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Abstract. A subtle Bernstein-type extremal problem is solved by establishing the
equality

sup
06=f∈Ẽ2n

|f ′(0)|

‖f‖[−1,1]

= 2n− 1 ,

where

Ẽ2n :=

{
f : f(t) = a0 +

n∑

j=1

(
aje

λjt + bje
−λjt

)
, aj , bj , λj ∈ R

}
.

This settles a conjecture of Lorentz and others and it is surprising to be able to
provide a sharp solution. It follows fairly simply from the above that

1

e− 1

n− 1

min{y − a, b− y}
≤ sup

06=f∈En

|f ′(y)|

‖f‖[a,b]
≤

2n− 1

min{y − a, b− y}

for every y ∈ (a, b), where

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R

}
.

The proof relies on properties of the particular Descartes system

(sinhλ0t , sinhλ1t , . . . , sinhλnt) , 0 < λ0 < λ1 < · · · < λn

for which certain comparison theorems can be proved.

Essentially sharp Nikolskii-type inequalities are also proved for En.
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1. Introduction

In “Nonlinear Approximation Theory”, Braess [3] writes “The rational functions
and exponential sums belong to those concrete families of functions which are the
most frequently used in nonlinear approximation theory. The starting point of
consideration of exponential sums is an approximation problem often encountered
for the analysis of decay processes in natural sciences. A given empirical function
on a real interval is to be approximated by sums of the form

n∑

j=1

aje
λjt ,

where the parameters aj and λj are to be determined, while n is fixed.”

The aim of this paper is to prove the “right” Bernstein-type inequality for ex-
ponential sums. This inequality is the key to proving inverse theorems for approx-
imation by exponential sums, as we will elaborate later.

Let

En :=

{
f : f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R

}
.

So En is the collection of all n+1 term exponential sums with constant first term.
Schmidt [10] proved that there is a constant c(n) depending only on n so that

‖f ′‖[a+δ,b−δ] ≤ c(n)δ−1‖f‖[a,b]

for every p ∈ En and δ ∈
(
0, 12 (b− a)

)
. Lorentz [7] improved Schmidt’s result by

showing that for every α > 1
2 , there is a constant c(α) depending only on α so

that c(n) in the above inequality can be replaced by c(α)nα logn (Xu improved this
to allow α = 1

2 ), and he speculated that there may be an absolute constant c so
that Schmidt’s inequality holds with c(n) replaced by cn. We [1] proved a weaker
version of this conjecture with cn3 instead of cn.

The main result, Theorem 3.2, of this paper shows that Schmidt’s inequality
holds with c(n) = 2n− 1. This result can also be formulated as

sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n− 1

min{y − a, b− y} , y ∈ (a, b) .

In this Bernstein-type inequality even the pointwise factor is sharp up to a multi-
plicative absolute constant; the inequality

1

e− 1

n− 1

min{y − a, b− y} ≤ sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

, y ∈ (a, b)

is established in Theorem 3.3. Theorem 3.2 follows easily from our other central
result, Theorem 3.1. This states that the equality

sup
06=f∈Ẽ2n

|f ′(0)|
‖f‖[−1,1]

= 2n− 1



A SHARP BERNSTEIN-TYPE INEQUALITY 3

holds, where

Ẽ2n :=

{
f : f(t) = a0 +

n∑

j=1

(
aje

λjt + bje
−λjt

)
, aj , bj , λj ∈ R

}
.

These results complement Newman’s beautiful Markov-type inequality [9], see
also [2], that states

2

3

n∑

j=0

λj ≤ sup
06=f∈En(Λ)

‖f ′‖[0,∞)

‖f‖[0,∞)
≤ 9

n∑

j=0

λj ,

where En(Λ) := span{e−λ0t, e−λ1t, . . . , e−λnt} for any sequence Λ of distinct non-
negative numbers λj .

Denote by Pn the set of all polynomials of degree at most n with real coefficients.
Bernstein’s classical inequality states the following.

Proposition 1.1 (Bernstein’s Inequality). The inequality

|p′(x)| ≤ n√
1− x2

‖p‖[−1,1] , −1 < x < 1

holds for every p ∈ Pn.

