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Abstract. Following Arestov’s Λ-method we give a simple, elementary, and at least par-

tially new proof of Arestov’s famous extension of Bernstein’s inequality in Lp to all p ≥ 0.
Our crucial observation is that Boyd’s approach to prove Mahler’s inequality for algebraic

polynomials Pn ∈ Pc

n
can be extended to all trigonometric polynomials Tn ∈ Fc

n
.

1. Introduction and Notation

Let Fc
n be the collection of all trigonometric polynomials Tn of the form

Tn(z) =
n
∑

j=−n

ajz
j , aj ∈ C , z ∈ C \ {0} .

Let Pc
n be the collection of all algebraic polynomials Pn of the form

Pn(z) =
n
∑

j=0

ajz
j , aj ∈ C , z ∈ C .

Let D denote the open unit disk of the complex plane, and ∂D denote its boundary. We
define the Mahler measure (geometric mean of Q on ∂D)

‖Q‖0 = M0(Q) := exp

(

1

2π

∫ 2π

0

log |Q(eit)| dt

)

for bounded measurable functions Q on ∂D. It is well known, see [HL-95], for instance,
that

‖Q‖0 = M0(Q) = lim
p→0+

Mp(Q) ,

where

‖Q‖p = Mp(Q) :=

(

1

2π

∫ 2π

0

∣

∣Q(eit)
∣

∣

p
dt

)1/p

, p > 0 .
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It is also well known that for a function Q continuous on ∂D we have

‖Q‖∞ = M∞(Q) := max
t∈[0,2π]

|Q(eit)| = lim
p→∞

Mp(Q) .

It is a simple consequence of the Jensen formula that

M0(Q) = |c|
n
∏

k=1

max{1, |zk|}

for every polynomial of the form

Q(z) = c

n
∏

k=1

(z − zk) , c, zk ∈ C .

Bernstein’s inequality

‖T ′

n‖∞ ≤ n‖Tn‖∞ , Tn ∈ Fc
n ,

plays a crucial role in proving inverse theorems of approximation as well as many other
results in approximation theory. See [BE-95], for instance. As far as the history of Bern-
stein’s inequality is concerned we refer to Nevai’s lovely papers [N-14] and [N-19] and the
references in them. We do not repeat the full story here. In 1981 Arestov [A-81] proved
that

(1.1) ‖T ′

n‖p ≤ n‖Tn‖p , Tn ∈ Fc
n ,

for all p ≥ 0, extending the result known only for p ≥ 1 for a long time. Simpler proof
of Bernstein’s inequality in Lp for all p ≥ 0 have been given by Golitschek and Lorentz in
[GL-89] which is presented in the book [DL-93] by DeVore and Lorentz. A very elegant
and even more simplified proof was published recently in [QZ-19] by Queffélec and Zarouf.
A central part of their proof is to prove (1.1) for p = 0 first. Mahler [M-61] showed
(1.1) for p = 0 but only for polynomials Pn ∈ Pc

n, and he gave a rather involved proof.
Mahler’s inequality was also posed as a problem by Vaaler in the Problems section of the
American Mathematical Monthly and solved by Boyd [VB-91] using an elementary theorem
of Bernstein. We note that Glazyrina [G-05] proved a sharp Markov-type inequality for
algebraic polynomials in L0 on finite subintervals of the real line.

In this note, following Arestov’s Λ-method in [A-81], we give a simple, elementary, and
at least partially new proof of Arestov’s famous extension of Bernstein’s inequality in Lp to
all p ≥ 0. Our crucial observation is that Boyd’s approach to prove Mahler’s inequality for
algebraic polynomials Pn ∈ Pc

n can be extended to all trigonometric polynomials Tn ∈ Fc
n.

Theorem 1.1. We have

‖T ′

n‖0 ≤ n‖Tn‖0 , Tn ∈ Fc
n .

Equivalently
∫

∂D

log |T ′

n(z)/n| |dz| ≤

∫

∂D

log |Tn(z)| |dz| , Tn ∈ Fc
n .
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Theorem 1.2. With the notation log+ |a| := max{log |a|, 0} we have

∫

∂D

log+ |T ′

n(z)/n| |dz| ≤

∫

∂D

log+ |Tn(z)| |dz| , Tn ∈ Fc
n .

