analog of Theorem 8.1 has been established in [7].

Theorem 8.3. Let Λn := {λ0 < λ1 < · · · < λn} be a set of real numbers, 1 ≤ p ≤ ∞,
a, b ∈ R, and a < b. There is a constant c1 = c1(a, b) depending only on a and b such that

sup
0 6=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lp[a,b]
≤ c1


n2 +

n∑

j=0

|λj |


 .

Theorem 8.3 was proved earlier in [21] (p = ∞) and [55] under the additional assump-
tions that λj ≥ δj for each j with a constant δ > 0 and with c1 = c1(a, b) replaced by
c1 = c1(a, b, δ) depending only on a, b, and δ. The novelty of Theorem 8.3 was the fact
that

Λn := {λ0 < λ1 < · · · < λn}
is an arbitrary set of real numbers, not even the non-negativity of the exponents λj is
needed.

In [62] the following Nikolskii-Markov type inequality has been proved for E(Λn) on
(−∞, 0].

Theorem 8.4. Let Λn := {λ0 < λ1 < · · · < λn} be a set of nonnegative real numbers and
0 < q ≤ p ≤ ∞. Let µ be a non-negative integer. There are constants c2 = c2(p, q, µ) > 0
and c3 = c3(p, q, µ) depending only on p, q, and µ such that

c2




n∑

j=0

λj




µ+ 1
q
− 1

p

≤ sup
0 6=P∈E(Λn)

‖P (µ)‖Lp(−∞,0]

‖P‖Lq(−∞,0]
≤ c3




n∑

j=0

λj




µ+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞ and µ ≥ 0, while the upper bound holds
when µ = 0 and 0 < q ≤ p ≤ ∞, and when µ ≥ 1, p ≥ 1, and 0 < q ≤ p ≤ ∞. Also, there
are constants c2 = c2(q, µ) > 0 and c3 = c3(q, µ) depending only on q and µ such that

c2




n∑

j=0

λj




µ+ 1
q

≤ sup
0 6=P∈E(Λn)

|P (µ)(y)|
‖P‖Lq(−∞,y]

≤ c3




n∑

j=0

λj




µ+ 1
q
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for all 0 < q ≤ ∞, µ ≥ 1, and y ∈ R.

Motivated by a question of Michel Weber, in [66] we proved the following couple of
theorems.

Theorem 8.5. Suppose 0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants
c4 = c4(p, q, a, b) > 0 and c5 = c5(p, q, a, b) depending only on p, q, a, and b such that

c4


n2 +

n∑

j=0

|λj |




1
q
− 1

p

≤ sup
0 6=P∈E(Λn)

‖P‖Lp[a,b]

‖P‖Lq[a,b]
≤ c5


n2 +

n∑

j=0

|λj |




1
q
− 1

p

.

Theorem 8.6. Suppose 0 < q ≤ p ≤ ∞, a, b ∈ R, and a < b. There are constants
c6 = c6(p, q, a, b) > 0 and c7 = c7(p, q, a, b) depending only on p, q, a, and b such that

c6


n2 +

n∑

j=0

|λj|




1+ 1
q
− 1

p

≤ sup
0 6=P∈E(Λn)

‖P ′‖Lp[a,b]

‖P‖Lq[a,b]
≤ c7


n2 +

n∑

j=0

|λj |




1+ 1
q
− 1

p

,

where the lower bound holds for all 0 < q ≤ p ≤ ∞, while the upper bound holds when
p ≥ 1 and 0 < q ≤ p ≤ ∞.

It has been observed by Bernstein that Markov’s inequality for monotone polynomials
is not essentially better than that for all polynomials. He proved that

sup
p

‖p′‖[−1,1]

‖p‖[−1,1]
=

{
1
4(n+ 1)2 , if n is odd

1
4n(n+ 2) , if n is even ,

where the supremum is taken for all polynomials 0 6= p of degree at most n that are
monotone on [−1, 1]. See [121, p. 607], for instance.

In [68] an effort is made to extend the above results of Bernstein to the classes E(Λn).
We proved the following couple of results.

Theorem 8.7. Let n ≥ 2 be an integer, b ∈ R. Then there is an absolute constant c1 > 0
such that

c1
logn

n∑

j=0

λj ≤ sup
P

‖P ′‖(−∞,b]

‖P‖(−∞,b]
≤ 9

n∑

j=0

λj ,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

Theorem 8.8. Let n ≥ 2 be an integer. Let [a, b] be a finite interval with length b−a > 0.
There are positive constants c2 = c2(a, b) and c3 = c3(a, b) depending only on a and b such
that

c2


n2 +

1

logn

n∑

j=0

|λj|


 ≤ sup

P

‖P ′‖[a,b]
‖P‖[a,b]

≤ c3

(
n2 +

n∑

j=0

|λj |
)

,

where the supremum is taken for all 0 6= P ∈ E(Λn) increasing on (−∞,∞).

It is expected that the factor 1/ logn in the above theorems can be dropped.
Most of the results in this section are fairly recent. I think Lorentz would like the results

in this section and might include some of them rather than Theorems 8.3 and 8.4 in [105,
p. 367] with proofs.
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9. Littlewood Polynomials

The well known Littlewood Conjecture was solved by Konyagin [93] and independently
by McGehee, Pigno, and B. Smith [107]. Based on these Lorentz worked out a textbook
proof of the conjecture in [44].

Theorem 9.1. Let n1, n2, . . . , nN be distinct integers. For some absolute constant c > 0,

∫ 2π

0

∣∣∣∣∣

N∑

k=1

einkt

∣∣∣∣∣ dt ≥ c logN .

This is an obvious consequence of

Theorem 9.2. Let n1 < n2 < · · · < nN be integers. Let a1, a2, . . . , ak be arbitrary
complex numbers. We have

∫ 2π

0

∣∣∣∣∣

N∑

k=1

ake
inkt

∣∣∣∣∣ dt ≥
1

30

N∑

k=1

|ak|
k

.

I read the proof of Theorem 9.2 presented in Lorentz’s book [44] with special interest.
This was one of my main motivations to start working on unimodular polynomials (poly-
nomials with complex coefficients of modulus 1), and Littlewood polynomials (polynomials
with coefficients from {−1, 1}), and with other classes of polynomials with various other
coefficient constraints.

Pichorides, who contributed essentially to the proof of the Littlewood conjecture, ob-
served in [119] that the original Littlewood conjecture (when all the coefficients are from
{0, 1} would follow from a result on the L1 norm of such polynomials on sets E ⊂ ∂D of
measure π. Namely if ∫

E

∣∣∣
n∑

j=0

zkj

∣∣∣ |dz| ≥ c

for any subset E ⊂ ∂D of measure π with an absolute constant c > 0, then the original
Littlewood conjecture holds. Throughout this section the measure of a set E ⊂ ∂D is the
linear Lebesgue measure of the set

{t ∈ [−π, π) : eit ∈ E} .

