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Abstract. An infinite Markov system {f0, f1, . . . } of C2 functions on [a, b] has
dense span in C[a, b] if and only if there is an unbounded Bernstein inequality on

every subinterval of [a, b]. That is if and only if, for each [α, β] ⊂ [a, b] and γ > 0,
we can find g ∈ span{f0, f1, . . . } with ‖g′‖[α,β] > γ‖g‖[a,b]. This is proved under the

assumption (f1/f0)′ does not vanish on (a, b).

Extension to higher derivatives are also considered. An interesting consequence
of this is that functions in the closure of the span of a non-dense C2 Markov system
are always Cn on some subinterval.

The principal result of this paper will be a characterization of denseness of the
span of a Markov system by whether or not it possesses an unbounded Bernstein
Inequality. In order to make sense of this result we require the following definitions.

Definition 1 (Chebyshev System). Let C[a, b] be the collection of the real val-
ued continuous functions on [a, b]. Suppose that span{f0, . . . , fn} over R is an
n + 1 dimensional subspace of C[a, b]. Then {f0, . . . , fn} is called a Chebyshev
system of dimension n + 1 if any element of span{f0, . . . , fn} that has n + 1 dis-
tinct zeros in [a, b] is identically zero. If {f0, . . . , fn} is a Chebyshev system, then
span{f0, . . . , fn} is called a Chebyshev space.

Definition 2 (Markov System). We say that {f0, . . . , fn} is a Markov system
on [a, b] if each fi ∈ C[a, b] and {f0, . . . , fm} is a Chebyshev system for every
m ≥ 0. (We allow n to tend to +∞ in which case we call the system an infinite
Markov system.) If {f0, · · · , fn} is a Markov system then span{f0, . . . , fn} is called
a Markov space.

Definition 3 (Unbounded Bernstein Inequality). Let A be a subset of

C1[a, b]. We say that A has an everywhere unbounded Bernstein inequality if for
every [α, β] ⊂ [a, b], α 6= β
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sup

{‖p′‖[α,β]

‖p‖[a,b]
: p ∈ A, p 6= 0

}
= ∞.

If for some [α, β] the above sup is finite the Bernstein inequality is said to be bounded
in [α, β].

Note that the collection of all polynomials of the form

{x2p(x) : p is a polynomial}

has an everywhere unbounded Bernstein inequality on [−1, 1] despite the fact that
every element has derivative vanishing at zero.

We now state the main result.

Theorem 1. Suppose M := {f0, f1, f2, . . . } is an infinite Markov system on [a, b]
with each fi ∈ C2[a, b], and suppose that (f1/f0)

′ does not vanish on (a, b). Then
span M is dense in C[a, b] if and only if span M has an everywhere unbounded
Bernstein inequality.

The additional assumption that (f1/f0)
′ does not vanish on (a, b) is quite weak.

It holds, for example, for any ECT system. Note that f1/f0 is strictly monotone if
M is a Markov system.

The proof requires examining the Chebyshev polynomials associated with a
Chebyshev system. These we now discuss.

Suppose
Hn := span{f0, . . . , fn}

is a Chebyshev space on [a, b]. We can define the Chebyshev polynomial

Tn(x) := Tn{f0, . . . , fn; [a, b]}(x)

associated with Hn

by

Tn(x) = c

(
fn(x) −

n−1∑

k=0

akfk(x)

)

where the {ak}n−1
k=0 are chosen to minimize

∥∥∥∥∥fn −
n−1∑

k=0

akfk

∥∥∥∥∥
[a,b]

and where c is a normalization constant chosen so that

‖Tn‖[a,b] = 1 and Tn(b) > 0.

We will call Tn the associated Chebyshev polynomial for Hn. This is a unique
“generalized” polynomial in span{f0, . . . , fn} that alternates between ±1 exactly
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n + 1 times and has exactly n zeros on [a, b]. With fi := xi, this generates the
usual Chebyshev polynomials. These equioscillating polynomials encode much of
the information of how the space Hn behaves with respect to the supremum norm.
See [2], [3], [4] and [6].

