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Abstract. Let Ln be the collection of all (Littlewood) polynomials of degree n with coef-

ficients in {−1, 1}. We call an algebraic polynomial cyclotomic if each of its coefficients lies
on the unit circle of the complex plane. In this paper we prove that if (P2ν) is a sequence of

cyclotomic Littlewood polynomials P2ν ∈ L2ν , then

Mq(P2ν) > (2ν + 1)a

for every q > 2 with some a = a(q) > 1/2 depending only on q, where

Mq(P ) :=

(

1

2π

∫

2π

0

|P (eit)|q dt

)1/q

, q > 0 .

The case q = 4 of the above result is due to P. Borwein, Choi, and Ferguson. We also prove

that if (P2ν) is a sequence of cyclotomic Littlewood polynomials P2ν ∈ L2ν , then

Mq(P2ν) < (2ν + 1)b

for every 0 < q < 2 with some 0 < b = b(q) < 1/2 depending only on q. Similar results are

conjectured for Littlewood polynomials of odd degree. Our main tool here is the Borwein-Choi

Factorization Theorem.

1. Introduction

Let D be the open unit disk of the complex plane. Its boundary, the unit circle of the
complex plane, is denoted by ∂D. Let Kn be the set of all polynomials of degree n with
complex coefficients of modulus 1. Elements of Kn are often called (complex) unimodular
polynomials of degree n. Let Ln be the set of all polynomials of degree n with coefficients
in {−1, 1}. Elements of Ln are often called real unimodular polynomials or Littlewood
polynomials of degree n. The Parseval formula yields

∫ 2π

0

|Pn(e
it)|2 dt = 2π(n+ 1)
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for all Pn ∈ Kn. Therefore

min
z∈∂D

|Pn(z)| ≤
√
n+ 1 ≤ max

z∈∂D
|Pn(z)| .

An old problem (or rather an old theme) is the following.

Problem 1.1 (Littlewood’s Flatness Problem). How close can a Pn ∈ Kn or Pn ∈ Ln

come to satisfying

(1.1) |Pn(z)| =
√
n+ 1 , z ∈ ∂D?

Obviously (1.1) is impossible if n ≥ 1. So one must look for less than (1.1), but then there
are various ways of seeking such an “approximate situation”. One way is the following. In
his paper [Li1] Littlewood had suggested that, conceivably, there might exist a sequence
(Pn) of polynomials Pn ∈ Kn (possibly even Pn ∈ Ln) such that (n + 1)−1/2|Pn(e

it)|
converge to 1 uniformly in t ∈ R. We shall call such sequences of unimodular polynomials
“ultraflat”. More precisely, we give the following definition.

Definition 1.2. Given a positive number ε, we say that a polynomial Pn ∈ Kn is ε-flat if

(1− ε)
√
n+ 1 ≤ |Pn(z)| ≤ (1 + ε)

√
n+ 1 , z ∈ ∂D .

Definition 1.3. Given a sequence (εnk
) of positive numbers tending to 0, we say that a

sequence (Pnk
) of polynomials Pnk

∈ Knk
is (εnk

)-ultraflat if each Pnk
is (εnk

)-flat. We
simply say that a sequence (Pnk

) of polynomials Pnk
∈ Knk

is ultraflat if it is (εnk
)-ultraflat

with a suitable sequence (εnk
) of positive numbers tending to 0.

The existence of an ultraflat sequence of unimodular polynomials seemed very unlikely,
in view of a 1957 conjecture of P. Erdős (Problem 22 in [Er]) asserting that, for all Pn ∈ Kn

with n ≥ 1,

(1.2) max
z∈∂D

|Pn(z)| ≥ (1 + ε)
√
n+ 1 ,

where ε > 0 is an absolute constant (independent of n). Yet, refining a method of Körner
[Kö], Kahane [Ka] proved that there exists a sequence (Pn) with Pn ∈ Kn which is (εn)-
ultraflat, where

εn = O
(

n−1/17
√

logn
)

.