This implies by substitution and scaling (though not entirely obviously) that

|f ′(y)| ≤ 2n

min{y − a, b− y} ‖f‖[a,b] , y ∈ (a, b)

holds for the particular exponential sums of the form

f(t) = a0 +

n∑

j=1

aje
jt , aj ∈ R .

This is a very special case (λj = j) of our Theorem 3.1.

Bernstein-type inequalities play a central role in approximation theory via a
machinery developed by Bernstein, which turns Bernstein-type inequalities into
inverse theorems of approximation. See, for example Lorentz [6] and DeVore and
Lorentz [4]. Roughly speaking, our Theorem 3.2 implies that inverse theorems of
approximation, over large classes of functions, by the particular exponential sums
f of the form

f(t) = a0 +

n∑

j=1

aje
jt , aj ∈ R

are essentially the same as those of approximation by arbitrary exponential sums
f with n+ 1 terms of the form

f(t) = a0 +

n∑

j=1

aje
λjt , aj , λj ∈ R .
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So one deduces in a standard fashion [4, 6], for example, that if there is a sequence
(fn)

∞
n=1 of exponential sums with fn ∈ En that approximates f on an interval

[a, b] uniformly with errors ‖f − fn‖[a,b] = o
(
n−m

)
, m ∈ N , then f is m times

continuously differentiable on (a, b).

The following slight improvement of Bernstein’s inequality may be found in
Natanson [8].

Proposition 1.2. The inequality

|p′(0)| ≤ (2n− 1) ‖p‖[−1,1]

holds for every p ∈ P2n.

Note that Proposition 1.1 implies Proposition 1.2 only with (2n − 1) replaced
by 2n. The following corollary of Proposition 1.2 can be obtained by a linear
transformation. It plays an important role in the proof of Theorem 3.1.

Proposition 1.3. The inequality

|p′(x)| ≤ 2n− 1

1− |x| ‖p‖[−1,1] , x ∈ (−1, 1)

holds for every p ∈ P2n.

Of course, Proposition 1.3 gives a better result than Proposition 1.1 only if x
is very close to 0. However, this is going to be exactly the case in the proof of
Theorem 3.1.

Theorem 3.4 deals with an essentially sharp Nikolskii-type inequality for En. We
show that

‖f‖[a+δ,b−δ] ≤ 22/p
2

(
n+ 1

δ

)1/p

‖f‖Lp[a,b]

for every f ∈ En, p ∈ (0, 2], and δ ∈
(
0, 12 (b− a)

)
. A weaker version of our Theorem

3.1 can be easily deduced from this showing that Schmidt’s inequality holds with
c(n) = 8(n+ 1)2.

Theorems 3.1 to 3.3 of this paper trivially extend to the wider classes E∗
n defined

in the next section. A less direct version of our main results in this paper and
related results will eventually appear in the book [2].

2. Notation and Definitions

The notations
‖f‖A := sup

x∈A
|f(x)|

and

‖f‖Lp(A) :=

(∫

A

|f |p
)1/p
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are used throughout this paper for measurable functions f defined on a measurable
set A ⊂ R and for p ∈ (0,∞). If A := [a, b] is an interval, then the notation
Lp[a, b] := Lp(A) is used.

The classes En and Ẽ2n are defined in the Introduction. The classes E∗
n and E∗c

n

are introduced in Section 8.

The space of all real-valued continuous functions defined on A ⊂ R equipped
with the uniform norm is denoted by C(A).

3. New Results

Theorem 3.1. We have

sup
06=f∈Ẽ2n

|f ′(0)|
‖f‖[−1,1]

= 2n− 1 .

Theorem 3.2. The inequality

sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n− 1

min{y − a, b− y}

holds for every n ∈ N and y ∈ (a, b).

Theorem 3.3. The inequality

1

e− 1

n− 1

min{y − a, b− y} ≤ sup
06=f∈En

|f ′(y)|
‖f‖[a,b]

holds for every n ∈ N and y ∈ (a, b).

Theorem 3.4. The inequality

‖f‖[a+δ,b−δ] ≤ 22/p
2

(
n+ 1

δ

)1/p

‖f‖Lp[a,b]

holds for every f ∈ En, p ∈ (0, 2], and δ ∈
(
0, 12 (b− a)

)
.

