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Abstract. Let Pc
n,k

denote the set of all polynomials of degree at most n with

complex coefficients and with at most k (0 ≤ k ≤ n) zeros in the open unit disk. Let
Pn,k denote the set of all polynomials of degree at most n with real coefficients and
with at most k (0 ≤ k ≤ n) zeros in the open unit disk. Associated with 0 ≤ k ≤ n

and x ∈ [−1, 1], let

B∗
n,k,x := max







√

n(k + 1)

1− x2
, n log

(

e

1− x2

)







, Bn,k,x :=

√

n(k + 1)

1− x2
,

and
M∗

n,k := max{n(k + 1), n logn} , Mn,k := n(k + 1) .

It is shown that

c1 min{B∗
n,k,x,M

∗
n,k} ≤ sup

p∈Pc
n,k

|p′(x)|

‖p‖[−1,1]

≤ c2 min{B∗
n,k,x,M

∗
n,k}

for every x ∈ [−1, 1], where c1 > 0 and c2 > 0 are absolute constants. Here ‖ · ‖[−1,1]

denotes the supremum norm on [−1, 1]. This result should be compared with the
inequalities

c3 min{Bn,k,x,Mn,k} ≤ sup
p∈Pn,k

|p′(x)|

‖p‖[−1,1]

≤ c4 min{Bn,k,x,Mn,k} ,

for every x ∈ [−1, 1], where c3 > 0 and c4 > 0 are absolute constants. The upper
bound of this second result is also fairly recent, and it may be surprising that there is
a significant difference between the real and complex cases as far as Markov-Bernstein
type inequalities are concerned. The lower bound of the second result is proved in
this paper. It is the final piece of a long series of papers on this topic by a number
of authors starting with Erdős in 1940.
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1. Introduction

We introduce the following classes of polynomials. Let

Pn :=

{
f : f(x) =

n∑

i=0

aix
i , ai ∈ R

}

denote the set of all algebraic polynomials of degree at most n with real coefficients.

Let

Pc
n :=

{
f : f(x) =

n∑

i=0

aix
i , ai ∈ C

}

denote the set of all algebraic polynomials of degree at most n with complex coef-
ficients.

Let Pn,k denote the set of all polynomials of degree at most n with real coefficients

and with at most k (0 ≤ k ≤ n) zeros in the open unit disk.

Let Pc
n,k denote the set of all polynomials of degree at most n with complex

coefficients and with at most k (0 ≤ k ≤ n) zeros in the open unit disk.

In this paper we always assume that k and n are integers satisfying 0 ≤ k ≤ n.

Our starting point is the following two inequalities the usefulness of which is
well known especially in approximation theory. See, for example, A.A. Markov
[22], V.A. Markov [23], Duffin and Schaeffer [31], Bernstein [1], Cheney [8], Lorentz
[20], DeVore and Lorentz [9], or Natanson [27] (some of these references discuss
only the case when the polynomial has real coefficients).

Markov Inequality. The inequality

‖p′‖[−1,1] ≤ n2‖p‖[−1,1]

holds for every p ∈ Pc
n.

Bernstein Inequality. The inequality

|p′(x)| ≤ n√
1− x2

‖p‖[−1,1]

holds for every p ∈ Pc
n and x ∈ (−1, 1).

In the above two theorems and throughout the paper ‖·‖A denotes the supremum
norm on A ⊂ R.

Markov- and Bernstein-type inequalities in Lp norms are discussed, for example,
in DeVore and Lorentz [9], Lorentz, Golitschek, and Makovoz [21], Golitschek and
Lorentz [18], Nevai [28], Máté and Nevai [25], Rahman and Scmeisser [30], and
Milovanović, Mitrinović, and Rassias [26].
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After a number of less general and weaker results of Erdős [17], Lorentz [19],
Scheick [32], Szabados and Varma [34], Szabados [33], and Máté [24], the essentially
sharp Markov-type estimate

(1.1) c5n(k + 1) ≤ sup
p∈Pn,k

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c6n(k + 1)

was proved by Borwein [3] (in a slightly less general formulation) and by Erdélyi
[11] (in the above form). Here c5 > 0 and c6 > 0 are absolute constants. A simpler
proof is given by Erdélyi [14] that relates the upper bound in (1.1) to a beautiful
Markov-type inequality of Newman [29] for Müntz polynomials. See also Borwein
and Erdélyi [6] and Lorentz, Golitschek, and Makovoz [21]. A sharp extension of
(1.1) to Lp norms is also proved by Borwein and Erdélyi [7]. The lower bound in
(1.1) was proved and the upper bound was conjectured by Szabados [33] earlier.
Another example that shows the lower bound in (1.1) is given by Erdélyi [12].