Konyagin [92] gives a lovely probabilistic proof showing that this hypothesis fails. He does
however conjecture the following: for any fixed set E ⊂ ∂D of positive measure there exists
a constant c = c(E) > 0 depending only on E such that

∫

E

∣∣∣
n∑

j=0

zkj

∣∣∣ |dz| ≥ c(E) .
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In other words the sets Eε ⊂ ∂D of measure π in his example where

∫

Eε

∣∣∣
n∑

j=0

zkj

∣∣∣ |dz| < ε

must vary with ε > 0.
In [29] we show, among other things, that Konyagin’s conjecture holds on subarcs of

the unit circle ∂D.
In [84] S. Güntürk constructs certain types of near-optimal approximations of a class

of analytic functions in the unit disk by power series with two distinct coefficients. More
precisely, it is shown that if all the coefficients of the power series f(z) are real and lie in
[−µ, µ], where µ < 1, then there exists a power series Q(z) with coefficients in {−1,+1}
such that |f(z)−Q(z)| → 0 at the rate exp(C|1− z|−1) as z → 1 non-tangentially inside
the unit disk. Güntürk refers to P. Borwein, Erdélyi, and Kós in [34] to see that this type
of decay rate is best possible. The special case f ≡ 0 yields a near-optimal solution to the
“fair duel problem” of Konyagin, as it is described in the Introduction of [84].

In [34] we consider the problem of minimizing the uniform norm on [0, 1] over polyno-
mials 0 6= p of the form

p(x) =

n∑

j=0

ajx
j , |aj| ≤ 1 , aj ∈ C ,

where the modulus of the first non-zero coefficient is at least δ > 0. Essentially sharp
bounds are given for this problem. An interesting related result states that there are:
absolute constants c1 > 0 and c2 > 0 such that

exp
(
−c1

√
n
)
≤ inf

0 6=p∈Fn

‖p‖[0,1] ≤ exp
(
−c2

√
n
)

for every n ≥ 2, where Fn denotes the set of polynomials of degree at most n with
coefficients from {−1, 0, 1}.

The results of [29] show that many types of polynomials cannot be small on subarcs of
the unit circle in the complex plane. A typical result of [29] is the following. There are
absolute constants c1 > 0, c2 > 0, and c3 > 0 such that

exp (−c1/a) ≤ inf
0 6=p∈Fn

‖p‖L1(A) , inf
0 6=p∈Fn

‖p‖A ≤ exp (−c2/a)

for every subarc A of the unit circle ∂D := {z ∈ C : |z| = 1} with length 0 < a < c3.
The lower bound results extend to the class of f of the form

f(z) =

n∑

j=m

ajz
j , aj ∈ C , |aj| ≤ M , |am| = 1 ,

with varying nonnegative integers m ≤ n. It is also shown in [29] that functions f of
the above form cannot be arbitrarily small uniformly on subarcs of the circle. However,
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this does not extend to sets of positive measure. It is shown that it is possible to find a
polynomial of the above form that is arbitrarily small on as much of the boundary (in the
sense of linear Lebesgue measure) as one likes.

The height of a polynomial

pn(z) :=

n∑

j=0

ajz
j , aj ∈ C , an 6= 0 ,

is defined by

H(pn) := max

{ |aj |
|an|

: j = 0, 1, . . . , n

}
.

An easy to formulate corollary of the results of [29] is the following.

Corollary 9.3. Let A be a subarc of the unit circle with length ℓ(A) = a. If (pk) is a
sequence of monic polynomials that tends to 0 in L1(A), then the sequence H(pk) of heights
tends to ∞.

In [24] We are concerned with the problem of minimizing the supremum norm, on an
interval, of a nonzero polynomial of degree at most n with integer coefficients. This is
an old and hard problem that cannot be exactly solved in any nontrivial cases. See the
references in [24]. We examined the case of the interval [0, 1] in most detail. We improved
the known bounds by a small but interesting amount. This allowed us to garner further
information about the structure of such minimal polynomials and their factors. This was
primarily a (substantial) computational exercise. We also examined some of the structure
of such minimal “integer Chebyshev ”polynomials. We disproved conjecture 36 (ascribed to
the Chudnovsky brothers and others) in [111, p. 201]. In recent years a number of papers
related to [24] were published. See [39], [86], and [138], for example, and the references in
them.

In 1945 Duffin and Schaeffer proved that any power series that is bounded in a sector
of the open unit disk and has coefficients from a finite subset of C is already a rational
function. Their proof is relatively indirect. It is one purpose of [37] to give a shorter direct
proof of this beautiful and surprising theorem. An easy consequence of this, for example,
is that any algebraic function that has a power series expansion on the open unit disk with
coefficients from a finite subset of C is, in fact, a rational function.

10. Inequalities for Generalized Polynomials

The function

(10.1) f(x) := |ω|
m∏

j=1

|x− zj |rj

with 0 < rj ∈ R , zj ∈ C, and 0 6= ω ∈ C is called a generalized (algebraic) polynomial
of degree N :=

∑m
j=1 rj. If f is a positive constant identically, its degree is defined to be

0, while if f is identically 0, its degree is defined to be −1. Let GAPN be the set of all
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generalized algebraic polynomials of degree at most N . If in the representation (10.1) of
f all the exponents rj are integers, then f is the absolute value of an ordinary algebraic
polynomial (of degree N). If f ∈ GAPN is of the form (10.1) with distinct zj ∈ C, then
the numbers zj are called the zeros of f , while the exponent rj is called the multiplicity
of the zero zj in f .

The function

P (x) := a0 +
n∑

k=1

(ak cos kx+ bk sin kx) , ak, bk ∈ R , anbn 6= 0 ,

is called a real trigonometric polynomial of degree n. It is well-known that every real
trigonometric polynomial P of degree (order) n can be written as

P (x) = ω
2n∏

j=1

sin((x− zj)/2) ,

where ω ∈ R, zj ∈ C, and the non-real zeros zj of P form conjugate pairs. The function

(10.2) P (x) := ω

m∏

j=1

| sin((x− zj)/2)|rj , x ∈ R ,

where 0 < rj ∈ R, zj ∈ C are distinct (mod 2π), and 0 < ω ∈ R, is called a generalized
trigonometric polynomial of degree N := 1

2

∑m
j=1 rj . If P is a constant identically, then its

degree is defined to be 0. Note that the absolute value of a real trigonometric polynomial
of degree n may be viewed as a generalized trigonometric polynomial of degree n. Let
GTPN denote the set of all generalized trigonometric polynomials of degree at most N .
Observe that if P ∈ GTPN is of the form (10.2), then

P (x) := ω
s∏

j=1

(sin((x− zj)/2) sin((x− zj)/2))
rj/2 =

s∏

j=1

Tj(x)
rj/2 , x ∈ R ,

where each Tj is a real trigonometric polynomial of degree 1 being nonnegative on the real
line. For a P ∈ GTPN of the form (10.2) the numbers zj are called the zeros of P , while
the exponent rj is called the multiplicity of the zero zj in P .

The problem arises how to define f ′ for an f ∈ GAPN and P ′ for a P ∈ GTPN . Observe
that if rj ≥ 1 for each j = 1, 2, . . . , m in (10.2), then, although P ′ may not exist at the
zeros of P , the one-sided derivatives P ′

− and P ′
+ exist, and their absolute values are equal.

This means |P ′| is well defined on the real line by either |P ′
−| or |P ′

+|. Similarly, if rj ≥ 1
for each j = 1, 2, . . . , m in (10.1), then f ′ is well defined on the real line. It is a simple
exercise to check that if P ∈ GTPN has only real zeros with multiplicities at least 1, then
|P ′| ∈ GTPN has only real zeros as well, and at least one of any two adjacent zeros of |P ′|
has multiplicity exactly 1. A similar comment can be made on f ∈ GAPN having only
real zeros with multiplicities at least 1.
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One might expect to extend various polynomial inequalities to generalized polynomials
by writing the generalized degree N in place of the ordinary degree n. However, even
when it is possible, such an extension might be far from obvious. Remez-type inequalities
serve as examples of a situation when a polynomial inequality easily extends to generalized
polynomials.