4. Chebyshev and Descartes Systems

The proof of our main result relies heavily on the observation that for every
0 < λ0 < λ1 < · · · ,

(sinhλ0t , sinhλ1t , . . . )

is a Descartes system on (0,∞). In this section we give the definitions of Chebyshev
and Descartes systems. The only result of this section that is not to be found in
standard sources is the critical Lemma 4.5. The remaining theory can be found in,
for example, [5] or [4].
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Definition 4.1 (Chebyshev System). Let I ⊂ R be an interval. The
sequence (f0, f1, . . . , fn) is called a (real) Chebyshev system of dimension n+1 on
I if f0, f1, . . . , fn are real-valued continuous functions on I, span{f0, f1, . . . , fn}
over R is an n+1 dimensional subspace of C(A), and any f ∈ span{f0, f1, . . . , fn}
that has n+ 1 distinct zeros on I is identically zero.

If (f0, f1, . . . , fn) is a Chebyshev system on I, then span{f0, f1, . . . , fn} is called
a Chebyshev space on I.

The following simple equivalences are well known facts of linear algebra.

Proposition 4.2. Let f0, f1, . . . , fn be real-valued continuous functions on an in-
terval I ⊂ R. Then the following are equivalent.

a] Every 0 6= p ∈ span{f0, f1, . . . , fn} has at most n distinct zeros on I.

b] If x0, x1, . . . , xn are distinct elements of I and y0, y1, . . . , yn are real numbers,
then there exists a unique p ∈ span{f0, f1, . . . , fn} so that

p(xi) = yi , i = 1, 2, . . . , n .

c] If x0, x1, . . . , xn are distinct points of I, then

D

(
f0 f1 . . . fn
x0 x1 . . . xn

)
:=

∣∣∣∣∣∣∣

f0(x0) . . . fn(x0)
...

. . .
...

f0(xn) . . . fn(xn)

∣∣∣∣∣∣∣
6= 0 .

Definition 4.3 (Descartes System). The system (f0, f1, . . . , fn) is said to be
a Descartes system (or order complete Chebyshev system) on an interval I if each
fi ∈ C(I) and

D

(
fi0 fi1 . . . fim
x0 x1 . . . xm

)
> 0

for any 0 ≤ i0 < i1 < · · · < im ≤ n and for any x0 < x1 < · · · < xm from I. The
definition of an infinite Descartes system (f0, f1, . . . ) on I is analogous.

This is a property of the basis. It implies that any finite dimensional subspace
generated by some basis elements is a Chebyshev space on I. We remark the trivial
fact that a Descartes system on I is a Descartes system on any subinterval of I.

Lemma 4.4. The system

(eλ0t , eλ1t , . . . ) , λ0 < λ1 < · · ·

is a Descartes system on (−∞,∞). In particular, it is also a Chebyshev system on
(−∞,∞).

Proof. The determinant in Definition 4.3 is a generalized Vandermonde. See, for
example, [5, p. 9]. �

The following lemma plays a crucial role in the proof of Theorem 3.1.
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Lemma 4.5. Suppose 0 < λ0 < λ1 < · · · . Then

(sinhλ0t , sinhλ1t , . . . )

is a Descartes system on (0,∞).

Proof. Let 0 ≤ i0 < i1 < · · · < im be fixed integers . First we show that

(sinhλi0 t , sinhλi1 t , . . . , sinhλim t)

is a Chebyshev system on (0,∞). Indeed, let

0 6= f ∈ span{sinhλi0t , sinhλi1t , . . . , sinhλim t} .

Then
0 6= f ∈ span{e±λi0

t , e±λi1
t , . . . , e±λim t}

and since
span{e±λi0

t , e±λi1
t , . . . , e±λim t}

is a Chebyshev system, f has at most 2m+ 1 zeros in (−∞,∞). Since f is odd, it
has at most m zeros in (0,∞).