See also [QS]. A recent paper of Bombieri and Bourgain [BB] is devoted to the construc-
tion of ultraflat sequences of unimodular polynomials. In particular, one obtains a much
improved estimate for the error term. A major part of this paper deals also with the
long-standing problem of the effective construction of ultraflat sequences of unimodular
polynomials.

Thus the Erdős conjecture (1.2) was disproved for the classes Kn. For the more restricted
class Ln the analogous Erdős conjecture is unsettled to this date. It is a common belief

2



that the analogous Erdős conjecture for Ln is true, and consequently there is no ultraflat
sequence of polynomials Pn ∈ Ln. An interesting result related to Kahane’s breakthrough
is given in [Be]. For an account of some of the work done till the mid 1960’s, see Littlewood’s
book [Li2] and [QS]. The structure of ultraflat sequences of unimodular polynomials is
studied in [Er1], [Er2], [Er3], and [Er4], where several conjectures of Saffari are proved.

The Rudin-Shapiro polynomials appear in Harold Shapiro’s 1951 thesis at MIT and are
sometimes called just Shapiro polynomials. See Chapter 4 of [Bo] for the construction(s).
Cyclotomic properties of the Rudin-Shapiro polynomials are discussed in [BLM]. For n =
2k − 1 a sequence (Pn) of Rudin-Shapiro polynomials satisfies Pn ∈ Ln and

|Pn(z)| ≤ C
√
n+ 1 , z ∈ ∂D ,

with an absolute constant C.
An algebraic polynomial is called cyclotomic if each of its coefficients lies on the unit

circle ∂D. We prove that a sequence of cyclotomic Littlewood polynomials of even degree
is far from having the above “flatness” property of the sequence of Rudin-Shapiro polyno-
mials. Note that (see page 271 of [BE], for instance) a Littlewood polynomial has Mahler
measure one if and only if it is cyclotomic, that is, it has all its zeros on the unit circle D.
For a polynomial P let

Mq(P ) :=

(

1

2π

∫ 2π

0

|P (eit)|q dt
)1/q

, q > 0 ,

and
M∞(P ) := max

t∈[0,2π]
|P (eit)| .

2. Preliminary Results

An unpublished observation of the author is the following.

Theorem 2.1. If (P2ν) is a sequence of cyclotomic polynomials P2ν ∈ L2ν, then

M∞(P2ν) > (2ν + 1)a ,

where a := 1− log3
π
2 = 0.5889 . . . > 1

2 .

The stronger result below is due to P. Borwein, Choi, and Ferguson [BCF].

Theorem 2.2. If (P2ν) is a sequence of cyclotomic polynomials P2ν ∈ L2ν, then

M4(P2ν) > (2ν + 1)a

with a = 1
4 log2(1 +

√
17) = 0.5892 . . . > 1/2.

In the proof of both theorems above the result of Borwein and Choi [BC] stated below
has been a key. Our new results follow from it too by a standard technology. Similar
arguments were used, for example, by Eminyan [Em] and by Green and Ruzsa [GR].
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Theorem 2.3. Every cyclotomic polynomial P ∈ Ln of even degree can be factorized as

P (z) = ±Φp1
(±z)Φp2

(±zp1) · · ·Φpr
(±zp1p2···pr−1) ,

where n+ 1 = p1p2 · · · pr, the numbers pj are primes, not necessarily distinct, and

Φp(z) =

p−1
∑

j=0

zj =
zp − 1

z − 1

is the p-th cyclotomic polynomial.

It is conjectured that this characterization also holds for polynomials P ∈ Ln of odd
degree. This conjecture is based on substantial computation together with a number of
special cases.

3. New Results

Theorem 3.1. If (P2ν) is a sequence of cyclotomic polynomials P2ν ∈ L2ν, then

Mq(P2ν) > (2ν + 1)a

for every q > 2 with some a = a(q) > 1/2 depending only on q.

Theorem 3.1 follows from our next result.

Theorem 3.2. If (P2ν) is a sequence of cyclotomic polynomials P2ν ∈ L2ν, then

M1(P2ν) < (2ν + 1)b

with some absolute constant 0 < b < 1/2.