Theorem 1.3. We have

‖T ′

n‖p ≤ n‖Tn‖p , Tn ∈ Fc
n ,

for every p > 0.

2. Lemmas

To prove Theorem 1.1 we need two lemmas.

Lemma 2.1. Associated with Sn ∈ Fc
n, let P2n ∈ Pc

2n be defined by P2n(z) = znSn(z). If

P2n has each of its 2n zeros in D, then S′

n has each of its zeros in D as well. The same

is true if D is replaced by the closed unit disk D.

Proof. We prove the lemma for D, the case of the closed unit disk D follows from this by
a straightforward limiting argument. Suppose a /∈ D, that is, a ∈ C and |a| ≥ 1. Suppose
also that

P2n(z) = c

2n
∏

j=1

(z − zj) , 0 6= c ∈ C , zj ∈ D .

We have

(2.1)
aS′

n(a)

Sn(a)
=

2n
∑

j=1

a

a− zj
−

an

a
=

2n
∑

j=1

1

1− zj/a
− n .

Observe that |zj/a| < 1 for each j = 1, 2, . . . , 2n, and hence

(2.2) Re

(

1

1− zj/a

)

>
1

2
, j = 1, 2, . . . , 2n .

Combining (2.1) and (2.2) we obtain

Re

(

aS′

n(a)

Sn(a)

)

>
2n

2
− n = 0 .

We conclude that S′

n(a) 6= 0. �

We remark that, using the notation in Lemma 2.1, we have Sn(z) = P2n(z)z
−n, hence

S′

n(z) = P ′

2n(z)z
−n − nP2n(z)z

−n−1 = z−n−1(zP ′

2n(z)− nP2n(z)) .

Thus the statement of the lemma is equivalent to the fact that the polynomial zP ′

2n(z) −
nP2n(z) has all its zeros in D (D). However, this statement is a special case of a problem
going back to Laguerre [PSz-98, Part Five, Chapter 2, Section 2, Problem 117.]
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Lemma 2.2. Associated with Vn ∈ Fc
n, let R2n ∈ Pc

2n be defined by R2n(z) = znVn(z)
and suppose that R2n has each of its 2n zeros in the closed unit disk D. If Tn ∈ Fc

n and

(2.3) |Tn(z)| ≤ |Vn(z)| , z ∈ ∂D ,

then

|T ′

n(z)| ≤ |V ′

n(z)|, z ∈ ∂D .

Proof. Without loss of generality we may assume that R2n has each of its 2n zeros in D,
the case when R2n has each of its 2n zeros in the closed unit disk D follows from this by a
straightforward limiting argument. Let Q2n ∈ Pc

2n be defined by Q2n(z) := znTn(z) . Let
α ∈ C, |α| < 1, and

(2.4) Sn(z) := (Vn − αTn)(z) = z−n(R2n − αQ2n)(z) .

It follows from (2.3) that

|Q2n(z)| ≤ |R2n(z)| , z ∈ ∂D ,

and hence |α| < 1 and the fact that R2n ∈ Pc
2n does not vanish on ∂D imply that

|αQ2n(z)| < |R2n(z)| , z ∈ ∂D .

Therefore Rouché’s Theorem implies that the polynomial P2n := R2n − αQ2n ∈ Pc
2n and

R2n has the same number of zeros in D, that is, R2n − αQ2n has each of its 2n zeros in
D. By Lemma 2.1 and (2.4) we can deduce that S′

n = V ′

n − αT ′

n has each of its zeros in
D. In particular,

S′

n(z) = V ′

n(z)− αT ′

n(z) 6= 0, z ∈ ∂D ,

for all α ∈ C, |α| < 1. We conclude that

|T ′

n(z)| ≤ |V ′

n(z)|, z ∈ ∂D .