Erdős [17] proved a Bernstein-type inequality on [−1, 1] for polynomials from
Pn,0 having only real zeros. Lorentz [19] improved this by establishing the “right”
Bernstein-type inequality on [−1, 1] for all polynomials from Pn,0. Improving
weaker results of Erdélyi [12] and Szabados and Erdélyi [16], Borwein and Erdélyi [5]
obtained a Bernstein-type analogue of the upper bound in (1.1) which was believed
to be essentially sharp. Namely we proved the upper bound in

(1.2) c3 min{Bn,k,x,Mn,k} ≤ sup
p∈Pn,k

|p′(x)|
‖p‖[−1,1]

≤ c4 min{Bn,k,x,Mn,k}

for every x ∈ [−1, 1], where

Bn,k,x :=

√
n(k + 1)

1− x2
, and Mn,k := n(k + 1) ,

and where c3 > 0 and c4 > 0 are absolute constants. Although it was expected
that this is the “right” Bernstein-type inequality for the classes Pn,k, its sharpness
was proved only in the special cases when x = 0 or x = ±1; when k = 0; and
when k = n. The lower bound of (1.2) in full generality is proved in this paper.
See Theorem 2.2. It shows that the result in Borwein and Erdélyi [5] is the “right”
Markov-Bernstein type inequality for Pn,k on [−1, 1].

We also establish the “right” analogue of (1.2) for the classes Pc
n,k. See Theorem

2.1.

2. New Results

Our first result is the “right” Markov-Bernstein type inequality on [−1, 1] for the
classes Pc

n,k.
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Theorem 2.1. There are absolute constants c1 > 0 and c2 > 0 such that

c1 min{B∗
n,k,x,M

∗
n,k} ≤ sup

p∈Pc
n,k

|p′(x)|
‖p‖[−1,1]

≤ c2 min{B∗
n,k,x,M

∗
n,k}

for every x ∈ [−1, 1], where

B∗
n,k,x := max

{√
n(k + 1)

1− x2
, n log

(
e

1− x2

)}

and

M∗
n,k := max{n(k + 1), n logn} .

Theorem 2.1 should be compared with the result below that may be interpreted
as the “right” Markov-Bernstein type inequality on [−1, 1] for the classes Pn,k.
It may be surprising that there is a significant difference between the real and
complex cases as far as Markov- and Bernstein-type inequalities for polynomials
with restricted zeros are concerned.

Theorem 2.2. There are absolute constants c3 > 0 and c4 > 0 such that

c3 min{Bn,k,x,Mn,k} ≤ sup
p∈Pn,k

|p′(x)|
‖p‖[−1,1]

≤ c4 min{Bn,k,x,Mn,k}

for every x ∈ [−1, 1], where

Bn,k,x :=

√
n(k + 1)

1− x2
and Mn,k := n(k + 1) .

Remark 2.3. The “standard” argument to derive Markov’s inequality for Pc
n from

Markov’s inequality for Pn goes as follows. Suppose

‖q′‖[−1,1] ≤ n2‖q‖[−1,1]

for every q ∈ Pn. Now let p ∈ Pc
n be arbitrary. Fix an arbitrary point a ∈ [−1, 1],

and choose a constant c ∈ C with |c| = 1 so that cp′(a) is real. We introduce q ∈ Pn

defined by
q(x) := Re(cp(x)) , x ∈ R .

Then
|p′(a)| = |cp′(a)| = |q′(a)| ≤ n2‖q‖[−1,1] ≤ n2‖p‖[−1,1] .

Since this holds for every p ∈ Pc
n and a ∈ [−1, 1], we have

‖p′‖[−1,1] ≤ n2‖p‖[−1,1]

for every p ∈ Pc
n.
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Observe that, while p ∈ Pc
n implies q := Re(cp) ∈ Pn (restricted to the real

line), p ∈ Pc
n,k does not imply q := Re(cp) ∈ Pn,k. This suggests that in order to

establish the “right” Markov-type inequalities for Pc
n,k, the arguments need to be

more clever than the above standard extension.

