MARKOV INEQUALITY FOR POLYNOMIALS
OF DEGREE n WITH m DISTINCT ZEROS

DAVID BENKO AND TAMAS ERDELYI

ABSTRACT. Let PJT* be the collection of all polynomials of degree at most n with real coeffi-
cients that have at most m distinct complex zeros. We prove that

max |P'(z)| < 32-8"n max |P(x)|
z€[0,1] €[0,1]

for every P € P]'. This is far away from what we expect. We conjecture that the Markov
factor 32 - 8™n above may be replaced by cmn with an absolute constant ¢ > 0. We are not
able to prove this conjecture at the moment. However, we think that our result above gives
the best known Markov-type inequality for PP]* on a finite interval when m < clogn.

1. INTRODUCTION, NOTATION, NEW RESULT

Markov’s inequality asserts that

max |P'(z)| < 2n? max |P(z)]

z€[0,1] €[0,1]
for all polynomials of degree at most n with real coefficients. There is a huge literature
about Markov-type inequalities for constrained polynomials. In particular, several essen-
tially sharp improvements are known for various classes of polynomials with restricted
zeros. Here we just refer to [1], and the references therein.

Let P be the collection of all polynomials of degree at most n with real coefficients

that have at most m distinct complex zeros. We prove the following.

Theorem. We have
max |P'(z)| < 32-8"n max |P(z)|
z€][0,1] z€[0,1]

for every P € P".

This is far away from what we expect. We conjecture that the Markov factor 32 - 8"'n
above may be replaced by emn with an absolute constant ¢ > 0. We are not able to prove
this conjecture at the moment. However, we think that our result above gives the best
known Markov-type inequality for P, on a finite interval when m < clogn.
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2. Proor

It is easy to see by Rouche’s Theorem that P)* is closed in the maximum norm on [0, 1],
and hence in any norm. Therefore it is easy to argue that there is a P* € P with minimal
L; norm on [0, 1] such that

PO |P'(0)]
P~ " P(z)]
mrg[gﬁ]l ()] pepr m[%ﬁ]l (m)|

Lemma 1. There is a polynomial T € P™+L of the form

T(z) = Q(z)(z —a),

where QQ € Py has all its zeros in [0,1], a € R, and

PO o [T(0)]

pP* - T
e [P(@)]  max [T(@)]

Proof. Assume that zp € C\ R is a zero of P* with multiplicity k. Then

(z — 205)6(256 - 50))k

with a sufficiently small € > 0 is in P;’* and it contradicts the defining properties of P*. So
each of the zeros of P* is real. Now let P* = RS where all the zeros of R are in [0, 1], while
S(0) > 0 and all the zeros of S are in R\ [0, 1]. We may assume that S is not identically
constant, otherwise T := P* € P"*! with Q € P™ ; defined by

P*(z) := P*(z) (1 —¢

Pr(x)

Tr—a

Q(x) :=

is a suitable choice, where x — a is any linear factor of P*. It is easy to see that S can be
written as

d
v)i=> Apl(l—z)7,  A;>0, j=0,1,....,d,

where d > 1 is the degree of S. Now let

1
2) Y Ajd(1— )t
§=0

Then T is of the form



where @) € P ; has all its zeros in [0, 1], a € R, and

PO 1T(0)]

P*(z)| — T(z)|’
f&%ﬁ' ()] xrg[gﬁ]l ()]

and the proof is finished. [J
For the sake of brevity let

| P'(0)|
n<M(n,m):=sup ——
= M= e P

where the supremum is taken for all P € P]"* having all their zeros in [0, 1].

Lemma 2. Let P* and T(x) = Q(z)(x — a) be as in Lemma 1. Suppose a < 0 or a > 2.
Then

<AM T(z)| .
mrg[gﬁ]l (7)] < (n,m)xrg[%ﬁﬂ (m)|

Proof. Let b € [0, 1] be a point for which

Q) = max 1Q(x)].
Case 1: b€ [1/2,1]. In this case
_ _ 1T
ma [Q(2)] = Q)] = 5 < 2T(0)] < 2 max [T(@)].

Case 2: b € [0,1/2]. In this case Q@ = UV, where U € P} has all its zeros in [b, 1], and
V € P has all its zeros in R\ [b, 1]. It is easy to see that V' can be written as

d
=> Bjlz—b(1-2)"7,  B;j>0, j=0,1,....d,
j=0

where d is the degree of V. Now let

Then

(1) WO =1UV)E)] = QM) = max Q)
and

(2) (W ()| < Q)] [b,1]



Also W € P, has all its zeros in [b, 1]. Let n > b be the smallest point for which

1
Wl =5 max (W),

Then |W'(z)| is decreasing on [b, 7], and it follows by a linear transformation that

M{n,m) max |W(z)|.

/
<
(3) Wl —— Jmax,

Combining the above by the Mean Value Theorem, we obtain

1 mase [W(z)| = [W () = W(n)] = (1~ ) W'(o)

2 z€b,1

whence

This, together with (1), (2), (3), yields

_2T()| _ 2T (n) [n— 0]

2M(n,m) 1—10
<4M T

< 2[T(n)]

and the proof is finished. [J

Lemma 3. Let P* be as in Lemma 1. Then there exists a polynomial U € P™TL having
all its zeros in [0, 1] such that

ol o1 [P0
max |U(z)| = 7 max |P*(z)|"
x€[0,1] z€[0,1]

Proof. Let T(x) = Q(z)(xz — a) as in Lemma 1. We distinguish three cases.
Case 1: a € [0, 1]. In this case U(z) = T'(x) is a suitable choice.