Suppose

M = {f0, f1, . . . }
is a fixed infinite Markov system on [a, b]. For each n

Hn := {f0, f1, . . . , fn}

is then a Chebyshev system. So there is a sequence {Tn} of associated Cheby-
shev polynomials where, for each n, Tn is associated with Hn. These we call the
associated Chebyshev polynomials for the infinite Markov system M.

Note that
{T0, T1, . . . }

is a Markov system again with the same span as M.

In [2] we showed that the span of a C1 Markov system M is dense in C[a, b] in
the uniform norm (i.e. the uniform closure of span M on [a, b] equals C[a, b]) if
and only if the zeros of the associated Chebyshev polynomials are dense. To state
this result, which we will need, we require the following notation.

Suppose Tn has zeros a ≤ x1 < x2 < · · · < xn ≤ b, and let x0 := a and xn+1 := b.
Then the mesh of Tn is defined by

Mn := Mn(Tn : [a, b]) := max
1≤i≤n+1

|xi − xi−1|.

For a sequence of Chebyshev polynomials Tn from a fixed Markov system on
[a, b] we have

Mn → 0 iff limMn = 0

as follows from the interlacing of the zeros of Tn and Tn+1 (see [6]).

Our main result requires the following theorem from [2].

Theorem 2. Suppose M := {1, f1, f2, . . . } is an infinite Markov system on [a, b]
with each fi ∈ C1[a, b]. Then span M is dense in C[a, b] in the uniform norm if
and only if

Mn → 0

(where Mn is the mesh of the associated Chebyshev polynomials).

The next result we need shows that in most instances the Chebyshev polynomial
is close to extremal for Bernstein-type inequalities.

Theorem 3. Let Hn := {1, f1, . . . , fn} be a Chebyshev system of C1 functions on
[a, b]. Let Tn be the associated Chebyshev polynomial. Then

|p′n(x0)|
‖pn‖[a,b]

≤ 2

1 − |Tn(x0)|
|T ′

n(x0)|
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for every 0 6= pn ∈ span{1, f1, . . . , fn} and every x0 ∈ [a, b] with |Tn(x0)| 6= 1.

Proof. Let a = y0 < y1 < . . . < yn = b denote the extreme points of Tn, so

Tn(yi) = (−1)n−i, i = 0, 1, . . . , n.

Let yk ≤ x0 ≤ yk+1 and 0 6= pn ∈ Hn. If p′n(x0) = 0, then there is nothing to
prove. So assume that p′n(x0) 6= 0. Then we may normalize pn so that

‖pn‖[a,b] = 1

and
sign(p′n(x0) = sign(p(yk+1) − p(yk)).

Let δ := |Tn(x0)|. Let ǫ ∈ (0, 1) be fixed. Then there exists a constant η with
|η| ≤ δ + (1 − δ)/2 so that

η +
(1 − δ)

2
(1 − ǫ)pn(x0) = Tn(x0).

Now let

qn(x) := η +
(1 − δ)

2
(1 − ǫ)pn(x).

Then
‖qn‖[a,b] ≤ 1,

qn(x0) = Tn(x0)

and
sign(q′n(x0)) = sign(T ′

n(x0)).

If the desired inequality does not hold for pn then for a sufficiently small ǫ > 0

|q′n(x0)| > |T ′
n(x0)|,

so
hn(x) := qn(x) − Tn(x)

will have at least 3 zeros in (yk, yk+1). But hn has at least one zero in each of
(xi, xi+1). Hence hn ∈ Hn has at least n+2 zeros in [a, b], which is a contradiction.

�

We need the following technical result concerning Chebyshev polynomials.