In fact, Theorem 3.2 is a special case of our result below.

Theorem 3.3. If (P2ν) is a sequence of cyclotomic polynomials P2ν ∈ L2ν, then

Mq(P2ν) < (2ν + 1)b

for every 0 < q < 2 with some 0 < b = b(q) < 1/2 depending only on q.

It is conjectured that similar results hold for cyclotomic Littlewood polynomials of odd
degree.

4. Proofs

Although Theorem 2.2 beats Theorem 2.1, we present the short proof of Theorem 2.1
that is simpler than and quite different from that of Theorem 2.2.

Proof of Theorem 2.1. We use the factorization theorem of Borwein and Choi. We prove
the theorem by induction on the number of factors. The theorem is obviously true when
P2ν has only one factor. The proof of the inductive step goes as follows.
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Suppose the theorem is true for f , where f has k − 1 factors. We have to prove that
the theorem is true for

g(z) := Φp(±z)f(zp) .

Let M(f) be the maximum modulus of f on the unit circle ∂D. The key observation is
that M(f) is achieved by |f(zp)| at a system of p equidistant points on the unit circle
∂D. Denote these by z1 , z2 , . . . , zp. Then there is at least one zj such that the angular
distance between 1 and zj is at most 2π/(2p). Similarly there is at least one zj such
that the angular distance between −1 and zj is at most 2π/(2p). Now the proof can be
finished by Lemma 4.1 below the proof of which is a straightforward geometric argument.
Using Lemma 4.1 the proof of the inductive step is obvious, since a := 1− log3

π
2 ensures

(2/π)p ≥ pa for every p ≥ 3. In fact, using the prime factorization of 2ν + 1, where 2ν is
the degree of P2ν , one can get a larger value of the exponent a in the theorem if the primes
in the factorization of 2ν + 1 are large. �

Lemma 4.1. If z is a point on the unit circle ∂D such that the angular distance of z from
1 is at most 2π/(2p), then |Φp(z)| ≥ (2/π)p. If z is a point on the unit circle ∂D such
that the angular distance of z from −1 is at most 2π/(2p). Then |Φp(−z)| ≥ (2/π)p.

Proof of Lemma 4.1. Recall that

Φp(z) =
zp − 1

z − 1

and | sin t| ≤ |t| for every t ∈ R. �

To prove Theorem 3.2 we proceed as follows. First we introduce some notation. Asso-
ciated with a positive integer p and a function f defined on the unit circle ∂D let

g(t) := f(eit) , t ∈ R ,

fp(z) := f(zp)Φp(z) , Φp(z) :=

p−1
∑

j=0

zj , gp(t) := fp(e
it) ,

that is,
gp(t) := f(eipt)hp(t) , hp(t) := Φp(e

it) .

Let

I(f) :=

∫

∂D

|f(z)| |dz| =
∫ 2π

0

|f(eit)| dt , I(g) :=

∫ 2π

0

|g(t)| dt ,

so I(g) = I(f) . The key to the proof of Theorem 3.2 is the following lemma that allows
an induction on the number of factors in the decomposition of the cyclotomic polynomial
P2ν given by Theorem 2.3.

Lemma 4.2. If f is a continuous function on ∂D such that |f(z)| = |f(z)| for every
z ∈ ∂D, then

I(fp) ≤ pαI(f)
5



for every odd prime p with an absolute constant 0 < α < 1/2.

Proof Lemma 4.2. Let k > 0 be an integer and we define

Lj,k :=

∫ jπ/k

(j−1)π/k

|g(t)| dt , j = 1, 2, . . . .