Case 2: a € [1,2]. In this case U(x) = T'(az) is a suitable choice.

Case 3: a < 0 or a > 2. Then we have

T'(0) = —aQ'(0) + Q(0).-
4



Combining this with Lemma 2 we obtain

R () I V8 (V| I aQ’(0)] 1Q(0)]
e, |P*(z)]| e, T ()] e, |Q(z)(z — a) Jmax, |Q(z)(z — a)
< 0O |Q(0)]
)g Jmax, 1Q(x)] (4M (n, m))_lxlél[%ﬁ] |Q ()]

<2M(n—1,m)+4M(n,m+1) <6M(n,m).

This means that there is a polynomial U € P™*! having all its zeros in [0, 1] such that

U"(0)] [P*(0)]
— > (1)) — . U
max_|U(x)| = (1/7) max_|P*(x)|
z€[0,1] z€[0,1]

We introduce

: P'(0)
<M = = AL
n — (n7 m) Slll;p max ‘P(fl))| )

z€[0,1]

where the supremum is taken for all P € P, having all their zeros in [0, 1] for which

P(0)| = P(z)].
[PO)] = max |P(z)

Lemma 4. We have M (n,m+1) = M*(n,m+1).

Proof. Since M (n,m+ 1) > M*(n,m + 1) is trivial, we need to see only M (n,m+ 1) <
M*(n,m + 1). To this end take a P € P! and choose « € (—o0, 0] so that

P = P .
P(a)] = max |P(@)

Now let
U():=P(l-—a)z+a).

Then U € P *! has all its zeros in [0, 1] and

U0)] = [P(@)] = mas [P()] = max [P(e)] = max [U(0)

while, since |P’(z)| is decreasing on (—o0, 0], we have

U'(0)] = (1 = )P ()| = (1 = a)[P/(0)] = [P/(0)].

Therefore , ,
PO [U0) 0
max |P(z)] = max |U(z)|’
z€[0,1] z€[0,1]

From Lemmas 3 and 4 we can draw the following conclusion.
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Lemma 5. We have

P'(0
sup _PO <TM*(n,m+1).
pepy max, |P(z)]

Lemma 6. We have M*(n,m) < 28™n .

Proof. Suppose that P € P™ has all its zeros in [0, 1], and

P0)| = P .
IP(0)] = max |P(x)

Let F(z) := |P(x)|"¢, where d(< n) is the degree of P. Then

@) [F(0)] = max F(z)].

Let

F(x) =[] le—ail™,
i=1

where

O<z1<...<axm<1l, 0<a; i=12....,m, Zaizl-

We show that

(5) Zco.gm

T
fori=1,2,...,m. To see this let

Al = {1,2,...,i1},
A2 = {Zl+1,21+2, ,7:2},

Ay ={ipo1+ 1,01 +2,... 0, :=m},

be the sets of indices for which

Ti4+1
X

< 8 whenever i and ¢+ 1 are in the same set ,

Tit+1
T

> 8 whenever 7 and 7+ 1 are in two distinct sets.

Now (5) is clear for any i € A,,, since (4) implies that




We continue by induction. Assume that (5) holds for any i € A, UA, ;1 U...UA,. We
prove that it holds for any 5 € A, _1. Since

m
H |z — x;
i=1

% x € 0,1],

% < F(0) = ﬁ |z,
=1

we have
m
Z a;log
i=1
Let j € A,_; arbitrary and 2* := 4z;, ,. Fork € A,UA,{1U...UA, we have z*/z), <1/2,
SO

3—1'§0, zel0,1].
x¢

(3

log (1 — :z:_) > —2(log2) - r .
Tk Tk
Thus ‘
Ty—1 m
* Q'
(log3) Z a; <2(log2)-x | Z =
=1 =1, _1+1
Q5 2(log2) z* m ai _ 2(log2)4_8iy,1—j (242 84 +2. g1
z; — log3 z; T log 3 ’
1=%p—1
from which o
1 <9.8m7J
Lj
follows immediately. The proof of (5) is complete now for all i = 1,2,... ,m. The lemma
follows now from (5):
[P'O)] _ [F(0)] _ 2
=d <d=8". [O
| P(0)] [ F(0)] 7

Now it follows from Lemmas 5 and 6 that

Corollary 7. We have

|P'(0)| < 2-8""n max |P(x)].
z€[0,1]

for every P € P".
Proof of the Theorem. We need to prove that

|P'(y)| < 4-8"n max |P(x)].
z€[0,1]

for every P € P)* and y € [0, 1]. However, it follows from Corollary 7 by a simple linear
transformation that

|P'(y)| <2-2-8™"n max |P(z)| <4 -8""n max |P(x)], y€[0,1/2],
z€[y,1] z€l0,1]
and
|P'(y)| <2-2- 8" "p max |P(x)] <4-8™"!n max |P(z)|, yell/2,1].
z€[0,y] z€[0,1]

This finishes the proof. [
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