Since for every 0 ≤ i0 < i1 < · · · < im, (sinhλi0t , sinhλi1t , . . . , sinhλim t) is a
Chebyshev system on (0,∞), the determinant

D

(
sinhλi0t sinhλi1 t . . . sinhλim t

x0 x1 . . . xm

)

is non-zero for any 0 < x0 < x1 < · · · < xm < ∞ by Proposition 4.2. So it only
remains to prove that it is positive whenever 0 < x0 < x1 < · · · < xm < ∞. Now
let

D(α) := D

(
sinhλi0 t sinhλi1t . . . sinhλim t
αx0 αx1 . . . αxm

)

and

D∗(α) := D

(
1
2e

λi0
t 1

2e
λi1

t . . . 1
2e

λim t

αx0 αx1 . . . αxm

)
,

where 0 < x0 < x1 < · · · < xm < ∞ are fixed. Since

(sinhλi0 t , sinhλi1 t , . . . , sinhλim t)

and
(eλi0

t , eλi1
t , . . . , eλim t)

are Chebyshev systems on (0,∞), D(α) and D∗(α) are continuous non-vanishing
functions of α on (0,∞). Now observe that

lim
α→∞

|D(α)| = lim
α→∞

|D∗(α)| = ∞ and lim
α→∞

D(α)

D∗(α)
= 1 .

Since
(eλi0

t , eλi1
t , . . . , eλim t)
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is a Descartes system on (−∞,∞), D∗(α) > 0 for every α > 0. So the above limit
relations imply that D(α) > 0 for every large enough α, hence for every α > 0. In
particular,

D(1) = D

(
sinhλi0 t sinhλi1t . . . sinhλim t

x0 x1 . . . xm

)
> 0 ,

which finishes the proof. �

The following proposition on polynomials from the span of a Descartes system
with a maximal number of zeros is also needed in the next section. Its proof is
standard, and can be pieced together from [5, pp. 25-36] or found in [2, p. 108].

Lemma 4.6. Suppose (f0, f1, . . . , fn) is a Descartes system on [a, b]. Suppose

a < t1 < t2 < · · · < tn < b ,

Then there exists a unique

p = fn +

n−1∑

i=0

aifi , ai ∈ R

so that

(1) p(ti) = 0 , i = 1, 2, . . . , n .

Further, this p satisfies

(2) p(t) 6= 0 , t /∈ {t1, t2, . . . , tn} ,

(3) p(t) changes sign at each t1, t2, . . . , tn ,

(4) aiai+1 < 0 , i = 0, 1, . . . , n− 1 , an := 1 ,

(5) p(t) > 0 for t ∈ (tn, b], and (−1)np(t) > 0 for t ∈ [a, t1) ,

(6) (−1)n−ip(t) > 0 , t ∈ (ti, ti+1) , i = 1, 2, . . . , n− 1 .

5. Chebyshev Polynomials for span{sinhλ0t , sinhλ1t , . . . , sinhλnt}

We study the space

Hn := span{sinhλ0t , sinhλ1t , . . . , sinhλnt} ,

where
0 < λ0 < λ1 < · · · < λn .

We can define the generalized Chebyshev polynomial Tn for Hn on [0, 1] by the
following three properties:

(5.1) Tn ∈ span{sinhλ0t , sinhλ1t , . . . , sinhλnt} ,
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there exists an alternation sequence (x0 < x1 < · · · < xn) for Tn on (0, 1], that is,

(5.2) (−1)iTn(xi) = ‖Tn‖[0,1] , i = 0, 1, . . . , n ,

and

(5.3) ‖Tn‖[0,1] = 1 .

The existence and uniqueness of such a Tn follows from the properties of the best
uniform approximation to sinhλ0t on [ǫ, 1] from an n-dimensional Chebyshev space
on [ǫ, 1] (ǫ > 0 is sufficiently small). See [5, p. 35], for example.

The following extremal property of the Chebyshev polynomial Tn will be needed
in the next section.

Theorem 5.1. Using the notation above, we have

sup
06=p∈Hn

|p′(0)|
‖p‖[0,1]

=
T ′
n(0)

‖Tn‖[0,1]
= T ′

n(0) .

Proof. Suppose p ∈ Hn with ‖p‖[0,1] < 1 and p′(0) > 0. Observe that Tn − p
has at least one zero in each of the intervals (x0, x1), (x1, x2), . . . (xn−1, xn), where
(x0 < x1 < · · · < xn) is the alternation sequence for Tn on (0, 1]. Note that
p′(0) > T ′

n(0) would imply that Tn − p has at least one zero in (0, x0), therefore
0 6= Tn − p ∈ Hn has at least n+ 1 zeros in (0, 1), which is impossible. �

6. A Comparison Theorem

The heart of the proof of Theorem 3.1 is the following comparison theorem,
which can be proved by a zero counting argument. The method of our proof is
very similar to that of a comparison therem of Pinkus and Smith [11] for Descartes
systems. In fact, the simple proof of Theorem 6.1 was suggested by Allan Pinkus.