In [76] we started with the (straightforward) extension of the algebraic and trigonometric
Remez-type inequalities to GAPN and GTPN , and proved the following results.

Theorem 10.1. There is an absolute constant 0 < c1 < 1 such that

m

(
y ∈ [−1, 1] : f(y) ≥ exp(−N

√
s) max

−1≤x≤1
f(x)

)
≥ c1s

for every f ∈ GAPN and 0 < s < 2.

Theorem 10.2. There is an absolute constant 0 < c2 < 1 such that

m

(
t ∈ [−π, π] : P (t) ≥ exp(−Ns) max

−π≤τ≤π
P (τ)

)
≥ c2s

for every P ∈ GTPN and 0 < s < 2π.

As a consequence, in [76] we obtained the Nikolskii-type inequalities below.

Theorem 10.3. Let χ be a nonnegative, nondecreasing function defined in [0,∞) such
that χ(x)/x is non-increasing in [0,∞). Then for 0 < q < p ≤ ∞ we have

‖χ(P )‖Lp[−π,π] ≤ (c3(1 + qN))1/q−1/p‖χ(P )‖Lq[−π,π] , P ∈ GTPN ,

where c3 is an absolute constant. If χ(x) = x, then c3 = e(4π)−1 is suitable.

Theorem 10.4. Let χ be a nonnegative, nondecreasing function defined in [0,∞) such
that χ(x)/x is non-increasing in [0,∞). Then for 0 < q < p ≤ ∞ we have

‖χ(f)‖Lp[−1,1] ≤ (c4(1 + qN))2/q−2/p‖χ(f)‖Lq[−1,1] , f ∈ GAPN ,

where c4 is an absolute constant. If χ(x) = x, then c4 = e2(2π)−1 is suitable.

In [50] and [76] we have proved even (essentially) sharp Markov- and Bernstein-type
inequalities for the classes GAPN and GTPN in Lp norms. In [77] we extended these
results to the setting below.

Theorem 10.5. Let 0 < p ≤ ∞. We have

‖P ′Q‖Lp[−π,π] ≤ c1+1/p(N +M) log(min(N,M + 1) + 1)‖PQ‖Lp[−π,π]

for any two P ∈ GTPN and Q ∈ GTPM such that the roots of P and Q have multiplicities
at least 1. Moreover, this inequality is sharp up to the constant c1+1/p.
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Theorem 10.6. Let 0 < p ≤ ∞. We have

‖
√

1− x2f ′(x)g(x)‖Lp[−1,1] ≤ c1+1/p(N +M) log(min(N,M + 1) + 1)‖fg‖Lp[−1,1]

for any two f ∈ GAPN and g ∈ GAPM such that the roots of f and g have multiplicities
at least 1. This inequality is sharp up to the constant c1+1/p.

Theorem 10.7. Let 0 < p ≤ ∞. We have

‖f ′g‖Lp[−1,1] ≤ c1+1/p(N +M)2‖fg‖Lp[−1,1]

for any two f ∈ GAPN and g ∈ GAPM such that the roots of f have multiplicities at least
1. This inequality is sharp up to the factor c1+1/p for all N,M ≥ 1.

In [74] we combined some of our inequalities for generalized polynomials with some
other ideas and obtained the following result.

Theorem 10.8. For all Jacobi weight functions w(x) = (1− x)α(1 + x)β with α ≥ −1/2
and β ≥ −1/2, the inequalities

max
x∈[−1,1]

p2n(w, x)∑n
k=0 p

2
k(w, x)

≤
4
(
2 +

√
α2 + β2

)

2n+ α+ β + 2

and

max
x∈[−1,1]

√
1− x2w(x)p2n(w, x) ≤

2e
(
2 +

√
α2 + β2

)

π

hold for n = 0, 1, . . . , where pn(w, x) denote the orthonormal polynomials of degree n
associated with the weight w on [−1, 1].

11. Markov- and Bernstein-type inequalities for rational functions

We denote by Pr
n and Pc

n the sets of all algebraic polynomials of degree at most n
with real or complex coefficients, respectively. The sets of all trigonometric polynomials
of degree at most n with real or complex coefficients, respectively, are denoted by T r

n and
T c
n . We will use the notation

‖f‖A = sup
z∈A

|f(z)|

for continuous functions f defined on A. Let

D := {z ∈ C : |z| ≤ 1}, ∂D := {z ∈ C : |z| = 1} , K := R (mod2π) .

The classical inequalities of Bernstein [8] state that

|p′(z0)| ≤ n‖p‖∂D, p ∈ Pc
n, z0 ∈ ∂D,

|t′(θ0)| ≤ n‖t‖K , t ∈ T c
n , θ0 ∈ K,

|p′(x0)| ≤
n√

1− x2
0

‖p‖[−1,1], p ∈ Pc
n, x0 ∈ (−1, 1).
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Proofs of the above inequalities may be found in almost every book on approxima-
tion theory, see [104], for instance. An extensive study of Markov- and Bernstein-type
inequalities is presented in [120],[121], and [17].

In [19] we study the rational function spaces:

Pc
n(a1, a2, . . . , an; ∂D) :=





pn(z)
n∏

j=1

(z − aj)
: pn ∈ Pc

n





on ∂D with {a1, a2, . . . , an} ⊂ C \ ∂D;

T c
n (a1, a2, . . . , a2n;K) :=





tn(θ)
2n∏
j=1

sin((θ − aj)/2)

: tn ∈ T c
n





on K with {a1, a2, . . . , a2n} ⊂ C \ R;

Pc
n(a1, a2, . . . , an; [−1, 1]) :=





pn(x)
n∏

j=1

(x− aj)
: pn ∈ Pc

n





on [−1, 1] with {a1, a2, . . . , an} ⊂ C \ [−1, 1];

Pc
n(a1, a2, . . . , an;R) :=





pn(x)
n∏

j=1

(x− aj)
: pn ∈ Pc

n





on R with {a1, a2, . . . , an} ⊂ C \ R, and

Pr
n(a1, a2, . . . , an;R) :=





pn(x)
n∏

j=1

|x− aj|
: pn ∈ Pr

n





on R with {a1, a2, . . . , an} ⊂ C \ R.
The spaces

T r
n (a1, a2, . . . , a2n;K) :=





tn(θ)
2n∏
j=1

| sin((θ − aj)/2)|
: tn ∈ T r

n




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on K with {a1, a2, . . . , an} ⊂ C \ R and

Pr
n(a1, a2, . . . , an; [−1, 1]) :=





pn(x)
n∏

j=1
|x− aj |

: pn ∈ Pr
n





on [−1, 1] with {a1, a2, . . . , an} ⊂ C \ [−1, 1] have been studied in [36] and [17], and the
sharp Bernstein-Szegő type inequalities

f ′(θ0)
2 + B̃n(θ0)

2 f(θ0)
2 ≤ B̃(θ0)

2‖f‖2K , θ0 ∈ K ,

for every f ∈ T r
n (a1, a2, . . . , a2n;K) with

(11.1) (a1, a2, . . . , a2n) ⊂ C \ R, Im(aj) > 0, j = 1, 2, . . . , 2n ,

and

(11.2) (1− x2
0)f

′(x0)
2 +Bn(x0)

2f(x0)
2 ≤ Bn(x0)

2‖f‖2[−1,1], x0 ∈ (−1, 1) ,

for every f ∈ Pr
n(a1, a2, . . . , an; [−1, 1]) with

{a1, a2, . . . , an} ⊂ C \ [−1, 1]

have been proved, where

B̃n(θ) :=
1

2

2n∑

j=1

1− |eiaj |2
|eiaj − eiθ|2 , θ ∈ K

and

Bn(x) := Re




n∑

j=1

√
a2j − 1

aj − x


 , x ∈ [−1, 1]

with the choice of
√

a2j − 1 is determined by

∣∣∣aj −
√
a2j − 1

∣∣∣ < 1.