Then
Lj,k = Lj+2k,k, j = 1, 2, . . . ,

and

I(gp) =

∫ 2π

0

|gp(t)| dt = 2

∫ π

0

|gp(t)| dt = 2

kp
∑

j=1

∫ jπ/(kp)

(j−1)π/(kp)

|gp(t)| dt

=2

kp
∑

j=1

∫ jπ/(kp)

(j−1)π/(kp)

|f(eipt)| |hp(t)| dt ≤ 2

kp
∑

j=1

(

∫ jπ/(kp)

(j−1)π/(kp)

|f(eipt)| dt
)

Mj,k,p

=2

kp
∑

j=1

(

∫ jπ/k

(j−1)π/k

|f(eiu)| du
)

1

p
Mj,k,p

=2

k
∑

µ=1

Lµ,k
1

p





(p−1)/2
∑

ν=0

Mµ+2νk,k,p +

(p−3)/2
∑

ν=0

M2k+1−µ+2νk,k,p





=2

k
∑

µ=1

Aµ,k,pLµ,k ,

where
Mj,k,p := max

Ij,k,p

|hp(t)| = max
Ij,k,p

|Φp(e
it)|

with

Ij,k,p :=

[

(j − 1)π

kp
,
jπ

kp

]

, j = 1, 2, . . . , kp ,

and

(4.1) Aµ,k,p :=
1

p





(p−1)/2
∑

ν=0

Mµ+2νk,k,p +

(p−3)/2
∑

ν=0

M2k+1−µ+2νk,k,p



 , µ = 1, 2, . . . , k .

Here we used that the assumptions on f imply that the value of

∫ µπ/k

(µ−1)π/k

|f(eiu)| du

remains the same when µ is replaced with µ + 2νk or 2k + 1 − µ + 2νk. The proof of
Lemma 4.2 now follows from Lemma 4.3. �
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Lemma 4.3. Let the numbers Aµ,k,p, µ = 1, 2, . . . , k, be defined by (4.1). There is an
absolute constant 0 < b < 1/2 such that for every odd prime p there is a positive integer k
such that

(4.2) Aµ,k,p ≤ pb , µ = 1, 2, . . . , k .

Proof of Lemma 4.3. It turns out that for large primes even Aµ,1,p ≤ c log p is true, while
for smaller primes we choose larger values of k to establish (4.2). Observe that

∣

∣Φp(e
it)
∣

∣ =

∣

∣

∣

∣

sin(pt/2)

sin(t/2)

∣

∣

∣

∣

,

hence

|Φp(e
it)| ≤ 1

sin(t/2)
≤ 1

2
π

t
2

=
π

t
, t ∈ (0, π] .

This implies

(4.3) |Φp(e
it)| ≤ min

{

p,
π

t

}

, t ∈ (0, π] .

Observe also that

|Φp(e
it)| ≤ 1

sin(t/2)
≤ 1

sin(π/4)
π/4

t
2

≤ π√
2 t

, t ∈ (0, π/2] ,

hence

(4.4) |Φp(e
it)| ≤ min

{

p,
π√
2 t

}

, t ∈ (0, π/2] .

If µ = k = 1, then using (4.3) and (4.4) we easily obtain

A1,1,p :=
1

p





(p−1)/2
∑

ν=0

M1+2ν,1,p +

(p−1)/2
∑

ν=0

M2+2ν,1,p



 =
1

p

p
∑

j=1

Mj,1,p

≤ 1

p



p+

(p−1)/2−1
∑

j=1

p√
2j

+

p−1
∑

j=(p−1)/2

p

j





≤ 1 +

(p−1)/2−1
∑

j=1

1√
2j

+

p−1
∑

j=(p−1)/2

1

j

≤ 1 +
1√
2
+

1√
2

∫ (p−1)/2

1

dx

x
+

2

p− 1
+

∫ p−1

(p−1)/2

dx

x

= 1 +
1√
2
+

1√
2
(ln(p− 1)− ln 2) +

2

p− 1
+ ln 2

≤ 1 +
1√
2
+

(

1− 1√
2

)

ln 2 +
2

p− 1
+

1√
2
ln p

≤ p0.48
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for every prime p ≥ 23. Here we used the fact that ln p/p0.48 is decreasing for p ≥ 23.
Hence the lemma holds for all primes p ≥ 23 (we choose k = 1). Further, the estimates