Remark 2.4. The Markov-type upper bound

sup
p∈Pc

n,k

|p′(x)|
‖p‖[−1,1]

≤ c2M
∗
n,k

of Theorem 2.1 is proved by Erdélyi [15].

Remark 2.5. The Markov-type upper bound

sup
p∈Pn,k

|p′(x)|
‖p‖[−1,1]

≤ c4Mn,k

in Theorem 2.2 is a combination of the results in Borwein [3] and Erdélyi [12]. See
also Erdélyi [14], Borwein and Erdélyi [6], and Lorentz, Golitschek, and Makovoz
[21].

Remark 2.6. The Bernstein-type upper bound

sup
p∈Pn,k

|p′(x)|
‖p‖[−1,1]

≤ c2Bn,k,x

in Theorem 2.2 is proved in Borwein and Erdélyi [5].

3. Lemmas for Theorem 2.1

Our first lemma is proved in Erdélyi [15, Lemma 3.1]. It can also be derived
easily from a quite similar result proved in [4, Theorem 3.2].

Lemma 3.1. Let 0 ≤ k ≤ n be integers and let s ∈ [0, 1]. We have

‖p‖[−1−s,1+s] ≤ exp
(
18
(√

nks+ ns
))

‖p‖[−1,1]

for every p ∈ Pc
n,k.

Our next lemma shows that how fast a polynomial p ∈ Pc
n,k can grow on the

vertical lines Re(z) = x, x ∈ (−1, 1), subject to ‖p‖[−1,1] = 1.

Lemma 3.2. Let 0 ≤ k ≤ n be integers. Let x ∈ (−1, 1). There is an absolute

constant c7 such that

|p(z)| ≤ c7 ‖p‖[−1,1]

for every p ∈ Pc
n,k and for every z ∈ C satisfying

Re(z) = x and |Im(z)| ≤ 1

B∗
n,k,x

.

Lemma 3.2 will follow by a combination of Lemma 3.1 and our next lemma. The
proof of Lemma 3.3 below (in fact a more general result) may be found in Boas [2].
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Lemma 3.3 (Nevanlinna’s Inequality). The inequality

log |p(x+ iy)| ≤ |y|
π

∫ ∞

−∞

log |p(t)|
(t− x)2 + y2

dt

holds for every polynomial p with complex coefficients.

The Bernstein-type upper bound of Theorem 2.1 will be obtained by a combi-
nation of the Cauchy integral formula and Lemma 3.2.

4. Proof of Theorem 2.1

Proof of Lemma 3.2. Let p ∈ Pc
n,k. Without loss of generality we may assume that

n ≥ 1 and x ∈ [0, 1). We normalize so that

(4.1) ‖p‖[−1,1] = 1 ,

that is,

(4.2) log |p(t)| ≤ 0 , −1 ≤ t ≤ 1 .

In the rest of the proof, associated with a fixed x ∈ [0, 1), let

(4.3) z = x+ iy , y ∈ R , |y| ≤ 1

B∗
n,k,x

.

We have

|y|
π

∫ −1

−∞

log |p(t)|
(t− x)2 + y2

dt ≤ |y|
π

∫ −1

−∞

n log(2|t|)
(t− x)2 + y2

dt

≤ n

πB∗
n,k,x

∫ −1

−∞

log(2|t|)
|t|2 dt ≤ c

(4.4)

with an absolute constant c. Here we used the well-known inequality |p(t)| ≤ |2t|n
valid for all p ∈ Pc

n with ‖p‖[−1,1] ≤ 1 and for all t ∈ R \ (−1, 1). Obviously

(4.5)
|y|
π

∫ 1

−1

log |p(t)|
(t− x)2 + y2

dt ≤ 0 .