Theorem 6.1. Let

0 < λ0 < λ1 < · · · < λn and 0 < γ0 < γ1 < · · · < γn .

Suppose γi ≤ λi for each i. Let

Hn := span{sinhλ0t , sinhλ1t , . . . , sinhλnt}

and

Gn := span{sinh γ0t , sinh γ1t , . . . , sinh γnt} .

Then

max
06=p∈Hn

|p′(0)|
‖p‖[0,1]

≤ max
06=p∈Gn

|p′(0)|
‖p‖[0,1]

.
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Proof. We have

sup
06=p∈Hn

|p′(0)|
‖p‖[0,1]

=
|T ′

n(0)|
‖Tn‖[0,1]

,

where Tn is the Chebyshev polynomial for Hn on [0, 1]. In particular, Tn has n
distinct zeros in (0, 1). Let

Tn(t) =:

n∑

j=0

cj sinhλjt , cj ∈ R .

By Lemma 4.6, (−1)jcj > 0. Let k ∈ {1, 2, . . . n} be fixed. Let (γj)
n
j=0 be such that

γ0 < γ1 < · · · < γn , γj = λj for j 6= k , λk−1 < γk < λk

(we let γ−1 := 0). To prove this theorem, it is sufficient to study the above case
since the general case follows from this by a finite number of pairwise comparisons.

Let t1 < t2 < · · · < tn be the n zeros of Tn in (0, 1). Pick a t0 ∈ (0, x0), where
x0 is the first extreme point of Tn in (0, 1) (see (5.2)). Choose Qn ∈ Gn of the form

Qn(x) =

n∑

j=0

dj sinh γjt , dj ∈ R

so that
Qn(ti) = Tn(ti) , i = 0, 1, . . . , n .

By the unique interpolation property of Chebyshev spaces, Qn is uniquely deter-
mined, has n zeros (the points t1, t2, . . . , tn), and is positive at t0. By Lemma 4,6,
(−1)jdj > 0 for each j = 0, 1, . . . , n.

We have

(Tn −Qn)(t) = ck sinhλkt− dk sinh γkt+
n∑

j=0,j 6=k

(cj − dj) sinhλjt .

The function Tn−Qn changes sign on (0,∞) strictly at the points ti, i = 0, 1, . . . , n,
and has no other zeros. Also, by Lemma 4.5,

(sinhλ0t , sinhλ1t , . . . , sinhλk−1t , sinh γkt , sinhλkt , sinhλk+1t , . . . , sinhλnt)

is a Descartes system on (0,∞). Hence, by Lemma 4.6, the sequence

(c0 − d0 , c1 − d1 , . . . , ck−1 − dk−1 , −dk , ck , ck+1 − dk+1 , . . . , cn − dn)

strictly alternates in sign. Since (−1)kck > 0, this implies that

(−1)n(Tn −Qn)(t) > 0 , t > tn .

Thus for t ∈ (tj , tj+1) we have

(−1)jTn(t) > (−1)jQn(t) > 0 , j = −1, 0, 1, . . . , n ,
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where t−1 := 0 and tn+1 := ∞. In addition, we recall that Qn(0) = Tn(0) = 0 and
Qn(t0) = Tn(t0) > 0.

The observations above imply that if t0 ∈ (0, x0) is sufficiently close to 0, then

‖Qn‖[0,1] ≤ ‖Tn‖[0,1] = 1 and Q′
n(0) ≥ T ′

n(0) > 0 .

Thus
|Q′

n(0)|
‖Qn‖[0,1]

≥ |T ′
n(0)|

‖Tn‖[0,1]
= sup

06=p∈Hn

|p′(0)|
‖p‖[0,1]

.

Since Qn ∈ Gn, the conclusion of the theorem follows from this. �

7 Proof of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. First we prove that

|f ′(0)| ≤ (2n− 1) ‖f‖[−1,1]

for every f ∈ Ẽ2n. So let

f ∈ span{1 , e±λ1t , e±λ2t , . . . , e±λnt}

with some non-zero real numbers λ1, λ2, . . . , λn, where, without loss of generality,
we may assume that

0 < λ1 < λ2 < · · · < λn .