A1,1,19 ≤ 1 +
1√
2

8
∑

j=1

1

j
+

18
∑

j=9

1

j
≤ 3.7 <

√
19 ,

A1,1,17 ≤ 1 +
1√
2

7
∑

j=1

1

j
+

16
∑

j=8

1

j
≤ 3.63 <

√
17 ,

A1,1,13 ≤ 1 +
1√
2

5
∑

j=1

1

j
+

12
∑

j=6

1

j
≤ 3.42 <

√
13 ,

and

A1,1,11 ≤ 1 +
1

11 sin(π/22)
+

1√
2

4
∑

j=2

1

j
+

10
∑

j=5

1

j
≤ 3.25 <

√
11

show that the lemma holds for all primes 11 ≤ p ≤ 19 (we choose k = 1).
Now we study the case p = 7. We have

A1,4,7 ≤ 1

7
(7 + 1 + 2.31 + 1.35 + 1.38 + 1.05 + 1.03) ≤ 2.16 <

√
7 ,

A2,4,7 ≤ 1

7
(6.83 + 2.15 + 2.07 + 1.42 + 1.23 + 1.06 + 1.02) ≤ 2.26 <

√
7 ,

A3,4,7 ≤ 1

7
(6.32 + 3.34 + 1.88 + 1.51 + 1.19 + 1.09 + 1.01) ≤ 2.34 <

√
7 ,

and

A4,4,7 ≤ 1

7
(5.52 + 4.50 + 1.73 + 1.61 + 1.15 + 1.11 + 1.01) ≤ 2.38 <

√
7 .

In the above four estimates we used that

M1,4,7 = 7 , M2,4,7 =
sin(π/8)

sin(π/56)
≤ 6.83 ,

M3,4,7 =
sin(2π/8)

sin(2π/56)
≤ 6.32 , M4,4,7 =

sin(3π/8)

sin(3π/56)
≤ 5.52 ,

M5,4,7 =
sin(4π/8)

sin(4π/56)
≤ 4.50 , M6,4,7 =

sin(5π/8)

sin(5π/56)
≤ 3.34 ,

M7,4,7 =
sin(6π/8)

sin(6π/56)
≤ 2.15 , M8,4,7 =

sin(7π/8)

sin(7π/56)
≤ 1 ,

and

Mj,4,7 =
1

sin((j − 1)π/56)
, j = 9, 10, . . . , 28 .
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Hence the lemma is proved for p = 7 (we choose k = 4).
Now we study the case p = 5. We have

A1,4,5 ≤ 1

5
(5 + 0.74 + 0.59 + 0.42 + 0.40) ≤ 1.43 <

√
5 ,

A2,4,5 ≤ 1

5
(4.88 + 1.56 + 1 + 0.80 + 0.72) ≤ 1.80 <

√
5 ,

A3,4,5 ≤
1

5
(4.53 + 2.42 + 1.25 + 1.09 + 0.93) ≤ 2.05 <

√
5 ,

and

A4,4,5 ≤ 1

7
(3.96 + 3.24 + 1.25 + 1.25 + 1) ≤ 2.15 <

√
5 ,

In the above four estimates we used that

M1,4,5 = 5 , M2,4,5 =
sin(π/8)

sin(π/40)
≤ 4.88 ,

M3,4,5 =
sin(2π/8)

sin(2π/40)
≤ 4.53 , M4,4,5 =

sin(3π/8)

sin(3π/40)
≤ 3.96 ,

M5,4,5 =
sin(4π/8)

sin(4π/40)
≤ 3.24 , M6,4,5 =

sin(5π/8)

sin(5π/40)
≤ 2.42 ,

M7,4,5 =
sin(6π/8)

sin(6π/40)
≤ 1.56 , M8,4,5 =

sin(7π/8)

sin(7π/40)
≤ 0.74 ,

M9,4,5 = − sin(9π/8)

sin(9π/40)
≤ 0.59 , M10,4,5 =

sin(10π/8)