Now we use Lemma 3.1 and (4.3) to obtain

|y|
π

∫ 2

1

log |p(t)|
(t− x)2 + y2

dt

≤ |y|
π

∫ 2

1

18
(√

nk(t− 1) + n(t− 1)
)

(t− x)2 + y2
dt

≤ |y|
π

∫ 2

1

18
(√

nk(t− x) + n(t− x)
)

(t− x)2
dt

≤ 18
√
nk

πB∗
n,k,x

∫ 2

1

(t− x)−3/2 dt+
18n

πB∗
n,k,x

∫ 2

1

(t− x)−1 dt

≤ 36
√
nk (1− x)−1/2

πB∗
n,k,x

+
18n log

(
2−x
1−x

)

πB∗
n,k,x

≤ c

(4.6)
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with an absolute constant c. Finally, similarly to (4.4), we have

|y|
π

∫ ∞

2

log |p(t)|
(t− x)2 + y2

dt ≤ |y|
π

∫ ∞

2

n log(2|t|)
(t− x)2 + y2

dt

≤ n

πB∗
n,k,x

∫ ∞

2

log(2|t|)
|t− 1|2 dt ≤ c

(4.7)

with an absolute constant c. Now (4.1) – (4.7) and Lemma 3.3 (Nevanlinna’s
inequality) yield that

|p(z)| ≤ exp

( |y|
π

∫ ∞

−∞

log |p(t)|
(t− x)2 + y2

dt

)
≤ c = c ‖p‖[−1,1]

with an absolute constant c. �

Proof of Theorem 2.1. It follows from Lemma 3.2 and Cauchy’s integral formula in
a standard fashion that there is an absolute constant c8 > 0 such that

|p′(x)| ≤ c8B
∗
n,k,x‖p‖[−1,1]

for every p ∈ Pc
n,k and for every x ∈ (−1, 1) such that

(4.8)
1− |x|

2
≥ 1

B∗
n,k,x

.

Now assume that x ∈ [−1, 1] and (4.8) does not hold. Note that in this case
B∗

n,k,x ≤ c9M
∗
n,k with an absolute constant c9 > 0, and the upper bound of the

theorem follows from Remark 2.4.

Now we prove the lower bound of the theorem. Because of the the lower bound
in Theorem 2.2 (which we prove in the next section), it is sufficient to prove that
there is an absolute constant c10 > 0 such that

(4.9) c10 min

{
n log

(
e

1− x2

)
, n logn

}
≤ sup

p∈Pc
n,0

|p′(x)|
‖p‖[−1,1]

≤ sup
p∈Pc

n,k

|p′(x)|
‖p‖[−1,1]

for every x ∈ [0, 1]. To see (4.9) let

zm := exp

(
(2m− 1)πi

2n

)
, m = 1, 2, . . . , n

be the zeros of z2n + 1 in the open upper half-plane. Let

pn(z) :=

n∏

m=1

(z − zm)2 .

Then pn ∈ Pc
2n,0 and |pn(t)| = t2n + 1 for every t ∈ R. Note that this implies

1 ≤ |pn(t)| , t ∈ [−1, 1] ,
7



and
|pn(1)| = ‖pn‖[−1,1] = 2 .

Let x ∈ [0, 1] be fixed. Then

Im

(
1

x− zm

)
> 0 , m = 1, 2, . . . , n ,

and there is an absolute constant c11 > 0 such that

Im

(
1

x− zm

)
>

c11n

m
,

n(1− x)

4
≤ m ≤ n+ 1

2
.

Hence there is an absolute constant c11 > 0 such that

|p′n(x)|
‖pn‖[−1,1]

≥
∣∣∣∣
p′n(x)

2pn(x)

∣∣∣∣ ≥
∑

n(1−x)
4 ≤m≤n+1

2

c11n

m

≥ c12 min

{
n log

(
e

1− x2

)
, n logn

}
.

This completes the proof of the lower bound of the theorem. �

5. Proof of Theorem 2.2

For the upper bound in Theorem 2.2, see Remarks 2.5 and 2.6. What remains
to prove is the lower bound in Theorem 2.2.

The following lemma is trivial. However, it plays a crucial role in proving the
lower bound in Theorem 2.2.

Lemma 5.1. Let a ∈ [0, 1). Suppose

x ∈
[
a− 1

2 (1− a), a
]

if a ∈
[
0, 3

4

)
,

x ∈ [a− 3(1− a), a] if a ∈
[
3
4 , 1
)
.