These inequalities give sharp upper bound for |f ′(θ0)| and |f ′(x0)| only at n points in K
and [−1, 1], respectively. In [19] we establish Bernstein-type inequalities for the spaces

Pc
n(a1, a2, . . . , an, ∂D) and T c

n (a1, a2, . . . , a2n;K)
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which are sharp at every z ∈ ∂D and θ ∈ K, respectively. An essentially sharp Bernstein-
type inequality is also established for the space

Pc
n(a1, a2, . . . , a;[−1, 1]) .

A Bernstein-type inequality of Russak [118] is extended to the spaces

Pc
n(a1, a2, . . . , an;R) ,

and a Bernstein-Szegő type inequality is established for the spaces

Pr
n(a1, a2, . . . , an;R) .

For a polynomial

qn(z) = c
n∏

j=1

(z − aj), 0 6= c ∈ C, aj ∈ C

we define

q∗n(z) = c

n∏

j=1

(1− ajz) = znqn(z
−1) .

It is well-known, and simple to check, that

|qn(z)| = |q∗n(z)|, z ∈ ∂D .

We also define the Blaschke products

Sn(z) :=
n∏

j=1

1− ajz

z − aj

associated with {a1, a2, . . . , an} ⊂ C \ ∂D, and

S̃n(z) :=

n∏

j=1

z − aj
z − aj

associated with {a1, a2, . . . , an} ⊂ C \ R.
In [19] we proved the following five theorems. The first one is called the “Borwein-

Erdélyi inequality” in [130].

Theorem 11.1. Let {a1, a2, . . . , an} ⊂ C \ ∂D. Then

|f ′(z0)| ≤ max





∑

j=1
|aj |>1

|aj |2 − 1

|aj − z0|2
,
∑

j=1
|aj |<1

1− |aj |2
|aj − z0|2





‖f‖∂D

for every f ∈ Pc
n(a1, a2, . . . , an; ∂D) and z0 ∈ ∂D. If the first sum is not less than the

second sum for a fixed z0 ∈ ∂D, then equality holds for f = c S+
n , c ∈ C, where S+

n is the
Blaschke product associated with those aj for which |aj| > 1. If the first sum is not greater
than the second sum for a fixed z0 ∈ ∂D, then equality holds for f = c S−

n , c ∈ C, where
S−
n is the Blaschke product associated with those aj for which |aj| < 1.
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Theorem 11.2. Let {a1, a2, . . . , a2n} ⊂ C \ R. Then

|f ′(θ0)| ≤ max





2n∑

j=1
Im(aj)<0

|eiaj |2 − 1

|eiaj − eiθ0 |2 ,
2n∑

j=1
Im(aj)>0

1− |eiaj |2
|eiaj − eiθ0 |2





‖f‖K

for every f ∈ T c
n (a1, a2, . . . , a2n;K) and θ0 ∈ K. If the first sum is not less than the

second sum for a fixed θ0 ∈ K, then equality holds for f(θ) = cS+
2n(e

iθ), c ∈ C. If the
first sum is not greater than the second sum for a fixed θ0 ∈ K, then equality holds for
f(θ) = cS−

2n(e
iθ), c ∈ C. S+

2n and S−
2n associated with {eia1 , eia2 , . . . , eia2n} are defined as

in Theorem 1.

Theorem 11.3.. Let {a1, a2, . . . , an} ⊂ C \ [−1, 1] and

cj := aj −
√

a2j − 1, |cj| < 1

with the choice of root in
√

a2j − 1 determined by |cj | < 1. Then

|f ′(x0)| ≤
1√

1− x2
0

max





n∑

j=1

|cj |−2 − 1

|c−1
j − z0|2

,

n∑

j=1

1− |cj|2
|cj − z0|2



 ‖f‖[−1,1]

for every f ∈ Pc
n(a1, a2, . . . , an; [−1, 1]) and x0 ∈ (−1, 1), where z0 is defined by

z0 := x0 + i
√

1− x2
0, x0 ∈ (−1, 1).

Note that

Bn(x0) = Re




n∑

j=1

√
a2j − 1

aj − x0


 =

n∑

j=1

1− |cj |2
|cj − z0|2

, x0 ∈ (−1, 1).

Our next result extends an inequality established by Russak [118] to wider families of
rational functions.

Theorem 11.4. Let {a1, a2, . . . , an} ⊂ C \ R. Then

|f ′(x0)| ≤ max





n∑

j=1

Im(aj)>0

2|Im(aj)|
|x0 − aj |2

,

n∑

j=1

Im(aj)<0

2|Im(aj)|
|x0 − aj |2





‖f‖R
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for every f ∈ Pc
n(a1, a2, . . . , an;R) and x0 ∈ R. If the first sum is not less than the second

sum for a fixed x0 ∈ R, then equality holds for f = cS̃+
n , c ∈ C, where S̃+

n is the Blaschke
product associated with the poles aj lying in the upper half-plane

H+ := {z ∈ C : Im(z) > 0}
If the first sum is not greater than the second sum for a fixed x0 ∈ R, then equality holds
for f = cS̃−

n , c ∈ C, where S̃−
n is the Blaschke product associated with the poles aj lying in

the lower half-plane
H− := {z ∈ C : Im(z) < 0} .

Our last result in [19] is a Bernstein-Szegő type inequality for Pr
n(a1, a2, . . . , a2n;R). It

follows from the Bernstein-Szegő type inequality (11.2) for Pr
n(a1, a2, . . . , an; [−1, 1]).

Theorem 11.5. Let

{a1, a2, . . . , an} ⊂ C \ R, Im(aj) > 0, j = 1, 2, . . . , n.

Then
f ′(x0)

2 + B̂n(x0)
2f(x0)

2 ≤ B̂n(x0)
2‖f‖2

R
, x0 ∈ R,

for every f ∈ Pr
n(a1, a2, . . . , an;R), where

B̂n(x) :=
n∑

j=1

Im(aj)

|x− aj |2
, x ∈ R.

We remark that equality holds in Theorem 11.5 if and only if x0 is a maximum point of f
(i.e. f(x0) = ±‖f‖R) or f is a “Chebyshev polynomial” for the space Pr

n(a1, a2, . . . , an;R)
which can be explicitly expressed by using the results of [36] and [17].

Note that Bernstein’s classical inequalities are contained in Theorem 11.1, 11.2, and
11.3 as limiting cases, by taking

{a(k)1 , a
(k)
2 , . . . , a(k)n } ⊂ C \D

in Theorems 11.1 and 11.3 so that lim
k→∞

|a(k)j | = ∞ for each j = 1, 2, . . . , n, and by taking

{a(k)1 , a
(k)
2 , . . . , a

(k)
2n } ⊂ C \ R

in Theorem 11.2 so that a
(k)
n+j = a

(k)
j and lim

k→∞
|Im(a

(k)
j )| = ∞ for each j = 1, 2, . . . , n.