�

3. Proof of Theorems 1.1, 1.2, and 1.3

Proof of Theorem 1.1. Associated with Tn ∈ Fc
n, let P2n ∈ Pc

2n be defined by P2n(z) =
znTn(z). Without loss of generality we may assume that P2n has exactly 2n complex zeros,
the case when P2n has less than 2n complex zeros follows from this by a straightforward
limiting argument.
Case 1. Suppose P2n has all its 2n zeros in the closed unit disk D. It follows from Lemma
2.1 that T ′

n has all its zeros in the closed unit disk D. Let

Tn(z) =

n
∑

j=−n

ajz
j , aj ∈ C , z ∈ C \ {0} .
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Using Jensen’s formula and the multiplicative property of the Mahler measure we can
easily deduce that

‖T ′

n‖0 = n‖Tn‖0 = n|an| .

Case 2. Suppose that some of the zeros of P2n are outside the closed unit disk D. Let
z1, z2, . . . , zm be the zeros of Tn outside the closed unit disk D and let zm+1, zm+2, . . . , z2n
be the zeros of Tn in the closed unit disk D. We have

Tn(z) = anz
−n

m
∏

j=1

(z − zj)

2n
∏

j=m+1

(z − zj) .

We define

Vn(z) := anz
−n

m
∏

j=1

(1− zjz)
2n
∏

j=m+1

(z − zj) .

Observe that (2.3) holds, Vn ∈ Fc
n, and R2n ∈ Pc

2n defined by R2n(z) := znVn(z) has each
of its 2n zeros in the closed unit disk D. Using Lemma 2.2, the (in)equality of the theorem
in Case 1, and Jensen’s formula, we obtain

‖T ′

n‖0 ≤ ‖V ′

n‖0 = n‖Vn‖0 = n|an|

m
∏

j=1

|zj | = n|an|

m
∏

j=1

|zj | = n‖Tn‖0 .

�

Proof of Theorem 1.2. We follow the argument given first in [A-81] and used recently in
[QZ-19] as well to base our proof on Theorem 1.1. It is well-known, and by applying
Jensen’s formula it is easy to see, that

log+ |v| =
1

2π

∫

∂D

log |v + w| |dw| , v ∈ C ,

and hence

(3.1) log+ |v| =
1

2π

∫

∂D

log |v + wu| |dw| , u ∈ ∂D , v ∈ C .

Let Tn ∈ Fc
n, w ∈ ∂D, and En(z) := zn. Applying Theorem 1.1 with Tn replaced by

Tn + wEn we obtain

∫

∂D

log |T ′

n(z)/n+ wEn−1(z)| |dz| ≤

∫

∂D

log |Tn(z) + wEn(z)| |dz| .

Integrating both sides on ∂D with respect to |dw|, then using Fubini’s theorem and (3.1),
we get the theorem . �
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Proof of Theorem 1.3. We follow the argument given in [QZ-19] to base our proof on
Theorem 1.2. Observe that

(3.2) up =

∫

∞

0

log+(u/a)p2ap−1 da p > 0 , u ≥ 0 .

Indeed, the integration by parts formula gives
∫

∞

0

log+(u/a)p2ap−1 da =

∫ u

0

log+(u/a)p2ap−1 da =

∫ u

0

pap−1 da = up .

For the sake of brevity we will use the notation dµ(a) = p2ap−1 da. Using (3.2), Fubini’s
theorem, Theorem 1.2, and Fubini’s theorem again, we obtain

∫

∂D

|T ′

n(z)/n|
p
|dz| =

∫

∂D

(
∫

∞

0

log+ |T ′

n(z)/(na)|dµ(a)

)

|dz|

=

∫

∞

0

(
∫

∂D

log+ |T ′

n(z)/(na)||dz|

)

dµ(a)

≤

∫

∞

0

(
∫

∂D

log+ |Tn(z)/a||dz|

)

dµ(a)

=

∫

∂D

(
∫

∞

0

log+ |Tn(z)/a|dµ(a)

)

|dz|

=

∫

∂D

|Tn(z)|
p
|dz| .

�

4. Additional Remarks

Let T c
n be the set of trigonometric polynomials fn of the form

fn(t) =

n
∑

k=−n

ake
ikt , ak ∈ C , t ∈ R ,

that is, fn(t) = Tn(e
it) with some Tn ∈ Fc

n. We define

‖fn‖p := ‖Tn‖p , 0 ≤ p ≤ ∞ .