If Rn := Rn,k,a ∈ Pn,k satisfies

|R′
n(a)|

|Rn‖[−1,1]
≥ c

(
n(k + 1)

1− a2

)1/2

,

then R̃n := R̃n,k,x ∈ Pn,k defined by

R̃n(z) = Rn

(
1− 1− a

1− x
(1− z)

)

satisfies

|R̃′
n(x)|

‖R̃n‖[−1,1]

≥ c

4

(
n(k + 1)

1− x2

)1/2

.
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Proof of the lower bound of the Theorem 2.2.

Case 1. 0 ≤ k ≤ 3.

In the case k = 0, and hence in the case 0 ≤ k ≤ 3, the lower bound of the theorem
is proved in Borwein and Erdélyi [6, pages 433–434].

Case 2. 0 ≤ x ≤ 1 − k
n−k , 0 < 4k ≤ n, k is odd, and x = 1 − 2j

n−k for a positive
integer j.

Let m1 := (n− k)(1− x) and m2 := (n− k)(1 + x). Let

Pn(z) := Pn,k,x(z) := (z − 1)m1(z + 1)m2(z − x)k .

Observe that if α is an extreme point of Pn in (−1, 1), then

P ′
n(α)

Pn(α)
=

m1

α− 1
+

m2

α+ 1
+

k

α− x
= 0 ,

that is,

(α− x)2 =
k(1− α2)

2(n− k)
.

Solving the quadratic equation, we obtain that

α1, α2 =
2x±

√
2k

n−k (1− x2) + k2

(n−k)2

2 + k
n−k

with

α2 − α1 ≤
√

2k

n− k
(1 − x2) +

k2

(n− k)2

and x ∈ (α1, α2). Using the assumptions 0 ≤ x ≤ 1− k
n−k and 0 < 4k ≤ n, we have

(5.1) x−
(
3k(1− x2)

n− k

)1/2

≤ α1, α2 ≤ x+

(
3k(1− x2)

n− k

)1/2

.

Let Qk := Qn,k,x be the kth Chebyshev polynomial Tk transformed linearly from
[−1, 1] to

I := In,k,x :=

[
x−

(
12k(1− x2)

(n− k)

)1/2

, x+

(
12k(1− x2)

(n− k)

)1/2
]
.

That is,

Qk(z) := Tk

((
n− k

12k(1− x2)

)1/2

(z − x)

)

:= cos

(
k arccos

((
n− k

12k(1− x2)

)1/2

(z − x)

))
, z ∈ I .
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Note that

Qk(z) = 2k−1

(
n− k

12k(1− x2)

)k/2 k∏

j=1

(z − xj) , xj ∈ I ,

where the set {x1, x2, . . . , xk} is symmetric with respect to x. Hence

(5.2) |Qk(z)| ≤
(

n− k

3k(1− x2)

)k/2

|z − x|k , z ∈ R \ I .

Let
Rn(z) := Rn,k,x(z) := (z − 1)m1(z + 1)m2Qk(z) ∈ Pn,k .

Let Sn−k(z) := (z − 1)m1(z + 1)m2 , and let

L := Ln,k,x := max
−1≤z≤1

|Sn−k(z)| = Sn−k(x) .

Then

(5.3) max
z∈I

|Rn(z)| ≤ L ,

and by (5.2) and (5.1)

max
z∈[−1,1]\I

|Rn(z)| = max
z∈[−1,1]\I

|(z − 1)m1(z + 1)m2Qk(z)|

≤ max
z∈[−1,1]\I

∣∣∣∣∣(z − 1)m1(z + 1)m2

(
n− k

3k(1− x2)

)k/2

(z − x)k

∣∣∣∣∣

≤
(

n− k

3k(1− x2)

)k/2 (
3k(1− x2)

n− k

)k/2

L = L .

(5.4)

Combining (5.3) and (5.4), we obtain

(5.5) max
z∈[−1,1]

|Rn(z)| ≤ L .

Also,

|R′
n(x)| = |Q′

k(x)Sn−k(x) +Qk(x)S
′
n−k(x)|

= |Q′
k(x)|L =

(
n− k

12k(1− x2)

)1/2

|T ′
k(0)|L

=

(
n− k

12k(1− x2)

)1/2

kL =

(
(n− k)k

12(1− x2)

)1/2

L

≥ 1

4

(
nk

1− x2

)1/2

L .