sin(10π/40)
= 1 ,

M11,4,5 ≤ 1.25 , M12,4,5 ≤ 1.25 ,

M13,4,5 ≤ 1.25 , M14,4,5 = − sin(13π/8)

sin(13π/40)
≤ 1.09 ,

M15,4,5 = − sin(14π/8)

sin(14π/40)
≤ 0.80 , M16,4,5 =

sin(15π/8)

sin(15π/40)
≤ 0.42 ,

M17,4,5 =
sin(17π/8)

sin(17π/40)
≤ 0.40 , M18,4,5 =

sin(18π/8)

sin(18π/40)
≤ 0.72 ,

and

M19,4,5 =
sin(19π/8)

sin(19π/40)
≤ 0.93 , M20,4,5 =

sin(20π/8)

sin(20π/40)
≤ 1 .

Hence the lemma holds for p = 5 (we choose k = 4).
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Now we study the case p = 3. We have

M1,k,3 = 3 ,

Mj,k,3 = 1 + 2 cos
(j − 1)π

3k
, j = 2, 3, . . . , 2k ,

and

Mj,k,3 = −
(

1 + 2 cos
jπ

3k

)

, j = 2k + 1, 2k + 2, . . . , 3k ,

hence with

y :=
(µ− 1)π

3k
∈ [0, π/3] , µ = 1, 2, . . . , k ,

we have

3Aµ,k,3 =Mµ,k,3 +M2k+1−µ,k,3 +M2k+µ,k,3

=

(

1 + 2 cos
(µ− 1)π

3k

)

+

(

1 + 2 cos
(2k − µ)π

3k

)

−
(

1 + 2 cos
(2k + µ)π

3k

)

=1 + 2 cos y + 2 cos

(

2π

3
− 2π

3k
− y

)

− 2 cos

(

2π

3
+

2π

3k
+ y

)

=1 + 2(cos y +
√
3 sin y) + c(k) = 1 + 4 sin

(

y +
π

6

)

+ c(k) ≤ 5 + c(k)

with c(k) → 0 as k → ∞. Therefore

Aµ,k,3 ≤ 5

3
+

c(k)

3
<

√
3 , k = 1, 2, . . . , µ ,

for all sufficiently large k. Thus the lemma is proved for p = 3 (we choose a sufficiently
large k). �

Proof of Theorem 3.2. The polynomials P2ν can be factorized as it is given in Theorem
2.3. The theorem follows by induction on the number of factors in P2ν . We use Lemma
4.2 in the inductive step. �

Proof of Theorem 3.1. Let f be a continuous function on ∂D and let

Iq(f) := Mq(f)
q =

1

2π

∫ 2π

0

|f(eit)|q dt .

Then h(q) := log(Iq(f)) = q log(Mq(f)) is a convex function of q on (0,∞). This is a
simple consequence of Hölder’s inequality. For the sake of completeness we present the
short proof of it. We need to see that if q < r < p, then

Ir(f) ≤ Ip(f)
r−q

p−q Iq(f)
p−r

p−q ,
10



that is,

(4.5)

(

1

2π

∫ 2π

0

|f(eit)|r dt
)p−q

≤
(

1

2π

∫ 2π

0

|f(eit)|p dt
)r−q (

1

2π

∫ 2π

0

|f(eit)|q dt
)q−r

.

To see this let

α :=
p− q

r − q
, β :=

p− q

p− r
, γ :=

p

α
, δ :=

q

β
,

hence 1/α+ 1/β = 1 and γ + δ = r. Let

F (t) := |f(eit)|γ = |f(eit)|
p(r−q)
p−q ,

and

G(t) := |f(eit)|δ = |f(eit)|
q(p−r)
p−q .