Further results can be obtained as limiting cases by fixing a1, a2, . . . , am, 1 ≤ m ≤ n, in
Theorems 11.1 and 11.3, and by taking

{a1, a2, . . . , am, a
(k)
m+1, a

(k)
m+2, . . . , a

(k)
n } ⊂ C \D

so that lim
k→∞

|a(k)j | = ∞ for each j = m + 1, m + 2, . . . , n. One may also fix the poles

a1, a2, . . . , am, an+1, an+2, . . . , an+m, 1 ≤ m ≤ n, in Theorem 11.2 and take

{a1, . . . , am, a
(k)
m+1, . . . , a

(k)
n , an+1, . . . , an+m, a

(k)
n+m+1, . . . , a

(k)
2n } ⊂ C \ R

so that a
(k)
n+j = a

(k)
j and lim

k→∞
|Im(a

(k)
j )| = ∞ for each j = m+ 1, m+ 2, . . . , n.
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12. Nikolskii-type inequalities for shift-invariant function spaces

The well known results of Nikolskii assert that the essentially sharp inequality

‖hn‖Lq[−1,1] ≤ c(p, q)n2/p−2/q‖hn‖Lp[−1,1]

holds for all algebraic polynomials hn of degree at most n with complex coefficients and
for all 0 < p < q ≤ ∞, while the essentially sharp inequality

‖tn‖Lq[−π,π] ≤ c(p, q)n1/p−1/q‖tn‖Lp[−π,π]

holds for all trigonometric polynomials tn of degree at most n with complex coefficients
and for all 0 < p < q ≤ ∞. The subject started with two famous papers [116] and [134].
There are quite a few related papers in the literature.

Let Vn be a vector space of complex-valued functions defined on R of dimension n + 1
over C. We say that Vn is shift invariant (on R) if f ∈ Vn implies that fa ∈ Vn for every
a ∈ R, where fa(x) := f(x − a) on R. Let Λn := {λ0, λ1, . . . , λn} be a set of distinct
COMPLEX numbers. The collection of all linear combinations of eλ0t, eλ1t, . . . , eλnt over
C will be denoted by

E(Λn) := span{eλ0t, eλ1t, . . . , eλnt} .
Elements of E(Λn) are called exponential sums of n+1 terms. Examples of shift invariant
spaces of dimension n + 1 include E(Λn). In [66] Theorem 8.5 is proved. Using the L∞

norm on a fixed subinterval [a + δ, b − δ] ⊂ [a, b] in the numerator in Theorem 8.5, we
proved the following essentially sharp result in [27].

Theorem 12.1. If Λn := {λ0, λ1, . . . , λn} is a set of distinct real numbers, then the
inequality

‖f‖L∞[a+δ,b−δ] ≤ e81/p
(
n+ 1

δ

)1/p

‖f‖Lp[a,b]

holds for every f ∈ E(Λn), p > 0, and δ ∈
(
0, 12 (b− a)

)
.

The key to this result is the Remez-type inequality of Theorem 2.3*. Having real
exponents λj in the above theorems is essential in the proof using some Descartes system
methods. In [32] we prove an analogous result for complex exponents λj , in which case
Descartes system methods cannot help us in the proof.

Theorem 12.2. Let Vn ⊂ C[a, b] be a shift invariant vector space of complex-valued func-
tions defined on R of dimension n+ 1 over C. Let p ∈ (0, 2]. Then

‖f‖L∞[a+δ,b−δ] ≤ 22/p
2

(
n+ 1

δ

)1/p

‖f‖Lp[a,b]

for every f ∈ Vn and δ ∈
(
0, 1

2
(b− a)

)
.

Problem 12.3. Is it possible to extend a version of Theorem 12.2 to ALL p > 0?
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13 Inverse Markov- and Bernstein-type inequalities

Let ε ∈ [0, 1] and let Dε be the ellipse of the complex plane with large axis [−1, 1] and
small axis [−iε, iε]. Let Pc

n(Dε) denote the collection of all polynomials of degree n with
complex coefficients and with all their zeros in Dε. Extending a result of Turán [136], Erőd
[81, III. tétel] proved that

c1(nε+
√
n) ≤ inf

p

‖p′‖Dε

‖p‖Dε

≤ c2(nε+
√
n) ,

where the infimum is taken for all p ∈ Pc
n(Dε) Recently Levenberg and Poletcky [95]

rediscovered this beautiful result.
Let ε ∈ [0, 1] and let Sε be the diamond of the complex plane with diagonals [−1, 1]

and [−iε, iε]. Let Pc
n(Sε) denote the collection of all polynomials of degree n with complex

coefficients and with all their zeros in Sε. Let

‖f‖A := sup
z∈A

|f(z)|

for complex-valued functions defined on A.
In [69] the following result is proved.

Theorem 13.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1(nε+
√
n) ≤ inf

p

‖p′‖Sε

‖p‖Sε

≤ c2(nε+
√
n) ,

where the infimum is taken for all p ∈ Pc
n(Sε) with the property

|p(z)| = |p(−z)| , z ∈ C ,

or where the infimum is taken for all real p ∈ Pc
n(Sε).

It is an interesting question whether or not the lower bound in Theorem 13.1 holds for all
p ∈ Pc

n(ε). As our next result in [69] shows this is the case at least when ε = 1.

Theorem 13.2. There are absolute constants c1 > 0 and c2 > 0 such that

c1n ≤ inf
p

‖p′‖S1

‖p‖S1

≤ c2n ,

where the infimum is taken for all (complex) p ∈ Pc
n(S1).

Motivated by the author’s initial results in this section, Sz. Révész [123] established the
right order Turán -type converse Markov inequalities on convex domains of the complex
plane. His main theorem contains the results in this section as special cases. Révész’ proof
is also elementary, but rather subtle.
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Theorem 13.3. Let K ⊂ C be a bounded convex domain. Then for every p ∈ Pc
n having

no zeros in K we have

‖p′‖K
‖p‖K

≥ c(K)n with c(K) = 0.0003
w(K)

d(K)2
,

where d(K) is the diameter of K and

w(K) := min
γ∈[−π,π]

(
max
z∈K

Re(ze−iγ)−min
z∈K

Re(ze−iγ)

)

is the minimal width of K.

In particular, the lower bound in Theorem 13.1 holds for all p ∈ Pc
n(ε).

14. Ultraflat sequences of Unimodular Polynomials

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the
complex plane, is denoted by ∂D. The class

Kn :=

{
pn : pn(z) =

n∑

k=0

akz
k, ak ∈ C , |ak| = 1

}

is often called the collection of all (complex) unimodular polynomials of degree n. The
class

Ln :=

{
pn : pn(z) =

n∑

k=0

akz
k, ak ∈ {−1, 1}

}

is often called the collection of all (real) unimodular polynomials of degree n. By Parseval’s
formula, ∫ 2π

0

|Pn(e
it)|2 dt = 2π

n∑

k=0

|ak|2 = 2π(n+ 1)

for all Pn ∈ Kn. Therefore

min
z∈∂D

|Pn(z)| ≤
√
n+ 1 ≤ max

z∈∂D
|Pn(z)| .

An old problem (or rather an old theme) is the following.

Problem 14.1 (Littlewood’s Flatness Problem). How close can a Pn ∈ Kn or
Pn ∈ Ln come to satisfying

(14.1) |Pn(z)| =
√
n+ 1 , z ∈ ∂D?