(5.6)

Hence, by (5.5) and (5.6),

|R′
n(x)|

‖Rn‖[−1,1]
≥ 1

4

(
nk

1− x2

)1/2

.
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Case 3. 0 ≤ x ≤ 1− k
n−k , 0 < 4k ≤ n, k ≥ 5 is odd.

Then choose a positive integer j so that 1− 2(j+1)
n−k ≤ x ≤ 1− 2j

n−k . The lower bound
of the theorem follows from Case 2 and Lemma 5.1.

Before examining the next cases we introduce some notation that should be kept
in mind throughout Cases 4, 5, and 6. Let Qk := Qn,k,x be the kth Chebyshev
polynomial Tk transformed linearly from [−1, 1] to

I := In,k :=

[
1− 16k

n− k
, 1

]
.

That is, with b := 1− 8k
n−k ,

Qk(z) := Tk

(
n− k

8k
(z − b)

)

:= cos

(
k arccos

(
n− k

8k
(z − b)

))
, z ∈ I .

(5.7)

Let η1 > η2 > . . . > ηu be the zeros of Qk in
[
1− k

n−k , 1
]
. That is,

ηj :=
8k

n− k
cos

(2j − 1)π

2k
+

(
1− 8k

n− k

)

and u is the largest positive integer j for which ηj ≥ 1− k
n−k .

Case 4. x ∈ {η1, η2, . . . , ηu} and 0 < 9k ≤ n.

Let x∗ := 1− 2v
n−k , where the nonnegative integer v is chosen so that

1− k + 2

n− k
≤ 1− 2(v + 1)

n− k
< x ≤ 1− 2v

n− k
.

Let m1 := (n− k)(1 − x∗) and m2 := (n− k)(1 + x∗). Let

Pn(z) := Pn,k,x(z) := (z − 1)m1(z + 1)m2(z − b)k .

Recall that b := 1 − 8k
n−k . Observe that if α is an extreme point of Pn in (−1, 1),

then
P ′
n(α)

Pn(α)
=

m1

α− 1
+

m2

α+ 1
+

k

α− b
= 0 ,

that is,

(α− x∗)(α − b) =
k(1− α2)

2(n− k)
.

Solving the quadratic equation, we obtain that

α1, α2 =
(x∗ + b)±

√
(x∗ − b)2 + 2k

n−k (1− x∗b) +
k2

(n−k)2

2 + k
n−k

11



with

1 ≥ α1, α2 ≥
(x∗ + b)−

√
(x∗ − b)2 + 2k

n−k (1− x∗b) +
k2

(n−k)2

2 + k
n−k

≥
(x∗ + b)−

√
(x∗ − b)2 + 2k

n−k

(
1−

(
1− k

n−k

)(
1− 8k

n−k

))
+ k2

(n−k)2

2 + k
n−k

≥
(x∗ + b)− (x∗ − b)−

√
19 k

n−k

2 + k
n−k

≥
2− 16k

n−k −
√
19 k

n−k

2 + k
n−k

≥ 1− 12k

n− k
,

(5.8)

since 0 < 9k ≤ n implies
(
1− 12k

n− k

)(
2 +

k

n− k

)
= 2− 23k

n− k
+

12k2

(n− k)2

≤ 2− 23k

n− k
+

12k

8(n− k)

≤ 2− 16k

n− k
−
√
19

k

n− k
.

Note that the polynomial Qk defined by (5.7) is of the form

Qk(z) = 2k−1

(
n− k

8k

)k k∏

j=1

(z − xj) , xj ∈ I ,

where the set {x1, x2, . . . , xk} is symmetric with respect to b. Hence

(5.9) |Qk(z)| ≤
(
n− k

4k

)k

|z − b|k , z ∈ R \ I .

Let
Rn(z) := Rn,k,x(z) := (z − 1)m1(z + 1)m2Qk(z) ∈ Pn,k .

Let Sn−k(z) := (z − 1)m1(z + 1)m2 , and let

L := Ln,k,x := max
−1≤z≤1

|Sn−k(z)| .