Then by Hölder’s inequality we conclude
∫ 2π

0

F (t)G(t) dt ≤
(
∫ 2π

0

F (t)α dt

)1/α(∫ 2π

0

G(t)β dt

)1/β

,

and (4.5) follows. Using the convexity of log(Iq(P2ν)) on (0,∞), for q > 2 we have

I2(P2ν) ≤ (I1(P2ν))
q−2
q−1 (Iq(P2ν))

1
q−1 ,

and from Theorem 3.2 we obtain

2ν + 1 ≤ ((2ν + 1)b)
q−2
q−1 (Iq(P2ν))

1
q−1 ,

that is,
(2ν + 1)(q−1)−(q−2)b ≤ Iq(P2ν) = (Mq(P2ν))

q

with an absolute constant 0 < b < 1/2. Hence with a = a(q) := (q − 1 − (q − 2)b)/q we
have

(2ν + 1)a = (2ν + 1)(q−1−(q−2)b)/q ≤ Mq(P2ν) .

Here a = a(q) := (q − 1− (q − 2)b)/q > 1/2, since (1− 2b)(q/2− 1) > 0. �

To prove Theorem 3.3 we need the lemma below. As before, associated with a positive
integer p and a function f defined on the unit circle ∂D let

g(t) := f(eit) , t ∈ R ,

fp(z) := f(zp)Φp(z) , Φp(z) :=

p−1
∑

j=0

zj , gp(t) := fp(e
it) ,

that is,
gp(t) := f(eipt)hp(t) , hp(t) := Φp(e

it) .

For q > 0 we define

Iq(f) := (Mq(f))
q :=

∫

∂D

|f(z)|q |dz| =
∫ 2π

0

|f(eit)| dt ,

and

Iq(g) := (Mq(g))
q :=

∫ 2π

0

|g(t)|q dt ,

so Mq(g) = Mq(f) .
11



Lemma 4.4. Let 0 < q < 2. If f is a continuous function on ∂D, then

Mq(gp) ≤ pαMq(g)

for every odd prime p with some 0 < α = α(q) < 1/2 depending only on q.

Note that Lemma 4.2 is the special case q = 1 in Lemma 4.4 below. However, in the
case q = 1 the method of the proof of Lemma 4.2 offers a reasonably good explicit value
of the exponent 0 < α < 1/2 by brute force.

Proof of Lemma 4.4. We have

Mq(gp) ≤ Ap,qMq(g) ,

where

Ap,q :=





1

p
max

t∈[0,2π)

p−1
∑

j=0

|hp(t+ 2πj/p)|q




1/q

.

Applying the inequality between q-th mean and the quadratic mean (0 < q < 2), we have

p−1
∑

j=0

|hp(t+ 2πj/p)|q ≤ p1−q/2





p−1
∑

j=0

|hp(t+ 2πj/p)|2




q/2

.

Using orthogonality we obtain

p−1
∑

j=0

|hp(t+ 2πj/p)|2 ≤
p−1
∑

j=0

∣

∣

∣

p−1
∑

k=0

exp(ik(t+ 2πj/p))
∣

∣

∣

2

= p2 .

Combining the previous two inequalities we deduce

p−1
∑

j=0

|hp(t+ 2πj/p)|q ≤ p1−q/2+2q/2 = p1+q/2 ,

and hence Ap,q ≤ √
p. Equality could hold if and only if there is a t ∈ [0, 2π) such that

|hp(t+ 2πj/p)| = √
p , j = 0, 1, . . . , p− 1 .

However this is impossible for any prime p ≥ 3 in the light of Lemma 4.1. So Ap,q is
strictly less than

√
p. On the other hand, by using the obvious estimate

|Φp(z)| ≤ max

{

p,
2

|z − 1|

}

, |z| = 1 ,

it is an elementary calculus to show that there are constants c = c(q) > 0 and α = α(q) ∈
(0, 1/2) depending only on q ∈ (0, 2) such that

Ap,q ≤ cmax{log p, p1−1/q} < pα

for all 0 < q < 2 and for all sufficiently large primes p ≥ 3. Combining this with Ap,q <
√
p,

we get the conclusion of the lemma. �

Proof of Theorem 3.3. The polynomials P2ν can be factorized as it is given in Theorem
2.3. The theorem follows by induction on the number of factors in P2ν . We use Lemma
4.4 in the inductive step. �
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