Obviously (14.1) is impossible if n ≥ 1. So one must look for less than (14.1), but
then there are various ways of seeking such an “approximate situation”. One way is the
following. In his paper [98] Littlewood had suggested that, conceivably, there might exist
a sequence (Pn) of polynomials Pn ∈ Kn (possibly even Pn ∈ Ln) such that

(n+ 1)−1/2|Pn(e
it)|

converge to 1 uniformly in t ∈ R. We shall call such sequences of unimodular polynomials
“ultraflat”. More precisely, we give the following definition.
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Definition 14.2. Given a positive number ε, we say that a polynomial Pn ∈ Kn is ε-flat
if

(1− ε)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + ε)

√
n+ 1 , z ∈ ∂D .

Definition 14.2*. Given a sequence (εnk
) of positive numbers tending to 0, we say that

a sequence (Pnk
) of polynomials Pnk

∈ Knk
is (εnk

)-ultraflat if each Pnk
is (εnk

)-flat. We
simply say that a sequence (Pnk

) of polynomials Pnk
∈ Knk

is ultraflat if it is (εnk
)-ultraflat

with a suitable sequence (εnk
) of positive numbers tending to 0.

The existence of ultraflat sequences of unimodular polynomials seemed very unlikely in
in view of a 1957 conjecture of P. Erdős (Problem 22 in [79]) asserting that, for all Pn ∈ Kn

with n ≥ 1,

(14.2) max
z∈∂D

|Pn(z)| ≥ (1 + ε)
√
n+ 1 ,

where ε > 0 is an absolute constant (independent of n). Yet, refining a method of Körner
[91], Kahane [90] proved that there exists a sequence (Pn) with Pn ∈ Kn which is (εn)-
ultraflat, where

εn = O
(
n−1/17

√
logn

)
.

(Kahane’s paper contained a slight error though which was corrected in [125].) Thus the
Erdős conjecture (14.2) was disproved for the classes Kn. For the more restricted class Ln

the analogous Erdős conjecture is unsettled to this date. It is a common belief that the
analogous Erdős conjecture for Ln is true, and consequently there is no ultraflat sequence
of polynomials Pn ∈ Ln. An interesting result related to Kahane’s breakthrough is given
by Beck [5]. For an account of some of the work done till the mid 1960’s, see Littlewood’s
book [99] and [125].

Let (εn) be a sequence of positive numbers tending to 0. Let the sequence (Pn) of
polynomials Pn ∈ Kn be (εn)-ultraflat. We write

(14.3) Pn(e
it) = Rn(t)e

iαn(t) , Rn(t) = |Pn(e
it)| , t ∈ R .

It is a simple exercise to show that αn can be chosen so that it is differentiable on R. This
property of αn is assumed in the rest of this section. The structure of ultraflat sequences
of unimodular polynomials is studied in [56], [58], [59], and [60] where several conjectures
of Saffari [126] (see also [124] and [125]) are proved.

Theorem 14.3 (Uniform Distribution Theorem for the Angular Speed). Suppose
(Pn) is an ultraflat sequence of polynomials Pn ∈ Kn. Then, with the notation (14.3), in
the interval [0, 2π], the distribution of the normalized angular speed α′

n(t)/n converges to
the uniform distribution as n → ∞. More precisely, we have

m({t ∈ [0, 2π] : 0 ≤ α′
n(t) ≤ nx}) = 2πx+ γn(x)

for every x ∈ [0, 1], where
lim
n→∞

max
x∈[0,1]

|γn(x)| = 0 .
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Theorem 14.4 (Negligibility Theorem for the Higher Derivatives). Suppose (Pn)
is an ultraflat sequence of polynomials Pn ∈ Kn. Then, with the notation (14.3), for every
integer r ≥ 2, we have

max
0≤t≤2π

|α(r)
n (t)| ≤ γn,rn

r

with suitable constants γn,r > 0 converging to 0 for every fixed r = 2, 3, . . . .

Theorem 14.5 (The Moments of the Angular Speed). Let q > 0. Suppose (Pn) is
an ultraflat sequence of polynomials Pn ∈ Kn. Then we have

1

2π

∫ 2π

0

|α′
n(t)|q dt =

nq

q + 1
+ δn,qn

q ,

and as a limit case,
max

0≤t≤2π
|α′

n(t)| = n+ δnn .

with suitable constants δn,q and δn converging to 0 as n → ∞ for every fixed q.

An immediate consequence of Theorem 14.5 is the remarkable fact that for large values
of n ∈ N, the Lq(∂D) Bernstein factors

∫ 2π

0
|P ′

n(e
it)|q dt

∫ 2π

0
|Pn(eit)|q dt

of the elements of ultraflat sequences of polynomials Pn ∈ Kn are essentially independent
of the polynomials. More precisely Theorem 14.5 and (14.3) impliy the following result.

Theorem 14.6 (The Bernstein Factors). Let (Pn) be a εn-ultraflat sequence of poly-
nomials Pn ∈ Kn. For q > 0 we have

∫ 2π

0
|P ′

n(e
it)|q dt

∫ 2π

0
|Pn(eit)|q dt

=
nq

q + 1
+ on,qn

q ,

and as a limit case,
max0≤t≤2π |P ′

n(e
it)|

max0≤t≤2π |Pn(eit)|
= n+ onn .

with suitable constants on,q and on converging to 0 as n → ∞ for every fixed q.

In [59] an extension of Saffari’s uniform distribution conjecture to higher derivatives is
also proved.

Theorem 14.7. Suppose (Pn) be a εn-ultraflat sequence of polynomials Pn ∈ Kn. Then

m
{
t ∈ [0, 2π] : |P (r)

n (eit)| ≤ nr+1/2xr
}
= 2πx+ or,n(x)

for every x ∈ [0, 1], where limn→∞ or,n(x) = 0 for every fixed r = 1, 2, . . . and x ∈ [0, 1].
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For every fixed r = 1, 2, . . . , the convergence of on,r(x) is uniform on [0, 1] by Dini’s
Theorem.

For continuous functions f defined on [0, 2π], and for q ∈ (0,∞), we define

‖f‖q :=

(∫ 2π

0

|f(t)|q dt
)1/q

.

We also define
‖f‖∞ := lim

q→∞
‖f‖q = max

t∈[0,2π]
|f(t)| .

In [63], based on the results in [59], we resolved yet another conjecture of Saffari and
Queffelec, see (1.30) in [125].

Theorem 14.8. Let q ∈ (0,∞). If (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn,
and q ∈ (0,∞), then for fn(t) := Re(Pn(e

it)) we have

‖fn‖q ∼
(

Γ
(
q+1
2

)

Γ
(
q
2 + 1

)√
π

)1/q

n1/2

and

‖f ′
n‖q ∼

(
Γ
(
q+1
2

)

(q + 1)Γ
(
q
2 + 1

)√
π

)1/q

n3/2 ,

where Γ denotes the usual gamma function, and the ∼ symbol means that the ratio of the
left and right hand sides converges to 1 as n → ∞.

In [60] we proved Saffari’s ”near-orthogonality conjecture” below.

Theorem 14.9. Assume that (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn. Then

n∑

k=0

ak,nan−k,n = o(n) , Pn(z) :=
n∑

k=0

ak,nz
k .

Here, as usual, o(n) denotes a quantity for which limn→∞ o(n)/n = 0. The statement
remains true if the ultraflat sequence (Pn) of polynomials Pn ∈ Kn is replaced by an
ultraflat sequence (Pnk

) of polynomials Pnk
∈ Knk

, 0 < n1 < n2 < · · · .
If Qn is a polynomial of degree n of the form

Qn(z) =

n∑

k=0

akz
k , ak ∈ C ,

then its conjugate polynomial is defined by

Q∗
n(z) := znQn(1/z) :=

n∑

k=0

an−kz
k .