Then

(5.10) max
z∈I

|Rn(z)| ≤ L ,

and by (5.9) and (5.8),

max
z∈[−1,1]\I

|Rn(z)| ≤ max
z∈[−1,1]\I

|(z − 1)m1(z + 1)m2Qk)(z)|

≤ max
z∈[−1,b]

∣∣∣∣∣(z − 1)m1(z + 1)m2

(
n− k

4k

)k

(z − b)k

∣∣∣∣∣

≤
(
n− k

4k

)k (
(12− 8)k

n− k

)k

L ≤ L .

(5.11)

12



Now (5.10) and (5.11) yield that

(5.12) max
z∈[−1,1]

|Rn(z)| ≤ L .

Also, if x = ηj , then

|R′
n(x)| = |Q′

k(x)Sn−k(x) +Qk(x)S
′
n−k(x)| = |Q′

k(x)Sn−k(x)|

≥ |Q′
k(x)|

L

16
=

n− k

8k

∣∣∣T ′
k

(
cos (2j−1)π

2k

)∣∣∣
L

16

≥ n− k

8k

k

sin (2j−1)π
2k

L

16
≥ n− k

8k

k

2 sin (2j−1)π
4k

L

16

≥ n− k

16k

k√
n−k
16k (1 − ηj)

L

16
=

(
(n− k)k

1− ηj

)1/2
L

64

≥ 1

128

(
nk

1− x2

)1/2

L .

(5.13)

Here we used the fact that 0 < x∗ − 2
n−k ≤ x ≤ x∗ ≤ 1 and 0 < 9k ≤ n imply

|Sn−k(x)|
L

=
|Sn−k(x)|
|Sn−k(x∗)|

=
(1− x)m1 (x+ 1)m2

(1− x∗)m1(x∗ + 1)m2

=

(
1− x

1− x∗

)m1
(

x+ 1

x∗ + 1

)m2

≥
(

x+ 1

x∗ + 1

)n−k

=

(
1− 2

n− k

)n−k

≥ 1

16
.

From (5.12) and (5.13) we conclude that

|R′
n(x)|

‖Rn‖[−1,1]
≥ 1

128

(
nk

1− x2

)1/2

.

Case 5. 1− k
n−k ≤ x ≤ η1 , 0 < 9k ≤ n.

The lower bound of the theorem follows from Case 4 and Lemma 5.1.

Case 6. x ∈ [η1, 1], 0 < 9k ≤ n, and k is odd.

Let Rn ∈ Pn,k be as in Case 4. Then

|R′
n(x)|

‖Rn‖[−1,1]
≥ |R′

n(η1)|
‖Rn‖[−1,1]

≥ 1

128

(
nk

1− η21

)1/2

≥ nk

128
√
24

,

where we used the fact that

1− η1 =
8k

n− k

(
1− cos

π

2k

)
≤ 8k

n− k

1

2

( π

2k

)2
≤ 12

nk
.
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Case 7. 0 < k ≤ n ≤ 9k and x is a zero of the Chebyshev polynomial Tk defined
by

Tk(x) := cos kθ , x = cos θ , θ ∈ [0, π] .

Let
Rn := Rn,k,x := Tk ∈ Pn,k .

Then
|R′

n(x)|
‖Rn‖[−1,1]

≥ k√
1− x2

≥ 1

3

(
nk

1− x2

)1/2

.

Case 8. 0 < k ≤ n ≤ 9k and x ∈ [0, η], where η := cos π
2k is the largest zero of the

Chebyshev polynomial Tk.

The lower bound of the theorem follows from Case 7 and Lemma 5.1.

Case 9. 0 < k ≤ n ≤ 9k and x ∈ [η, 1], where η := cos π
2k is the largest zero of the

Chebyshev polynomial Tk.

Let Rn := Rn,k,x := Tk ∈ Pn,k be as in Case 7. Then

|R′
n(x)|

‖Rn‖[−1,1]
≥ |R′

n(η)|
‖Rn‖[−1,1]

≥ k

sin π
2k

≥ 2k2

π
≥ kn

5π
.

Case 10. x ∈ [0, 1], 0 ≤ k ≤ n.

The lower bound of the theorem follows from Cases 1, 3, 5, 6, 8, and 9.

Case 11. x ∈ [−1, 0], 0 ≤ k ≤ n.

The lower bound of the theorem follows from Case 10 by noting that Rn ∈ Pn,k

implies R̃n(z) := Rn(−z) ∈ Pn,k.

The proof of the lower bound of the theorem is now finished. �
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