Let

g(t) := 1
2 (f(t)− f(−t)) .

Observe that

g ∈ span{sinhλ1t , sinhλ2t , . . . , sinhλnt} .

It is also straightforward that

g′(0) = f ′(0) and ‖g‖[0,1] ≤ ‖f‖[−1,1] .

For a given ǫ > 0, let

Gn,ǫ := span{sinh ǫt , sinh 2ǫt , . . . , sinhnǫt}

and

Kn,ǫ := sup
{
|h′(0)| : h ∈ Gn,ǫ , ‖h‖[0,1] = 1

}
.

By Theorem 6.1, it is sufficient to prove that inf{Kn,ǫ : ǫ > 0} ≤ 2n− 1. Observe
that every h ∈ Gn,ǫ is of the form

h(t) = e−nǫtP (eǫt) , P ∈ P2n .
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Therefore, using Proposition 1.3 combined with a linear transformation from [−1, 1]
to [e−ǫ, eǫ], we obtain for every h ∈ Gn,ǫ that

|h′(0)| = |ǫP ′(1)− nǫP (1)|

≤ ǫ(2n− 1)

1− e−ǫ
‖P‖[e−ǫ,eǫ] + nǫ ‖P‖[e−ǫ,eǫ]

≤
(
ǫ(2n− 1)

1− e−ǫ
+ nǫ

)
enǫ ‖h‖[−1,1]

=

(
ǫ(2n− 1)

1− e−ǫ
+ nǫ

)
enǫ ‖h‖[0,1] .

It follows that

Kn,ǫ ≤
(
ǫ(2n− 1)

1− e−ǫ
+ nǫ

)
enǫ.

So inf{Kn,ǫ : ǫ > 0} ≤ 2n− 1, and the result follows.

Now we prove that

sup
06=f∈Ẽ2n

|f ′(0)|
‖f‖[−1,1]

≥ 2n− 1 .

Let ǫ > 0 be fixed. We define

Q2n,ǫ(t) := e−nǫtT2n−1

(
eǫt

eǫ − 1
− 1

eǫ − 1

)
,

where T2n−1 denotes the Chebyshev polynomial of degree 2n− 1 defined by

T2n−1(x) = cos((2n− 1) arccosx) , x ∈ [−1, 1] .

It is simple to check that Q2n,ǫ ∈ Ẽ2n,

‖Q2n,ǫ‖[−1,1] ≤ enǫt

and
|Q′

2n,ǫ(0)| ≥ 2n− 1− nǫ .

Now the result follows by letting ǫ > 0 tend to 0. �

Proof of Theorem 3.2. Observe that En ⊂ Ẽ2n. Hence the result follows from
Theorem 3.1 by a linear substitution. �

Proof of Theorem 3.3. Let a < b and y ∈ (a, b). Suppose that n ∈ N is odd. Let Tn

be the Chebyshev polynomial of degree n defined by Tn(x) = cos(n arccosx), x ∈
[−1, 1]. Let

Qn(t) := Tn

(
e

e− 1
exp

(
t− b

b− y

)
− 1

e− 1

)

and

Rn(t) := Tn

(
e

e− 1
exp

(
t− a

a− y

)
− 1

e− 1

)
.
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Obviously Qn, Rn ∈ En and

|Q′
n(y)|

‖Qn‖[a,b]
=

1

e− 1

n

b− y
,

and
|R′

n(y)|
‖Rn‖[a,b]

=
1

e− 1

n

y − a

for every y ∈ (a, b). The proof is now complete. �

Proof of Theorem 3.4. Without loss of generality we may assume that Λ := (λj)
n
j=1

is a sequence of distinct non-zero real numbers. For the sake of brevity, let

En(Λ) := span{1 , eλ1t , eλ2t , . . . , eλnt} .

Take an orthonormal sequence (Lk)
n
k=0 on

[
− 1

2 ,
1
2

]
satisfying

(1) Lk ∈ span{1 , eλ1t , eλ2t , . . . , eλkt} , k = 0, 1, . . . , n

and

(2)
∫ 1/2

−1/2
LiLj = δi,j , 0 ≤ i ≤ j ≤ n ,

where δi,j is the Kronecker symbol. On writing f ∈ En(Λ) as a linear combination
of L0, L1, . . . , Ln, and using the Cauchy-Schwarz inequality and the orthonormality
of (Lk)

n
k=0 on

[
− 1

2 ,
1
2

]
, we obtain in a standard fashion that

max
06=f∈En(Λ)

|f(t0)|
‖f‖L2[−1/2,1/2]

=

(
n∑

k=0

L2
k(t0)

)1/2

, t0 ∈ R .