In terms of the above definition Theorem 14.9 may be rewritten as
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Theorem 14.10. Assume that (Pn) is an ultraflat sequence of polynomials Pn ∈ Kn.
Then

1

2π

∫

∂D

|Pn(z) − P ∗
n(z)|2 |dz| = 2n+ o(n) .

We remark that straightforward modifications in the proofs of each of the above theo-
rems yield that they remain true if the ultraflat sequence (Pn) of polynomials Pn ∈ Kn is
replaced by an ultraflat sequence (Pnk

) of polynomials

Pnk
∈ Knk

, 0 < n1 < n2 < · · · .

In [31, Theorem 3] the following inequality has been observed.

Theorem 14.11. Let P be a conjugate reciprocal unimodular polynomial of degree n.
Then

max
z∈∂D

|P (z)| ≥ (1 + ε)
√
n+ 1

with ε :=
√

4/3− 1.

In [126] another “near orthogonality” relation has been conjectured. Namely it was
suspected that if (Pnm

) is an ultraflat sequence of polynomials Pnm
∈ Knm

, then

n∑

k=0

ak,nan−k,n = o(n) , Pn(z) :=

n∑

k=0

ak,nz
k , n = nm , m = 1, 2, . . . ,

However, it was Saffari himself, who showed with Queffelec [125], that this could not
be any farther away from being true. They constructed an ultraflat sequence (Pnm

) of
plain-reciprocal polynomials Pnm

∈ Knm
such that

Pn(z) :=

n∑

k=0

ak,nz
k , ak,n = an−k,n , k = 0, 1, 2, . . . , n ,

and hence
n∑

k=0

ak,nan−k,n = n+ 1 , n = nm , m = 1, 2, . . . .

15. Zeros of polynomials with restricted coefficients

Let 0 ≤ n1 < n2 < · · · < nN be integers. A cosine polynomial of the form TN (θ) =∑N
j=1 cos(njθ) must have at least one real zero in a period. This is obvious if n1 6= 0,

since then the integral of the sum on a period is 0. The above statement is less obvious if
n1 = 0, but for sufficiently large N it follows from Littlewood’s Conjecture simply. Here
we mean the already mentioned Littlewood’s Conjecture with a textbook proof in [44]. It
is not difficult to prove the statement in general even in the case n1 = 0. One possible way
is to use the identity

nN∑

j=1

TN ((2j − 1)π/nN) = 0 .
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See [94], for example. Another way is to use Theorem 2 of [108]. So there is certainly no
shortage of possible approaches to prove the starting observation of this section even in
the case n1 = 0.

It seems likely that the number of zeros of the above sums in a period must tend to ∞
with N . In a private communication B. Conrey asked how fast the number of zeros of the
above sums in a period tend to ∞ as a function N . In [43] the authors observed that for

an odd prime p the Fekete polynomial fp(z) =
∑p−1

k=0

(
k
p

)
zk (the coefficients are Legendre

symbols) has ∼ κ0p zeros on the unit circle, where 0.500813 > κ0 > 0.500668. Conrey’s
question in general does not appear to be easy.

Littlewood in his 1968 monograph “Some Problems in Real and Complex Analysis” [99,
problem 22] poses the following research problem, which appears to still be open: “If the
nm are integral and all different, what is the lower bound on the number of real zeros of∑N

m=1 cos(nmθ)? Possibly N−1, or not much less.” Here real zeros are counted in a period.
In fact no progress appears to have been made on this in the last half century. In a recent

paper [38] we showed that this is false. There exist cosine polynomials
∑N

m=1 cos(nmθ)
with the nm integral and all different so that the number of its real zeros in the period is
O(N5/6 logN) (here the frequencies nm = nm(N) may vary with N). However, there are

reasons to believe that a cosine polynomial
∑N

m=1 cos(nmθ) always has many zeros in the
period. In [33] we prove the following.

Theorem 15.1. Suppose the set {aj : j ∈ N} ⊂ R is finite and the set {j ∈ N : aj 6= 0}
is infinite. Let

Tn(t) =
n∑

j=0

aj cos(jt) .

Then limn→∞ N (Tn) = ∞ ., where N (Tn) denotes the number of sign changes of Tn in the
period [−π, π).

The book [13] deals with a number of related topics. Littlewood [96], [97], [98], [99],
[100] was interested in many closely related problems. See also [31].

The study of the location of zeros of polynomials from

Fn :=

{
p : p(x) =

n∑

i=0

aix
i , ai ∈ {−1, 0, 1}

}

begins with Bloch and Pólya [10]. They prove that the average number of real zeros of a
polynomial from Fn is at most c

√
n. They also prove that a polynomial from Fn cannot

have more than
cn log logn

log n

real zeros. This result, which appears to be the first on this subject, shows that polynomials
from Fn do not behave like unrestricted polynomials. Schur [129] and by different methods
Szegő [133] and Erdős and Turán [80] improve the above bound to c

√
n logn (see also [17]).
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In [34] we give the right upper bound of c
√
n for the number of real zeros of polynomials

from a large class, namely the class of all polynomials of the form

p(x) =

n∑

j=0

ajx
j , |aj| ≤ 1 , |a0| = |an| = 1 , aj ∈ C .

In [26] we extend this result by proving the following theorems.

Theorem 15.2. Every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |a0| = 1 , |aj| ≤ 1 , aj ∈ C ,

has at most c
√
n zeros inside any polygon with vertices on the unit circle, where the constant

c depends only on the polygon.

Theorem 15.3. There is an absolute constant c such that

p(x) =

n∑

j=0

ajx
j , |a0| = |an| = 1 , |aj| ≤ 1 , aj ∈ C ,

has at most c(nα +
√
n) zeros in the strip {z ∈ C : |Im(z)| ≤ α} , and in the sector

{z ∈ C : |arg(z)| ≤ α} .
Theorem 15.4. Let α ∈ (0, 1). Every polynomial p of the form

p(x) =

n∑

j=0

ajx
j , |a0| = 1 , |aj| ≤ 1 , aj ∈ C ,

has at most c/α zeros inside any polygon with vertices on the circle {z ∈ C : |z| = 1− α} ,
where the constant c depends only on the number of the vertices of the polygon.

The paper [26] containing Theorems 15.2, 15.3, and 15.4 appeared sooner than [34].
The book [17] contains only a few related weeker results. Our Theorem 2.1 in [34] is a
simple consequence of Theorem 15.2, and it sharpens and generalizes results of Amoroso
[1], Bombieri and Vaaler [11], and Hua [88] who gave upper bounds for the multiplicity of
a zero that a polynomial with integer coefficients may have at 1.

The sharpness of Theorem 15.2 can be seen by the theorem below proved in [34].

Theorem 15.5. For every n ∈ N, there exists a polynomial pn of the form given in
Theorem 15.2 with real coefficients so that pn has a zero at 1 with multiplicity at least
⌊√n⌋ − 1.