Lemma 1. Suppose M := {1, f1, f2, . . . } is an infinite Markov system of C2 func-
tions on [a, b] and f ′

1 does not vanish on (a, b). Suppose that the associated Cheby-
shev polynomials {Tn} has a subsequence {Tni

} with no zeros on some subinterval of
[a, b]. Then there exists another subinterval [c, d] and another infinite subsequence
{Tni

} so that for some δ > 0, γ > 0

‖Tni
‖[c,d] < 1 − δ
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and
‖T ′

ni
‖[c,d] < γ

for all ni.

Proof. For both inequalities we first choose a subinterval [c1, d1] ⊂ [a, b] and a
subsequence {ni,1} of {ni} so that all oscillations of each Tni,1

take place away
from [c1, d1]. We now choose a subsequence {ni,2} of {ni,1} so that either each
Tni,2

is increasing or each Tni,2
is decreasing on [c1, d1]. We treat the first case,

the second one is analogous. Let [c2, d2] be the middle third of [c1, d1]. If the first
inequality fails to hold with [c2, d2] and {ni,2} then there is a subsequence {ni,3} of
{ni,2} so that ‖Tni,3

‖[c2,d2] → 1 as ni,3 → ∞. Hence, there is a subsequence {ni,4}
of {ni,3} so that either

max
c2≤x≤d2

Tni,4
(x) → 1 or min

c2≤x≤d2

Tni,4
(x) → −1.

Once again we treat the first case, the second one is analogous. Since each Tni,3
is

increasing on [c1, d1],
lim

ni,4→∞
‖1 − Tni,4

‖[d2,d1] = 0.

Now take g := a0 + a1f1 + a2f2 so that g has two distinct zeros α1 and α2 in
[d2, d1], ‖g‖[α1,α2] < 1 and g is positive on (α1, α2). Let β := max

α1≤x≤α2

g(x) and

g̃ := g + 1− β. One can now deduce that Tni,4
− g̃ has at least n + 1 distinct zeros

in [a, b] if ni,4 is large enough, which is a contradiction.

For the second inequality, by [8], {f ′
1, f

′
2, . . . } is a weak Markov system on [a, b],

and so is {
(T ′

2 /T ′
1 )

′
, (T ′

3 /T ′
1 )

′
, . . .

}

on every closed subinterval of (a, b). (In the definitions of weak Markov systems
and weak Chebyshev systems we only count zeros where the sign changes.) The
assumption that f ′

1 does not vanish on (a, b) implies that T ′
1 does not vanish on

(a, b).

¿From this we deduce that each (T ′
ni,2

/T ′
1)

′ has at most one sign change in [c2, d2].

Choose a subinterval [c3, d3] ⊂ [c2, d2] and a subsequence {ni,5} of {ni,2} so that
none of (T ′

ni,5
/T ′

1)
′ changes sign in [c3, d3]. Choose a subsequence {ni,6} of {ni,5}

so that either each T ′
ni,6

/T ′
1 is increasing or each T ′

ni,6
/T ′

1 is decreasing on [c3, d3].

We only study the first case, the second one is similar. Let [c4, d4] be the middle
third of [c3, d3]. If the second inequality fails to hold with [c4, d4] and {ni,6} then
there is a subsequence {ni,7} so that either

max
c4≤x≤d4

T ′
ni,7

(x) / T ′
1(x) → ∞

or
min

c4≤x≤d4

T ′
ni,7

(x) / T ′
1(x) → −∞.

Again we treat only the first case, the second one is analogous. Then for every
K > 0 there is N so that for every ni,7 ≥ N we have
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T ′
ni,7

(x) > K, x ∈ [d4, d3],

hence

K(d3 − d4) ≤
∫ d3

d4

T ′
ni,7

(x)dx = Tni,7
(d3) − Tni,7

(d4) ≤ 2,

which is a contradiction. �

Lemma 2. Suppose M := {f0, f1, . . . } is a C1[a, b] infinite Markov system and
suppose g ∈ C1[a, b] and g is strictly positive on [a, b]. Then N = {gf0, gf1, . . . } is
also a C1[a, b] infinite Markov system. Furthermore span M has a bounded Bern-
stein inequality on [α, β] ⊂ [a, b] if and only if span N also has bounded Bernstein
inequality on [α, β].