The sharp inequality

(4.1) ‖f ′

n‖p ≤ n‖fn‖p , fn ∈ T c
n ,

is associated with the name of S. N. Bernstein, who proved (4.1) for p = ∞ with the
constant 2n and applied it to obtain inverse theorems of approximation theory. In 1914
M. Riesz proved the interpolation formula

f ′

n(t) =
2n
∑

k=1

(−1)k+1αkfn(t+ tk) , fn ∈ T c
n ,
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where

(4.2) tk =
2k − 1

2n
π , αk =

1

4n sin2(tk/2)
, 1 ≤ k ≤ 2n .

The coefficients αk in (4.2) are nonnegative and
∑2n

k=1 αk = n. The formula (4.2) gives
inequality (4.1) for 1 ≤ p ≤ ∞. Moreover, (4.2) gives the sharp inequality

(4.3)

∫ 2π

0

ϕ(|f ′

n(t)|) dt ≤

∫ 2π

0

ϕ(n|fn(t)|) dt , fn ∈ T c
n ,

for an arbitrary nondecreasing function ϕ convex downwards on the half-line [0,∞). In
particular, the function ϕ(u) = up for 1 ≤ p < ∞ has such properties, and in this case
(4.3) turns into (4.1). The details may be found in [Z-59] or [BE-95], for example.

V.V. Arestov [A-81] proposed another method for studying inequalities similar to (4.1)
for convolution operators, including the differentiation operator. More exactly, he consid-
ered inequalities of type (4.1) for the operators of Szegő composition on the set of algebraic
polynomials on the unit circle of the complex plane. For polynomials Pn ∈ Pc

n and Λn ∈ Pc
n

written in the form

Pn(z) =

n
∑

k=0

(

n

k

)

akz
k , Λn(z) =

n
∑

k=0

(

n

k

)

λkz
k ,

the polynomial

(4.4) ΛnPn(z) :=
n
∑

k=0

(

n

k

)

λkakz
k

is called the Szegő composition of the polynomials Λn and Pn. For a fixed Λn ∈ Pc
n

the Szegő composition (4.4) is a linear operator on Pc
n. In particular, writing fn/2(t) =

Pn(e
it)e−int/2 for the differentiation operator fn/2 → f ′

n/2 on T c
n/2 it corresponds to the

composition operator

DnPn(z) = zP ′

n(z) −
n

2
Pn(z)

with the polynomial

(4.5) Dn(z) =
n

2
(z + 1)n−1(z − 1)

on Pc
n. Let Φ+ be the set of functions ϕ nondecreasing and locally absolutely continuous

on (0,∞), for which the function uϕ′(u) is also nondecreasing on (0,∞). In particular
ϕ(u) = up for every p > 0 belong to the set Φ+.

In [A-81, Theorem 3] it is proved that the following sharp inequality holds on Pc
n for all

functions ϕ ∈ Φ+ and an arbitrary operator (4.4):

(4.6)

∫ 2π

0

ϕ

(
∣

∣

∣

∣

ΛnPn(e
it)

ΛnQn(eit)

∣

∣

∣

∣

)

dt ≤

∫ 2π

0

ϕ

(
∣

∣

∣

∣

Pn(e
it)

Qn(eit)

∣

∣

∣

∣

)

dt , Pn ∈ Pc
n ,
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where Qn ∈ Pc
n is the extremal polynomial for the inequality

(4.7)

∫ 2π

0

log
∣

∣ΛnPn(e
it)

∣

∣ dt ≤

∫ 2π

0

log
(

‖Λn‖0
∣

∣Pn(e
it)

∣

∣

)

dt , Pn ∈ Pc
n .

In [A-81, Theorem 4] for a special class of polynomials Λn ∈ Pc
n (including, in particular,

the polynomial Dn defined by (4.5)) and in [A-90, Theorem 1] for an arbitrary polynomial
Λn ∈ Pc

n it is proved that that the following inequality holds for all functions ϕ ∈ Φ+:

(4.8)

∫ 2π

0

ϕ
(
∣

∣ΛnPn(e
it)

∣

∣

)

dt ≤

∫ 2π

0

ϕ
(

‖Λn‖0
∣

∣Pn(e
it)

∣

∣

)

dt , Pn ∈ Pc
n .