When 0 < α ≤ n−1/2, the sharpness of Theorem 15.3 is shown by the polynomials

qn(z) := pn(z) + z2n+1pn(z
−1) ,

where pn are the polynomials in Theorem 15.5. Namely the polynomials qn of degree 2n+1
are of the required form with ⌊√n⌋ − 1 ≥ c(nα +

√
n) zeros at 1. When n−1/2 ≤ α ≤ 1,

the sharpness of Theorem 15.3 is shown by the polynomials qn(z) := zn − 1.
The next theorem proved in [26] shows the sharpness of Theorem 15.4.
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Theorem 15.6. For every α ∈ (0, 1), there exists a polynomial pn of the form given in
Theorem 15.4 with real coefficients so that pn has a zero at 1−α with multiplicity at least
⌊1/α⌋ − 1. (It can also be arranged that n ≤ 1/α2 + 2.)

Let D(z0, r) := {z ∈ C : |z − z0| < r} denote the open disk of the complex plane
centered at z0 ∈ C with radius r > 0. As a remark to Theorem 15.5 we point out that a
more or less straightforward application of Jensen’s formula gives that there is an absolute
constant c > 0 such that every polynomial p of the form

p(x) =
n∑

j=0

ajx
j , |a0| = 1 , |aj| ≤ 1 , aj ∈ C ,

has at most (c/α) log(1/α) zeros in the disk D(0, 1− α), α ∈ (0, 1).k An example in [57],
using only real coefficients, suggested by Nazarov, shows that this upper bound for the
number of zeros in the disk D(0, 1−α) is, up to the absolute constant c > 0, best possible.
So, in particular, the constant in Theorem 15.4 cannot be made independent of the number
of vertices of the polygon.

Also, it is shown in [57] that there are polynomials p ∈ Kn with no zeros in the annulus

{z ∈ C : 1− c logn/n < |z| < 1 + c logn/n} ,

where c is an absolute constant. It is conjectured that every p ∈ Kn has a zero in the
annulus {z ∈ C : 1− c/n < |z| < 1 + c/n} , where c > 0 is an absolute constant.

The class Fn and various related classes have been studied from several points of view.
Littlewood’s monograph [99] contains a number of interesting, challenging, and still open
problems about polynomials with coefficients from {−1, 1}. The distribution of zeros of
polynomials with coefficients from {0, 1} is studied in [117] by Odlyzko and Poonen.

Bloch and Pólya [10] also prove that there are polynomials p ∈ Fn with

(15.1)
cn1/4

√
logn

distinct real zeros of odd multiplicity. (Schur [129] claims they do it for polynomials with
coefficients only from {−1, 1}, but this appears to be incorrect.)

In a seminal paper Littlewood and Offord [100] prove that the number of real roots of
a p ∈ Ln, on average, lies between

c1 logn

log log logn
and c2 log

2 n

and it is proved by Boyd [40] that every p ∈ Ln has at most c log2 n/ log logn zeros at 1
(in the sense of multiplicity). It is conjectured that every p ∈ Ln has at most c logn zeros
at 1 with an absolute constant c > 0.

Kac [89] shows that the expected number of real roots of a polynomial of degree n with
random uniformly distributed coefficients is asymptotically (2/π) logn. He writes “I have
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also stated that the same conclusion holds if the coefficients assume only the values 1 and
−1 with equal probabilities. Upon closer examination it turns out that the proof I had
in mind is inapplicable.... This situation tends to emphasize the particular interest of the
discrete case, which surprisingly enough turns out to be the most difficult.” In a related
paper Solomyak [132] studies the random series

∑±λn.”
In [71] we improve the lower bound (15.1) in the result of Bloch and Pólya to cn1/4.

Moreover we allow a much more general coefficient constraint in our main result. Our
approach is quite different from that of Bloch and Pólya.

Theorem 15.7. There are absolute constants c1 > 0 and c2 > 0 such that for every

{a0, a1, . . . , an} ⊂ [1,M ] , 1 ≤ M ≤ exp(c1n
1/4) ,

there are
b0, b1, . . . , bn ∈ {−1, 0, 1}

such that

P (z) =

n∑

j=0

bjajz
j

has at least c2n
1/4 distinct sign changes in (0, 1).

Let ∂D denote the unit circle of the complex plane. Let

‖P‖ := max
z∈∂D

|P (z)| .

A classical result of Erdős and Turán [80] is the following.

Theorem (Erdős–Turán). If the zeros of

P (z) :=

n∑

j=0

ajz
j , aj ∈ C , a0an 6= 0 ,

are denoted by

zj = rj exp(iϕj) , rj > 0 , ϕj ∈ [0, 2π) , j = 1, 2, . . . , n ,

then for every 0 ≤ α < β ≤ 2π we have
∣∣∣
∑

j∈I(α,β)

1− β − α

2π
n
∣∣∣ < 16

√
n logR ,

where
R := |a0an|−1/2‖P‖

and
I(α, β) := {j : α ≤ ϕj ≤ β} .

Note that some books quote this result with

R := |a0an|−1/2(|a0|+ |a1|+ · · ·+ |an|)
in place of R := |a0an|−1/2‖P‖. In fact, the weaker result is an obvious corollary of the
stronger one by observing that ‖P‖ ≤ |a0| + |a1| + · · · + |an|. In [70] we offer a subtle
improvement of the above Erdős–Turán Theorem.
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Theorem 15.8. If the zeros of

P (z) :=

n∑

j=0

ajz
j , aj ∈ C , a0an 6= 0 ,

are denoted by

zj = rj exp(iϕj) , rj > 0 , ϕj ∈ [0, 2π) , j = 1, 2, . . . , n ,

then for every 0 ≤ α < β ≤ 2π we have

∑

j∈I1(α,β)

1− β − α

2π
n ≤ 16

√
n logR1 ,

and ∑

j∈I2(α,β)

1− β − α

2π
n ≤ 16

√
n logR2 ,

where
R1 := |an|−1‖P‖ , R2 := |a0|−1‖P‖ ,

and

I1(α, β) := {j : α ≤ ϕj ≤ β, rj ≥ 1} , I2(α, β) := {j : α ≤ ϕj ≤ β, rj ≤ 1} .

This result is closely related to a recent paper of V. Totik and P. Varjú [135]. In fact,
it may as well be derived from part (ii) of Theorem 1.1 in [135]. However, here we do not
rely on this recent result. Our approach is based on the interesting observation that the
Erdős–Turán Theorem above improves itself.

A straightforward consequence of the above theorem is the following.

Corollary 15.9. If the modulus of a monic polynomial P of degree n (with complex co-
efficients) on the unit circle of the complex plane is at most 1 + o(1) uniformly, then the
multiplicity of each zero of P on the unit circle is o(n1/2).

References
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7. D. Benko, T. Erdélyi, and J. Szabados,, The full Markov-Newman inequality for Müntz polyno-
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15. P. Borwein and T. Erdélyi, Markov and Bernstein type inequalities in Lp for classes of polyno-
mials with constraints, J. London Math. Soc. 51 (1995), 573–588.
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Müntz spaces, Studia Math. 155 (2) (2002), 145–152.
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83. G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971.
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90. J.P. Kahane, Sur les polynomes à coefficient unimodulaires, Bull. London Math. Soc. 12 (1980),

321–342.

48



91. T. Körner, On a polynomial of J.S. Byrnes, Bull. London Math. Soc. 12 (1980), 219–224.

92. S. Konyagin, On a question of Pichorides, C.R. Acad. Sci. Paris Sér I Math. 324 (1997), 385–

388.

93. S.V. Konyagin, On a problem of Littlewood, Mathematics of the USSR, Izvestia 18 (1981),

205–225.

94. S.V. Konyagin and V.F. Lev, Character sums in complex half planes, J. Théor. Nombres Bor-
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