Proof. Consider differentiating gf with f ∈ span M by the product rule. If span
M has a bounded Bernstein inequality on [α, β] then

‖(gf)′‖[α,β] ≤ ‖g′f‖[α,β] + ‖gf ′‖[α,β]

≤ c1‖gf‖[α,β] + c2‖gf‖[a,b]

where the first constant arises since

g′(x)/g(x)

is uniformly bounded on [a, b] and the second constant comes from the bounded
Bernstein inequality for f . �

Proof of Theorem 1. The only if part of this theorem is obvious. A good uni-
form approximation to a function with uniformly large derivative on a subinterval
[α, β] ⊂ [a, b] must have large derivative at some points in [α, β].

In the other direction we first note that by Lemma 2 we may assume f0 ≡ 1.
We use Theorem 2 and Lemma 1 in the following way. If span M is not dense
then there exists a subinterval [α, β] ⊂ [a, b] by Theorem 2, where a subsequence
of the associated Chebyshev polynomials have no zeros. By Lemma 1 from this
subsequence we can pick another subsequence Tni

and a subinterval [c, d] ⊂ [α, β]
with

‖Tni
‖[c,d] < 1 − δ

and
‖T ′

ni
‖[c,d] < γ

for some positive constants δ and γ. The result now follows from Theorem 3. �

Corollary 1. Suppose M = {f0, f1, . . . } is an infinite Markov system of C2 func-
tions on [a, b] so that span M fails to be dense in C[a, b] in the uniform norm.
Then there exists a subinterval [α, β] of [a, b] so that if g is in the uniform closure
of span M then g is differentiable on [α, β].

Proof. By Theorem 1, there exists an interval [α, β] where ‖h′‖[α,β]/‖h‖[a,b] is uni-
formly bounded for every h ∈ span M. Suppose hn → g, hn ∈ span M. Then we
can choose ni so that

‖g − hni
‖[a,b] ≤

1

2i
i = 0, 1, 2, . . .
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and hence

g =
∞∑

i=1

(hni
− hni−1

) + hn0
.

Since

‖(hni
− hni−1

)′‖[α,β] ≤
c

2i

for some constant c independent of i, if follows that g is differentiable on [α, β].
�

Suppose M = {f0, f1, . . . } is an extended complete Markov system of C∞ func-
tions on [a, b] (the extra requirement being that the multiplicity of the zeros matters

in the definition: so if f :=
n∑

i=0

aifi has n + 1 zeros by counting multiplicities then

f = 0 identically). In this case the differential operator D defined by

D(f) :=

(
f

f0

)′

maps M to MD where

MD =

{(
f1

f0

)′

,

(
f2

f0

)′

, . . .

}

and MD is once again an extended complete Markov system of C∞ functions (see
Nürnberger [5]). We define the differential operators D(n)(f) for n times differen-
tiable functions f by

Fi,0 := fi, Fi,n :=

(
Fi+1,n−1

F0,n−1

)′

, i = 0, 1, . . . , n = 1, 2, . . . ,

D(0)(f) := f, D(n)(f) :=

(
D(n−1)(f)

F0,n−1

)′

, n = 1, 2, . . . .

Note that if span MD is dense in C[a, b] in the uniform norm then so is span M.
The “if” part of the next theorem can be proved from Theorem 1 by induction on
n, while the “only if” part is obvious.