As a special case of (4.8), we have

(4.9) ‖ΛnPn‖p ≤ ‖Λn‖0‖Pn‖p , Pn ∈ Pc
n .

for all 0 < p < ∞.
The following method, called Λ-method, used in the proof of inequalities (4.6) and (4.8)

was proposed in [A-81]. The method consists of three steps.
Step 1. Let ϕ(u) = log |u|. In this case, inequalities (4.6) and (4.8) coinside with (4.7),

which can also be written in the form

(4.10) ‖ΛnPn‖0 ≤ ‖Λn‖0‖Pn‖0 , Pn ∈ Pc
n .

Inequality (4.10) was known; the general case was proved by N.G. de Bruijn and T.A.
Springer in [DS-47] (see the theorem and its proof, in particular, (8) and the last formula
in the proof); K. Mahler [M-61] proved (4.7) in a special case.

Step 2. Let ϕ(u) = log+ |u|. In this case the formula

(4.11) log+ |z| =
1

2π

∫ 2π

0

log |z + eiθ| dθ , z ∈ C ,

and the result of Step 1 were used.
Step 3. Let ϕ ∈ Φ+ be arbitrary. In [A-81] a representation of the function ϕ in terms

of the function log+ was presented and used as well as the result in Step 2. If the function
ϕ ∈ Φ+ is defined and continuous on the half-line [0,∞), then this representation has the
form [A-81, (3.5)]

(4.12) ϕ(u) = ϕ(0) +

∫

∞

0

log+
u

a
dχ(a) , u ≥ 0 ,

where χ(a) = aϕ′(a). In particular,

up =

∫

∞

0

log+(u/a)p2ap−1 da .
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In [GL-89] inequality (4.1) was discussed for the operator

Snfn = Afn +B
f ′

n

n
, fn ∈ Fc

n ,

which is more general in comparison with the differentiation operator fn → f ′

n, and the
Λ-method was used. In [GL-89, Lemma 1], for real A and B, a classical property of the
zeros of the function Snfn was observed depending on the zeros of the function fn ∈ T c

n .
In short this property means that an analogue of the Lagrange theorem on the zeros of
the derivative holds for the operator Sn. In this way, in Theorem 1 (by means of the
considerations applied earlier in [A-81] and [M-61]) an analogue of the inequality (4.1)
with p = 0 was proved, thus Step 1 was realized. After that Steps 2 and 3 from [A-81]
were applied. Note that the operator Sn corresponds to the operator of Szegő composition
on Pc

2n satisfying the assumptions of [A-81, Theorem 4]. Thus the final result of [GL-89]
was not new.

In [QZ-19, Sections 5 and 6] inequality (4.1) was proved by the Λ-method. In [QZ-
19, Sections 5] inequality 4.1 for p = 0 called the inequality of K. Mahler, was discussed,
though, in fact, this inequality appeared in the essentially earlier paper [DS-47]. In [QZ-19,
Sections 6] the passage to the function log+ by formula (4.11), and then the passage to
the function up, p > 0, by formula (4.12) have been made.

The main result of the present paper is the proof of Theorem 1.1 contained in Lemmas
2.1 and 2.2. In these two lemmas we show that analogues of these lemmas, known earlier
to be valid for algebraic polynomials Pn ∈ Pc

n also hold for trigonometric polynomials
Tn ∈ Fc

n. As a result we offer quite a simple proof of Bernstein’s inequality (4.1) in Lp for
all p ≥ 0.

In particular, note that Lemma 2.2 in terms of polynomials Q2n, R2n ∈ P2n means that
if R2n has each of its 2n zeros in the closed unit disk D and

|Q2n(z)| ≤ |R2n(z)| , z ∈ ∂D ,

then
|zQ′

2n(z)− nQ2n(z)| ≤ |zR′

2n(z) − nR2n(z)| , z ∈ ∂D .

This lemma can be considered as an extension of the Bernstein-De Bruijn theorem [M-96,
Chapter 2, Theorem 6.4].
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