Since ∫ 1/2

−1/2

∑n
k=0L

2
k(x) dx = n+ 1 ,

there exists a t0 ∈
[
− 1

2 ,
1
2

]
so that

max
06=p∈En(Λ)

|f(t0)|
‖f‖L2[−1/2,1/2]

=

(
n∑

k=0

L2
k(t0)

)1/2

≤
√
n+ 1 .

Observe that if f ∈ En(Λ), then g(t) := f(t− t0) ∈ En(Λ), so

max
06=f∈En(Λ)

|f(0)|
‖f‖L2[−1,1]

≤
√
n+ 1 .

Let

C := max
06=f∈En(Λ)

|f(0)|
‖f‖Lp[−2,2]

.

Then

max
06=f∈En(Λ)

|f(y)|
‖f‖Lp[−2,2]

≤ C

(
2

2− |y|

)1/p

≤ 21/pC , y ∈ [−1, 1] .
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Therefore, for every f ∈ En(Λ),

|f(0)| ≤
√
n+ 1 ‖f‖L2[−1,1]

≤
√
n+ 1

(
‖f‖pLp[−1,1]‖f‖

2−p
[−1,1]

)1/2

≤
√
n+ 1

(
‖f‖pLp[−1,1]

(
21/pC

)2−p‖f‖2−p
Lp[−2,2]

)1/2

≤
√
n+ 1

(
21/pC

)1−p/2‖f‖Lp[−2,2]

= 21/p−1/2
√
n+ 1C1−p/2‖f‖Lp[−2,2] .

Hence

C = max
06=f∈En(Λ)

|f(0)|
‖f‖Lp[−2,2]

≤ 21/p−1/2
√
n+ 1C1−p/2

and we conclude that C ≤ 22/p
2−1/p(n+ 1)1/p. Therefore

|f(0)| ≤ 22/p
2−1/p(n+ 1)1/p‖f‖Lp[−2,2]

for every f ∈ En(Λ). Now let f ∈ En(Λ) and t0 ∈ [a + δ, b − δ]. If we apply the
above inequality to

g(t) := f
(
1
2δt+ t0

)
∈ En(Λ) ,

we obtain

‖f‖[a+δ,b−δ] ≤ 22/p
2−1/p(n+ 1)1/p

(
2

δ

)1/p

‖f‖Lp[a,b] ,

and the result follows. �

8 Remarks.

Remark 8.1. Theorem 3.4 implies a weaker version of Theorem 3.1, namely

‖f ′‖[a+δ,b−δ] ≤ 8(n+ 1)2δ−1‖f‖[a,b]

for every f ∈ En and δ ∈ (0, 1
2 (b− a)).

Proof. Note that f ∈ En(Λ) implies f ′ ∈ En(Λ). Applying Theorem 3.4 to f ′ with
p = 1, we obtain

|f ′(0)| ≤ 2(n+ 1)‖f ′‖L1[−2,2] = 2(n+ 1)Var[−2,2](f) ≤ 4(n+ 1)2‖f‖[−2,2]

for every f ∈ En(Λ). Now if f ∈ En(Λ) and t0 ∈ [a + δ, b − δ], then on applying
the above inequality to

g(t) := f
(
1
2δt+ t0

)
∈ En(Λ) ,

we obtain the desired result. �
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Remark 8.2. Theorems 3.2 and 3.4 trivially extend to the classes

E∗
n :=

{
f : f(t) =

l∑

j=1

Pkj
(t)eλjt , λj ∈ R , Pkj

∈ Pkj
,

l∑

j=1

(kj + 1) = n

}
.

Remark 8.3. Theorem 3.4 extends to the classes

E∗c
n :=

{
f : f(t) =

l∑

j=1

Pkj
(t)eλj t , λj ∈ C , Pkj

∈ Pc
kj

,

l∑

j=1

(kj + 1) = n

}
,

where Pc
kj

denotes the family of all polynomials of degree at most kj with complex

coefficients. This follows by trivial modifications of the proof.
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