Theorem 4. Suppose M = {f0, f1, . . . } is an extended complete Markov system
of C∞ functions on [a, b]. Let n be a fixed positive integer. Then span M is dense
in C[a, b] in the uniform norm if and only if

sup

{
‖D(n)(f)‖[α,β]

‖f‖[a,b]
: f ∈ span M, f 6= 0

}
= ∞

for every [α, β] ⊂ [a, b], α 6= β.
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Corollary 2. Suppose M is an extended complete Markov system of C∞ functions
on [a, b] so that span M fails to be dense in C[a, b] in the uniform norm. Then for
each n there exists an interval [αn, βn] ⊂ [a, b] of positive length where all elements
of the uniform closure of span M are n times continuously differentiable.

Proof. Use Theorem 4 as in Corollary 1. We omit the technical details. �

Suppose that M, as in Corollary 2, has the property that span M fails to be
dense in the uniform norm on any proper subinterval of [a, b], as in the case of
Müntz systems

M := {xλ0 , xλ1 , . . . }, 0 ≤ λ0 < λ1 < · · · ,
∞∑

i=1

1

λi

< ∞, 0 ≤ a < b.

Then the uniform closure of span M on [a, b] contains only functions that are C∞ on
a dense subset of [a, b]. In this non-dense Müntz case the closure actually contains
only analytic functions on (a, b) (Achiezer [1], Schwartz [7]).

We record one final corollary.

Corollary 3. Suppose {αk} ⊂ R \ [−1, 1] is a sequence of distinct numbers. Then

span

{
1,

1

x − α1
,

1

x − α2
, . . .

}

is dense in C[−1, 1] if and only if

∞∑

k=1

√
α2

k − 1 = ∞.

Proof. The inequality

|p′(x)| ≤ 1√
1 − x2

n∑

k=1

√
α2

k − 1

|αk − x| ‖p‖[−1,1]

holds for any

p ∈ span

{
1,

1

x − α1
, . . . ,

1

x − αn

}
.

See [3]. This together with Theorem 1 gives the “only if” part of the corollary.

In [3] the Chebyshev “polynomials” Tn (of the first kind) and Un (of the second
kind) for the Chebyshev space

span

{
1,

1

x − α1
, . . . ,

1

x − αn

}

are introduced. Properties of

T̃n(t) := Tn(cos t)
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and

Ũn(t) := Un(cos t) sin t

established in [3] include

(1) ‖T̃n‖R = 1 and ‖Ũn‖R = 1,

(2) T̃n(t)2 + Ũn(t)2 = 1, t ∈ R,

(3) T̃ ′
n(t)2 + Ũ ′

n(t)2 = B̃n(t)2, t ∈ R,

(4) T̃ ′
n(t) = −B̃n(t)Ũn(t), t ∈ R,

(5) Ũ ′
n(t) = B̃n(t)T̃n(t), t ∈ R

where

B̃n(t) =
n∑

k=1

√
α2

k − 1

|αk − cos t| , t ∈ R.

Suppose

∞∑

k=1

√
α2

k − 1 = ∞.

Then

(6) lim
n→∞

min
t∈[α,β]

B̃n(t) = ∞, 0 < α < β < π.

Assume that there is a subinterval [a, b] of (−1, 1) so that

sup
n∈N

‖T ′
n‖[a,b] < ∞.

Let α := arccos b and β := arccosa. Then by properties (4) and (6)

lim
n→∞

‖Ũn‖[α,β] = 0
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hence by property (2)

lim
n→∞

‖T̃ 2
n − 1‖[α,β] = 0.

Thus by properties (5) and (6)

lim
n→∞

min
t∈[α,β]

|Ũ ′
n(t)| = ∞

that is

lim
n→∞

|Ũn(β) − Ũn(α)| = ∞

which contradicts property (1). Hence

sup
n∈N

‖T ′
n‖[a,b]

‖Tn‖[−1,1]
= sup

n∈N

‖T ′
n‖[a,b] = ∞.

for every subinterval [a, b] of (−1, 1) which together with Theorem 1 finishes the
“if” part of the proof. �

Corollary 3 is to be found in Achieser [1, p. 255] proven by entirely different
methods.
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